Bulletin of the Section of Logic Volume 7/4 (1978), pp. 179–184 reedition 2011 [original edition, pp. 179–184]

Elias H. Alves

ON DECIDABILITY OF A SYSTEM OF DIALECTICAL PROPOSITIONAL LOGIC

1. Introduction

In a recent paper, da Costa and Wolf presented a system of propositional logic, called DL, "designed to match a particular doctrine in dialectical theory, that of the unity of opposites" (see [2]). According to them, the system is based on a discussion in McGill and Parry [3].

In this paper, we give a description of da Costa and Wolf's DL and of the corresponding two-valued semantics. Then we propose a decision method for that calculus.

2. The Dialectical Logic DL

The primitive symbols of DL are propositional variables, parentheses and connectives: \supset (implication), \land (conjunction), \lor (disjunction), \lnot (negation) and a new primitive unary connective, $^{\circ}$, which serves as an indicator of stability; i.e., if A° is true, then A is "well-behaved". Many postulates are introduced just to ensure that the propositions of the form A° obey the laws of classical logic. The notion of formula is defined in the standard way.

The postulates of DL are the ones of classical positive logic and the following:

```
(1) \neg (A \land B) \equiv (\neg A \lor \neg B)
(2) \neg (A \lor B) \equiv (\neg A \land \neg B)
(3) (A^{\circ} \land B^{\circ}) \supset ((A \supset B)^{\circ} \land (A \land B)^{\circ} \land (A \lor B)^{\circ} \land (\neg A)^{\circ})
(4) (A^{\circ} \land B^{\circ} \supset ((A \supset B) \supset ((A \supset \neg B) \supset \neg A))
```

180 Elias H. Alves

- $(5) A^{\circ} \supset (\neg \neg A \supset A)$
- (6) $A^{\circ\circ} \equiv A^{\circ}$
- $(7)\ A^{\circ}\supset ((A\vee \neg A)\wedge ((A\supset B)\vee (\neg A\supset B))$
- $(8) \neg A^{\circ} \supset ((A \vee \neg A) \supset B) \vee (A \wedge \neg A))$

Definition 1 (of strong negation). $\sim A =_{def} A \supset (p^{\circ} \wedge p \wedge \neg p)$ where p is a fixed atomic formulas.

In DL the symbols \land, \lor, \supset and \equiv have all properties of the classical positive logic. The strong negation has all properties of classical negation.

3. A two-valued semantics for DL

The semantics used by da Costa and Wolf is the Henkin-style semantics which has proven fruitful in treating other paraconsistent logics (see [1]).

DEFINITION 2. $\overline{\Gamma} = \{A \in F : \Gamma \vdash A\}$, where F is the set of all formulas of DL.

DEFINITION 3. Γ is said to be *trivial* if $\overline{\Gamma} = F$; otherwise Γ is called *non-trivial*. Γ is said to be *inconsistent* of there is at least one formula A such that $A, \neg A \in \Gamma$; otherwise Γ is called *consistent*. Γ is *non-trivially maximal* if it is non-trivial and, for every formula A, if $\Gamma \vdash A$, then $A \in \Gamma$ (or $\Gamma = \overline{\Gamma}$). Γ is said to be \neg -incomplete if there is at least one formula A such that $\Gamma \not\vdash A$ and $\Gamma \not\vdash \neg A$; otherwise Γ is \neg -complete.

Definition 4. A valuation of DL is a function $v: F \to \{0,1\}$ such that:

- 1) $v(A \supset B) = 1 \leftrightarrow v(A) = 0 \text{ or } v(B) = 1$
- 2) $v(A \wedge B) = 1 \leftrightarrow v(A) = v(B) = 1$
- 3) $v(A \vee B) = 1 \leftrightarrow v(A) = 1$ or v(B) = 1
- 4) $v(\neg(A \land B)) = 1 \leftrightarrow v(\neg A) = 1 \text{ or } v(\neg B) = 1$
- 5) $v(\neg(A \lor B)) = 1 \leftrightarrow v(\neg A) = v(\neg B) = 1$
- 6) $v(A^{\circ}) = v(B^{\circ}) = 1 \Rightarrow v((A \supset B)^{\circ}) = v((A \land B)^{\circ}) = v((A \lor B)^{\circ}) = 1$
- 7) $v(A^{\circ}) = 1 \Rightarrow v((\neg A)^{\circ}) = 1$
- 8) $v(A^{\circ}) = 1 \Leftrightarrow v(A^{\circ \circ}) = 1$
- 9) $v(A^{\circ}) = 1 \Rightarrow (\neg \neg A \supset A) = 1$
- 10) $v(A) = v(\neg A) \Rightarrow v(A^\circ) = 0$
- 11) $v(A) \neq v(\neg A) \Rightarrow v(\neg A^{\circ}) = 0$

The definitions of Validity, model and consequence are the standard ones.

Theorem 1. Every non-trivial set of formulas is contained in a maximal non-trivial set.

Theorem 2. Every maximal non-trivial set of formulas has a model.

Theorem 3. $\Gamma \vdash A \text{ iff } \Gamma \models A$.

Note that this semantics is a straightforward generalization of that for the classical propositional calculus and makes clear the meanings of \sim and \neg .

4. Decidability of DL

By means of the proposed semantics, we can obtain a decision method for DL, which is an adaptation of the method described in [1]. For each formula A of DL we construct tables, called *quasi-matrices*, according to the instructions below. A is a theorem of DL if and only if in any quasi-matrix for A the last column contains only 1's. In order to construct a quasi-matrix for A, the procedure is as follows:

- 1) In a line, make a list of all the subformulas of A and some others formulas, as follows:
 - i) First, write every atomic formula which occurs in A.
 - ii) Then, write every negation of these atomic formulas.
 - iii) Write the other subformulas of A but including (if they are not yet) other formulas, in such a way that:
 - $1^{\circ} \neg B$ is written before B° ;
 - $2^{\circ} \neg C$ and $\neg D$ are written before $\neg (C \lor D)$ or $\neg (C \land D)$;
 - $3^{\circ} \neg C, \neg D, C^{\circ} \text{ and } D^{\circ} \text{ are written before } \neg(C \supset D);$
 - 4° A° and B° are written before $(A \supset B)^{\circ}$, $(A \lor B)^{\circ}$ and $(A \land B)^{\circ}$;
 - $5^{\circ}~B^{\circ}$ is written before $(\neg B)^{\circ}$.
 - iv) A formula can be written only if its proper subformulas have already been written.
- 2) Under the list of the atomic formulas, place in successive lines all the possible combinations of 0 and 1 which can be attributed to these

182 Elias H. Alves

formulas.

3) Under each negation of an atomic formula, bifurcate each line, writing in the first part 0 for the negation, and, in the second part, 1. Every time there is a bifurcation, we proceed as above, and this means that the values are the same for the two new lines in the part on the left of it.

- 4) Calculate, in the order of the construction of the list, for each line, the value of each formula as follows:
 - i) When no negations and no formula of the form B° are involved, proceed as in a truth-table for the classical calculus.
 - ii) If any of the formulas under consideration is a negation and so of the form $\neg B$, proceed as follows:
 - 1° If B is of the form C° , check if the value of C is equal to the value of $\neg C$. If this is the case, bifurcate the line. If the value of C is different from the value of $\neg C$, simply write 0.
 - 2° If B is of the form $\neg C$, check if the value of C is equal to the value of $\neg C$. If this is the case, bifurcate the line. If the value of C is different from the value of $\neg C$, check if the value of C° is 0 or 1. If it is 0 bifurcate the line. If it is 1, simply write the same value of C.
 - 3° If B is of the form $C \supset D$ check if the value of C is equal to the value of $\neg C$, or if the value of D is equal to the value of $\neg D$. If this is true, bifurcate the line. If this is not true, check if C° or D° has value 0. If this is the case, bifurcate the line. If C° and D° have value 1, write 0 if B has value 1, and vice-versa.
 - 4° If B is of the form $C \vee D$, write 0 if $\neg C$ or $\neg D$ have value 0. If this is not the case, write 1.
 - 5° If B is of the form $C \wedge D$, write 0 if $\neg C$ has value 0 and $\neg D$ has value 0. If this is not the case, write 1.
 - iii) If any of the formulas under consideration is of the form B° , check if the value of B is equal to the value of $\neg B$. If this is true, write 0 under B° . If this is not true, proceed as follows:
 - 1° If B is an atomic formula, bifurcate the line.
 - 2° If B is $\neg C$, check if C° has value 1. If this is the case, write 1 under B° . If C° has value 0, bifurcate the line.

- 3° If B is $C \supset D$, $C \lor D$ or $C \land D$, check if the values of C° and D° are 1. If this is the case, write 1 under B° . If the value of C° or the value of D° is 0, bifurcate the line.
- 4° If B is of the form C° , write under B° the value of C° .

References

- [1] N. C. A. da Costa, E. H. Alves, A semantical analysis of the calculi C_n , Notre Dame Journal of Formal Logic 18 (1977), pp. 621–630.
- [2] N. C. A. da Costa, R. G. Wolf, The dialectical principle of the unity of opposites, to appear.
- [3] V. J. McGill, W. T. Parry, *The unity of opposites: a dialectical principle*, **Science and Society** 12 (1948), pp. 418–444.

Centro de Lógica, Epistemologia e História da Ciencia Universidade Estadual de Campinas Campinas (Brazil)