Wiesław Dziobiak

A NOTE ON INCOMPLETENESS OF MODAL LOGICS WITH RESPECT TO NEIGHBOURHOOD SEMANTICS

This is a summary of a lecture read at the Seminar of the Department of Mathematical Logic held by Professor Jerzy Kotas, Institute of Mathematics, N. Copernicus University, Toruń, June 1978.

§0. By a modal logic we understand a proper subset of the set of propositional modal formulae that contains all classical tautologies, the axiom $\Box(p \to q) \to (\Box p \to \Box q)$ and closed under modus ponens, substitution and necessitation. In our considerations all neighbourhood frames are normal, i.e. such that neighbourhoods of each point constitute a filter. For a neighbourhood frame $\underline{F} = (\underline{U}, N)$, by \underline{F}^+ we denote the algebra $(P(U), \cup, \cap, \neg, \Box_N, 0, 1)$; where $(P(U), \cup, \cap, \neg, 0, 1)$ is the well known Boolean algebra and \Box_N is a unary operation defined as follows: $\Box_N(S) = \{x \in U | S \in N(x) \}$ for every $S \subseteq U$. We know that $E(\underline{F}) = E(\underline{F}^+)$, where $E(\underline{F})$ $(E(\underline{F}^+))$ is the set of all formulae which are valid in \underline{F} (\underline{F}^+) . Following Fine [3], for a modal logic L, we put $\delta^*(L) = card\{L'|L'$ is a modal logic such that for every neighbourhood frame \underline{F} , $L' \subseteq E(\underline{F})$ iff $L \subseteq E(\underline{F})$. Our aim is to prove the following theorem which is a counterpart of Blok's one (see [1], also [2]).

Theorem 1. For any modal logic L:

- i) if $\Box p \to \Diamond p \in L$ and $\Box^n p \to \Box^{n+1} p \in L$ for some $n \geqslant 0$, then $\delta^*(L) = 2^{\aleph_0}$
- ii) if $p \to p \in L$, then $\delta^*(L) = 2^{\aleph_0}$.
- $\S 1.$ In order to prove the first part of Theorem 1 let us take into consideration the formulae

186 Wiesław Dziobiak

$$\alpha_{n,k} = (p \wedge \diamondsuit^{2n}q) \to (\diamondsuit^n q \vee \diamondsuit^{2n}(q \wedge \diamondsuit^{k(n+1)}p)); \ n \geqslant 1, k \geqslant 1$$

$$\beta_n = (\square^n p \wedge \sim \square^{n+1} p \wedge \sim \square^{2n+1}p) \to \diamondsuit^n(\square^{2n+1}p \wedge \sim \square^{2n+2}p \wedge \sim \square^{3n+2}p),$$

$$n \geqslant 1$$

$$\gamma_n = (\square^n p \wedge \sim \square^{n+1}p \wedge \sim \square^{2n+1}p) \to \sim (r \bigwedge_{1 \leqslant i \leqslant 2n+4} \square^n(q_i \to r) \wedge \bigwedge_{1 \leqslant i \leqslant 2n+4} \square^n(r \to \diamondsuit^n q_i) \wedge \bigwedge_{1 \leqslant i \neq j \leqslant 2n+4} \square^n \sim (q_i \wedge q_j)), \ n \geqslant 1.$$

These formulae can be found in Thomason [5].

LEMMA 1. For any $n \ge 1$ and every neighbourhood frame \underline{F} : if $\alpha_{n,k}(k \ge 1)\beta_n, \gamma_n \in E(\underline{F})$, then $\Box^n p \to (\Box^{n+1} p \vee \Box^{2n+1} p) \in E(F).$

In the proof the ideas from Gerson [4] are used. Let us recall Blok's definition of a family of modal algebras $A_{\underline{m}}$ (cf. [1]). $A_{\underline{m}}$ is a modal algebra of finite and cofinite subsets of the set of natural numbers N. The operation $\square_{\underline{m}}$ in $A_{\underline{m}}$ corresponding to a connective \square is defined as follows: for $M\subseteq N$

$$\square_{\underline{m}} = \left\{ \begin{array}{ll} \emptyset, & \text{if } M \text{ is finite} \\ [m_{i+1}, \infty), & \text{if } N \neq M \text{ is cofinite and } i = \min\{j | [m_j, \infty) \subseteq M\} \\ N, & \text{if } M = N \end{array} \right.$$

where $\underline{m} = (m_i)_{i=1}^{\infty}$ is a sequence of natural numbers satisfying $m_1 = 3$, $m_2 = 4$, $m_{i+1} > m_i$ and $m_{i+1} - m_i \leq 2$, for $i \geq 1$.

LEMMA 2. For each algebra $A_{\underline{m}}$ $\alpha_{n,k}, \beta_n, \gamma_n \in E(A_{\underline{m}}) \ (n \geqslant 1, k \geqslant 1).$

For any class \underline{K} of algebras, $V(\underline{K})$ denotes the smallest variety that contains \underline{K} , and $V(\underline{K})_{SI}$ is the class of all subdirectly irreducible members of $V(\underline{K})$. The next lemma is an immediate consequence of Theorem 4.4 in Blok [1].

LEMMA 3. For every algebra $A_{\underline{m}}$ and natural number $n \geq 1$: if $\underline{B} \in V(A_m)_{SI}$ and $\Box^n p \to (\Box^{n+1} p \vee \Box^{2n+1} p) \in E(\underline{B})$, then $\underline{B} \cong \underline{2}$.

Let L be a modal logic. By \underline{K}_L we denote the variety of modal algebras corresponding with L. If $\Box p \to \Diamond p \in L$, then $\underline{2} \in \underline{K}_L$. Hence, from the Birkhoff theorem and the above lemmas we obtain:

COROLLARY 1. Let L be a modal logic such that $\Box p \to \Diamond p \in L$ and for some $n \ge 1$ the formulas $\alpha_{n,k}$ $(k \ge 1)$, β_n and γ_n are theses of L. Then, for every algebra $A_{\underline{m}}$ and neighbourhood frame F, $\underline{F}^+ \in V(\underline{K}_L \cup \{A_{\underline{m}}\})$ iff $\underline{F}^+ \in \underline{K}_L$.

Let us suppose $\Box p \to \Diamond p \in L$ and $\Box^n p \to \Box^{n+1} p \in L$, for some $n \geqslant 0$. Blok [1] has proved that $V(\underline{K}_L \cup \{A_{\underline{m}}\}) \neq V(\underline{K}_L \cup \{A_{\underline{n}}\})$, for every $\underline{m} \neq \underline{n}$. But L contains also the formulae $\alpha_{n+1,k}$ $(k \geqslant 1)$, β_{n+1} , and γ_{n+1} , and so, by Corollary 1, we receive $\delta^*(L) = 2^{\aleph_0}$.

§2. Now, similarly, we prove the second part of Theorem 1. Therefore take the following formulae:

$$\alpha_{n,k} = (p \land \diamondsuit^4 q) \to ((\square^{n+1} r \to \square^n r) \lor \diamondsuit^2 q \lor \diamondsuit^4 (q \land \diamondsuit^k p));$$

$$n \geqslant 0, k \geqslant 3$$

$$\beta = (\square p \land \sim p) \to \diamondsuit^2 (\square^2 p \land \sim \square p)$$

$$\gamma = (\square p \land \sim p) \to \sim (r \land \bigwedge_{1 \leqslant i \leqslant 5} \square^2 (r \to \diamondsuit^2 q_i) \land \bigwedge_{1 \leqslant i \leqslant 5} \square^2 (q_i \to r) \land$$

$$\wedge \bigwedge_{1 \leqslant i \neq j \leqslant 5} \square^2 \sim (q_i \land q_j))$$

These formulae will play a similar role to that in the previous section. Indeed, for them we have (cf. Lemma 1).

Lemma 4. For a neighbourhood frame \underline{F} :

if
$$\alpha_{n,k}$$
 $(n \ge 0, k \ge 3), \beta, \gamma \in E(F)$, then $\Box p \to p \in E(F)$.

Let b_i , i = 1, 2, 3, 4, 5, be arbitrary but fixed elements not belonging to the set of natural numbers N, and let $(a_n)_{n=1}^{\infty}$ be a one-to-one sequence of such elements. For any sequence $\underline{m} = (m_i)_{i=1}^{\infty}$ of natural numbers such that $m_1 = 2$, $m_i < m_{i+1}$ and $m_{i+1} - m_i \leqslant 2$ $(i \geqslant 1)$, let us put $W_{\underline{m}} = N \cup \{b_1, b_2, b_3, b_4, b_5\} \cup \{a_n | n \in \underline{m}\}$ and $R_{\underline{m}} = \{(b_i, b_i) | i \in \{1, 2, 3, 4, 5\}\} \cup \{(b_i, b_{i+1}, (b_{i+1}, b_i) | i \in \{1, 2, 3\}\} \cup \{(b_i, 1) | i \in \{1, 2, 3, 4\}\} \cup \{(1, b_4), (b_1, b_5), (b_5, b_4), (b_1, b_4), (1, 1)\} \cup \{(n, m) | n < m\} \cup \{(n + 1), n) | n \geqslant 1\} \cup \{(n, a_m) | n \leqslant m \land m \in \underline{m}\} \cup \{(a_n, n), (a_n, a_n) | n \in \underline{m}\}$. Given (W_m, R_m) ,

188 Wiesław Dziobiak

let $B_{\underline{m}}$ denote the modal algebra of finite and cofinite subsets of $W_{\underline{m}}$ in which the operation $\square_{\underline{m}}$ corresponding to the connective \square is defined with the aid of $R_{\underline{m}}$, i.e. $\square_{\underline{m}}(S) = \{x \in W_{\underline{m}} | \forall y (xR_{\underline{m}}y \Rightarrow y \in S)\}.$

Lemma 5. For each algebra B_m

- i) $\alpha_{n,k}, \beta, \gamma \in E(B_m) \ (n \geqslant 0, k \geqslant 3)$
- ii) if $\underline{B} \in V(B_m)_{SI}$ and $\Box p \to p \in E(\underline{B})$, then $\underline{B} \cong \underline{2}$.

Lemma 4 and 5 allow us to obtain the following

COROLLARY 2. Let L be a modal logic such that $\Box p \to p \in L$. Then, for every algebras $B_{\underline{m}}$ and neighbourhood frame \underline{F} , $\underline{F}^+ \in V(\underline{K}_L \cup \{B_{\underline{m}}\})$ iff $\underline{F}^+ \in \underline{K}_L$.

Each of the algebras $B_{\underline{m}}$ is subdirectly irreducible and $\Box p \to p \notin E(B_{\underline{m}})$. Applying the method due to Blok [1] one can prove.

Lemma 6. For a modal logic L:

if
$$\Box p \to p \in L$$
 then $V(\underline{K}_L \cup \{B_m\}) \neq V(\underline{K}_L \cup \{B_n\})$ for every $\underline{m} \neq \underline{n}$.

Corollary 2 and Lemma 6 yield the second part of Theorem 1.

§3. We say that a modal logic L is complete with respect to neighbourhood semantics iff $L = \bigcap \{E(\underline{F}^+) | \underline{F}^+ \in \underline{K}_L\}$. We can neither prove nor disprove the following statement (comp. Lemma 4.1 [1]): L is complete with respect to neighbourhood semantics iff $\underline{K}_L = V(\{\underline{F}^+ \in \underline{K}_L | \underline{F}^+ \text{ is subdirectly irreducible}\}$). If it were proved true, then Theorem 1 would follow immediately from Blok [1].

References

- [1] W. J. Blok, The lattice of modal logics an algebraic investigation, preprint, University of Amsterdam, 1977.
- [2] W. J. Blok, *The lattice of modal logics*, **Bulletin of the Section of Logic**, Polish Academy of Sciences, Institute of Philosophy and Sociology, vol. 6, no. 3 (1977), pp. 112–115.
- [3] K. Fine, An incomplete logic constaining S4, Theoria 60 (1974), pp. 23–29.

- [4] M. Gerson, The inadequacy of the neighbourhood semantics for modal logic, **The Journal of Symbolic Logic** 40, no. 2 (1975), pp. 141–148
- $[5]\,$ S. K. Thomason, An incompleteness theorem in modal logic, **Theoria** 60 (1974), pp. 30–34.

Institute of Mathematics Nicolaus Copernicus University Toruń, Poland