Janusz Czelakowski

A PURELY ALGEBRAIC PROOF OF THE OMITTING TYPES THEOREM

In the present note we make use of some information given in [2]. Also, the terminology and notation do not differ from those accepted in [2]; in particular this concerns the formalism for the predicate calculus.

Let \mathcal{A} be a model of a first-order language \mathcal{L} . We say that \mathcal{A} realizes a set of formulas $\Sigma \subseteq Fla(\mathcal{L})$ iff $\mathcal{A} \models \sigma[\bar{a}]$ for some valuation \bar{a} in \mathcal{A} and all $\sigma \in \Sigma$. We say that \mathcal{A} omits Σ iff \mathcal{A} does not realize Σ .

A formula $\alpha \in Fla(\mathcal{L})$ is consistent with a theory T in iff there is a model of T which realizes $\{\alpha\}$.

LEMMA 1. Let T be a theory in a countable language \mathcal{L} . Let $\alpha \in Fla(\mathcal{L})$. The following conditions are equivalent:

- (a) α is consistent with T
- (b) $|\alpha|_T \neq 0_T$ in the Lindenbaum-Tarski algebra \mathcal{B}_T .

Lemma 1 is a direct consequence of Corollary 3 in [2]. See also [1, p. 105].

Let $\Sigma \subseteq Fla(\mathcal{L})$. A theory T in \mathcal{L} is said to locally realize Σ iff there is a formula φ in \mathcal{L} such that

- (i) φ is consistent with T
- (ii) for all $\sigma \in \Sigma$, $T \models \varphi \to \sigma$

T locally omits Σ iff T does not locally realize Σ .

If $\Sigma \subseteq Fla(\mathcal{L})$ and $\varepsilon \in Sb(\mathcal{L})$, then $\varepsilon \Sigma =_{df} \{ \varepsilon \sigma : \sigma \in \Sigma \}$.

We say that Σ is a set of formulas of \mathcal{L} in the free individual variables x_1, \ldots, x_n (symbolically $\Sigma = \Sigma(x_1, \ldots, x_n)$) iff x_1, \ldots, x_n are distinct free individual variables and every formula σ in Σ contains at most the variables x_1, \ldots, x_n .

8 Janusz Czelakowski

LEMMA 2. Let T be a theory in a language \mathcal{L} . Suppose T locally omits $\Sigma = \Sigma(x_1, \ldots, x_n)$. Then T locally omits $\varepsilon \Sigma$, for all $\varepsilon \in Sb(\mathcal{L})$.

LEMMA 3. Let T be a theory in a countable language \mathcal{L} . The following conditions are equivalent:

(i) T locally omits $\Sigma = \Sigma(x_1, \dots, x_n)$

(ii)
$$\bigcap_{\sigma \in \Sigma} |\sigma|_T = 0_T \text{ in } \mathcal{B}_T.$$

COROLLARY 4. If a theory T in a countable language locally omits $\Sigma = \Sigma(x_1, \ldots, x_n)$, then

$$(\Sigma)_{\varepsilon} \qquad \bigcap_{\sigma \in \Sigma} |\varepsilon\sigma|_T = 0_T$$

for all $\varepsilon \in Sb(\mathcal{L})$.

Notice that if $\Sigma = \Sigma(x_1, \ldots, x_n)$ and \mathcal{L} is countable, then the family of all meets $(\Sigma)_{\varepsilon}$, $\varepsilon \in Sb(\mathcal{L})$, is at most countable.

THEOREM (Extended Omitting Types Theorem) [1, p. 82]. Let T be a consistent theory in a countable language \mathcal{L} , and for each $k \in N$ let $\Sigma_k = \Sigma_k(x_1, \ldots, x_{n_k})$ be a set of formulas in n_k free individual variables. If T locally omits each Σ_k , then T has a countable model which omits each Σ_k .

PROOF. From assumption and Corollary 4 we obtain:

$$(\Sigma_k)_{\varepsilon}$$
 $\bigcap_{\sigma \in \Sigma_k} |\varepsilon\sigma|_T = 0_T \text{ in } \mathcal{B}_T$

for each $k \in N$ and every substitution $\varepsilon \in Sb(\mathcal{L})$. The family of all meets $(\Sigma_k)_{\varepsilon}$, $k \in N$, $\varepsilon \in Sb(\mathcal{L})$, is also countable. By Rasiowa-Sikorski Lemma (Lemma 2 in [2]) there exists a Q-ultrafilter ∇ in \mathcal{B}_T which preserves all the meets $(\Sigma_k)_{\varepsilon}$, $k \in N$, $\varepsilon \in Sb(\mathcal{L})$. It follows that for every $\varepsilon \in Sb(\mathcal{L})$ and each $k \in N$ there is a formula in Σ_k , say $\sigma_{\varepsilon,k}$, such that $|\neg \varepsilon \sigma_{\varepsilon,k}|_T \in \nabla$. Let \mathcal{A}_{∇} be the algebraic model determined by ∇ . Suppose that for some $k_0 \in N$ the model \mathcal{A}_{∇} realizes Σ_{k_0} . Then, due to formula (TL) in [2], there exists an $\varepsilon_0 \in Sb(\mathcal{L})$ such that $|\varepsilon_0 \sigma|_T \in \nabla$ for all $\sigma \in \Sigma_{k_0}$. In particular $|\varepsilon_0 \sigma_{\varepsilon_0,k_0}|_T \in \nabla$. Contradiction.

References

- [1] C. C. Chang and H. J. Keisler, **Model theory**, North-Holland, Amsterdam-London-New York, 1973.
- $[2]\,$ J. Czelakowski, $Some\ remarks\ on\ countable\ algebraic\ models,$ this volume.
- [3] H. Rasiowa and R. Sikorski, **The mathematics of metamathematics**, second edition revised, PWN, Warszawa 1968.

Polish Academy of Sciences Section of Logic, Wrocław