Osamu Sonobe

A NOTE ON R - S LEMMA

Rauszer and Sabalski proved in [2] that distributivity with respect to infinite joins and meets is a sufficient and necessary condition making the Rasiowa-Sikorski Lemma valid in distributive lattices. The main part of their proof is a direct construction of a required filter under distributivity. In this note we show that a generalization of the result can be obtained from the Rasiowa-Sikorski Lemma for Boolean algebras by using Görnemann's result in [1] instead of a direct construction.

Suppose A is a distributive lattice and $Q, R \subseteq 2^A - \{\emptyset\}$. We call A (Q, R) complete if $\forall M \in Q \exists \sqcap M \in A$ and $\forall N \in R \exists \sqcup N \in A$. $M \in Q$ is \sqcap -dis if $\exists \sqcap M \in A$ and $\forall a \in A \ a \sqcup \sqcap M = \sqcap_{m \in M} (a \sqcup m)$. $N \in R$ is \sqcup -dis if $\exists \sqcup N \in A$ and $\forall a \in A \ a \sqcap \sqcup N = \sqcup_{n \in N} (a \sqcap n)$. (Q, R) is called distributive if every $M \in Q$ is \sqcap -dis and every $N \in R$ is \sqcup -dis.

Suppose A is (Q, R) complete and $C, D \subseteq A$. By $\nabla_C(\Delta_D)$ we mean the filter (ideal) in A generated by C(D), in particular, let $\nabla_\emptyset = \Delta_\emptyset = \emptyset$. (C, D) is called (Q, R) complete if (i) and (ii), where

- (i) $\forall M \in Q(\nabla_C \cap \Delta_{D \cup \{ \bigcap M \}} = \emptyset \Rightarrow \exists m \in M \nabla_C \cap \Delta_{D \cup \{m\}} = \emptyset)$
- (ii) $\forall N \in R(\nabla_{C \cup \{|\ |\ N\}} \cap \Delta_D = \emptyset \Rightarrow \exists n \in N \nabla_{C \cup \{n\}} \cap \Delta_D = \emptyset)$

REMARK. We call a filter $F \subseteq A$ (an ideal $I \subseteq A$) Q(R) complete if $\forall M \in Q$ $M \subseteq F \Rightarrow \prod M \in F \ (\forall N \in R \ N \subseteq I \Rightarrow \bigsqcup N \in I)$. Then, ∇_C is Q complete iff (C, \emptyset) is (Q, R) complete and Δ_D is R complete iff (\emptyset, D) is (Q, R) complete.

For $a,b \in A$, $a \le b \ mod(C,D)$ is defined by $\nabla_{C \cup \{a\}} \cap \Delta_{D \cup \{b\}} \neq \emptyset$. An equivalence relation \sim is then defined as $a \sim b$ if $a \le b \ mod(C,D)$ and $b \le a \ mod(C,D)$. We denote the equivalence class of $a \in A$ by [a]. A/\sim becomes a distributive lattice with the order defined as $[a] \sqsubseteq [b]$ if $a \le b \ mod(C,D)$. We denote the lattice by A/(C,D). Clearly, $[a \sqcap b] = [a] \sqcap [b]$ and $[a \sqcup b] = [a] \sqcup [b]$ for any $a,b \in A$.

For
$$Q \subseteq 2^A - \{\emptyset\}$$
, let $[Q] = \{[M] : [M] = \{[m] : m \in M\}$ and $M \in Q\}$.

Lemma 1. Suppose A is a (Q,R) complete distributive lattice and $C,D\subseteq A$. Then, the following are equivalent.

- (a) For any $a, b \in A$, $(C \cup \{a\}, D \cup \{b\})$ is (Q, R) complete.
- (b) A/(C, D) is a ([Q], [R]) complete distributive lattice with $\square[M] = [\square M]$ and $[\square N] = [\square N]$ for every $M \in Q$ and for every $N \in R$, and ([Q], [R]) is distributive.

PROOF. (a) \Rightarrow (b). First, we show that $\bigcap_{m \in M} [b \sqcup m] = [b \cup \bigcap M]$ for any $b \in A$ and for any $M \in Q$. It is trivial that $[b \sqcup \bigcap M] \subseteq [b \sqcup m]$ for any $m \in M$. Suppose $[a] \sqsubseteq [b \sqcup m]$ for any $m \in M$. Then, for any $m \in M$, $a \leqslant b \sqcup m \mod(C, D)$, namely $\nabla_{C \cup \{a\}} \cap \Delta_{D \cup \{b,m\}} \neq \emptyset$. By (a), $\nabla_{C \cup \{a\}} \cap \Delta_{D \cup \{b,\bigcap M\}} \neq \emptyset$. So, $a \leqslant b \sqcup \bigcap M \mod(C, D)$ and the $[a] \sqsubseteq [b \sqcup \bigcap M]$. Thus, $\bigcap_{m \in M} [b \sqcup m] = [b \sqcup \bigcap M]$. Now, take $\bigcap M$ for b and we have $\bigcap [M] = [\bigcap M]$ since $\bigcap M \sqcup m = m$ for any $m \in M$. Hence, $\bigcap_{m \in M} ([b] \sqcup [m]) = \bigcap_{m \in M} [b \sqcup m] = [b \sqcup \bigcap M] = [b] \sqcup [\bigcap M]$, that is, [M] is \bigcap -dis in A/(C, D). It is verified similarly that $\bigsqcup [N] = [\bigsqcup N]$ and [N] is \lfloor -dis in A/(C, D) for any $N \in R$.

(b) \Rightarrow (a). Suppose $a,b \in A$ and $M \in Q$. If $\nabla_{C \cup \{a\}} \cap \Delta_{D \cup \{b,m\}} \neq \emptyset$ for any $m \in M$, then $[a] \sqsubseteq [b \sqcup m] (= [b] \sqcup [m])$ for any $m \in M$. By (b), $[a] \sqsubseteq \bigcap_{m \in M} ([b] \sqcup [m]) = [b] \sqcup \bigcap [M] = [b] \sqcup \bigcap M$. Thus, $a \leqslant b \sqcup \bigcap M \ mod(C,D)$, namely, $\nabla_{C \cup \{a\}} \cap \Delta_{D \cup \{b, \cap M\}} \neq \emptyset$. The case for $N \in R$ is similar.

COROLLARY. Suppose A is a (Q,R) complete distributive lattice. Then the following are equivalent.

- (a) (Q,R) is distributive.
- (b) For any $a, b \in A$, $(\{a\}, \{b\})$ is (Q, R) complete.

PROOF. Take (\emptyset, \emptyset) for (C, D) in the lemma.

Suppose *A* is distributive lattice and let \mathcal{H} be the set of all prime filters in *A*. (For the sake of convenience, let $\mathcal{H} = \{A\}$ if *A* is a singleton).)

It is well known that

*:
$$A \longrightarrow 2^{\mathcal{H}}$$

 $\in \qquad \in$
 $a \longrightarrow a^* = \{F : a \in F \text{ and } F \in \mathcal{H}\}$

12 Osamu Sonobe

is an embedding. Let B(A) be the Boolean algebra generated by A in $2^{\mathcal{H}}$. In [1], Görnemann proved

Lemma 2. Suppose A is a (Q,R) complete distributive lattice. Then the following are equivalent:

- (a) (Q,R) is distributive.
- (b) $\forall M \in Q(\bigcap M)^* = \bigcap M^* \text{ and } \forall N \in R(||N)^* = ||N^* \text{ in } B(A).$

REMARK. This is proved in [1] for bounded distributive lattice but the condition that *A* is bounded is optional.

THEOREM. Suppose that A is a (Q,R) complete distributive lattice, $|Q \cup R| \le \omega$, and $C,D \subseteq A$. Then the following are equivalent:

- (a) For any $a, b \in A$, $(C \cup \{a\}, D \cup \{b\})$ is (Q, R) complete.
- (b) For any $a, b \in A$, $a \leq bmod(C, D)$ or there is a prime filter F in A such that (F, A F) is (Q, R) complete, $C \cup \{a\} \subseteq F$, and $D \cup \{b\} \subseteq A F$.

REMARK. A filter F is called R saturated if $\forall N \in R \sqcup N \in F \Rightarrow N \cap F \neq \emptyset$. If F is a prime filter, then F is Q complete R saturated iff (F, A - F) is (Q, R) complete.

PROOF. (a) \Rightarrow (b). Suppose not $a \leq bmod(C, D)$. Then $[a] \not\sqsubseteq [b]$ in A/(C, D) and $[a]^* \not\sqsubseteq [b]^*$ in B/(C, D)). By the above lemmas, B(A/(C, D)) is a $([Q]^*, [R]^*)$ complete Boolean algebra and, of course, $[[Q]^* \cup [R]^*] \leq \omega$. Since $[a]^* \not\sqsubseteq [b]^*$ in B(A/(C, D)), by the Rasiowa-Sikorski Lemma for Boolean algebras, there is a $[Q]^*$ complete $[R]^*$ saturated ultrafilter U in B(A/(C, D)) such that $[a]^* \in U$ and $[b]^* \notin U$. Let $F = \{x \in A : [x]^* \in U\}$. It is trivial that $a \in F$ and $b \notin F$. If $x \in C$, then $[x]^* = 1$ in B(A/(C, D)) and $[x]^* \in U$. So $C \subseteq F$. Similarly we have $D \cap F = \emptyset$. Suppose $x, y \in F$. Then $[x]^*, [y]^* \in U$. Since $[x \cap y]^* = ([x] \cap [y])^* = [x]^* \cap [y]^* \in U$, we have that $x \cap y \in F$. In a similar way it is shown that F is a prime filter. Now, suppose $M \in Q$ and $\nabla_F \cap \Delta_{(A-F)\cup\{m\}} = \emptyset$ for any $m \in M$. Then $m \in M$. Then $m \in F$ for any $m \in M$, since $\nabla_F = F$ and $\Delta_{A-F} = A - F$. Thus we have that $[m]^* \in U$ for any $m \in M$ by the definition of F. But U is $[Q]^*$ complete. So $\prod [M]^* \in U$, form which it follows that $[\prod M]^* \in U$, since $\prod [M]^* = (\prod M]^* = [\prod M]^*$ by the lemmas. Hence $\prod M \in F$, namely, $\nabla_F \cap \Delta_{(A-F)\cup\{\lceil M\}} = \emptyset$. The case for $N \in R$ is similar.

(b) \Rightarrow (a). Suppose $a, b \in A$ and $M \in Q$.

If $\nabla_{C \cup \{a\}} \cap \Delta_{D \cup \{b, \bigcap M\}} = \emptyset$, then, since not $a \leq b \sqcup \bigcap M \ mod(C, D)$, there is some prime filter F in A such that (F, A - F) is (Q, R) complete, $C \cup \{a\} \subseteq F$,

and $D \cup \{b \sqcup \bigcap M\} \subseteq A - F$. Clearly $\nabla_F = F$ and $\Delta_{(A-F)\cup\{\bigcap M\}} = A - F$. So $\nabla_F \cap \Delta_{(A-F)\cup\{\bigcap M\}} = \emptyset$ and we have that $\nabla_F \cap \Delta_{(A-F)\cup\{m\}} = \emptyset$ for some $m \in M$, since (F,A-F) is (Q,R) complete. It is trivial that $\nabla_{C \cup \{a\}} \cap \Delta_{D \cup \{b,m\}} = \emptyset$ since $C \cup \{a\} \subseteq F$ and $D \cup \{b,m\} \subseteq (A-F) \cup \{m\}$ (=A-F). The case for $N \in R$ is verified similarly.

Corollary. Suppose A is a (Q,R) complete distributive lattice and $|Q \cup R| \le \omega$. Then the following are equivalent:

- (a) (Q, R) is distributive.
- (b) For any $a, b \in A$, $a \subseteq b$ or there is a prime filter F in A such that (F, A F) is (Q, R) complete, $a \subseteq F$, and $b \notin F$.

PROOF. Take (\emptyset, \emptyset) for (C, D) in the theorem and apply the Corollary of Lemma 1.

References

- [1] S. Görnemann, *A logic stronger than intuitionism*, **The Journal of Symbolic Logic** 36 (1971).
- [2] C. Rauszer and B. Sabalski, *Notes on Rasiowa-Sikorski Lemma*, **Studia Logica** 34 (1975).

6602 Ikuta, Tama-ku Kawasaki City, 214 Japan