Małgorzata Porębska

ON IMPLIVALENTIAL ALGEBRAS

This is an abstract of the paper presented at the seminar of the Department of Logic of Jagiellonian University held by Professor Andrzej Wroński, October 1978.

I wish to express my sincere gratitude to Professor Wroński for his kind help during preparing this paper.

Let E denote the equational class of equational algebras (see [4]) and I – the equational class of implicational algebras (see [1]). Our task is to give a characterization of the smallest variety EI containing E and I. By implicational algebras we shall mean algebras of the variety EI.

We use the common algebraic notation. In particular the German capitals: $A, \mathcal{D}, \mathcal{L}, \ldots$ will be used for algebras, and the corresponding Latin capitals: A, B, C, \ldots for their domains. Writing algebraic equations we adopt the convention of associating to the left and ignoring the sign of binary operation: for example we will write $a_1 a_2 \ldots a_n$ instead of $(\ldots (a_1 * a_2) \ldots) * a_n$.

Let us recall [3] that equational classes K_1, K_2 of algebras of the same type are independent if there exists a binary polynomial symbol p(x, y) such that $p(x, y) = x \in Id(K_1)$ and $p(x, y) = y \in Id(K_2)$.

Let us observe that $x(yy)(y(xx)y) = x \in Id(E)$ and $x(yy)(y(xx)y) = y \in Id(I)$. This means that the following theorem holds:

Theorem 1. E and I are independent.

The direct product $E \times I$ is the class of all algebras \mathcal{A} which are isomorphic to an algebra of the form $\mathcal{A}_1 \times \mathcal{A}_2$, where $\mathcal{A}_1 \in E$, $\mathcal{A}_2 \in I$. From the above theorem and Theorem 1 [3] we conclude that

Corollary 1. $EI = E \times I$.

The following theorem gives an axiomatization for EI:

Theorem 2. $A \in EI$ if and only if for arbitrary $a, b, c \in A$ the following equations hold:

- $(ei \ 1) \ aab = b,$
- $(ei \ 2) \ a(bb)(a(bb)a) = a,$
- (ei 3) ab(cc)(ab) = a(cc)a(b(cc)b),
- $(ei \ 4) \ a(b(ca)) = a(c(ba)),$
- $(ei \ 5) \ a(a(bc)) = ab(ac),$
- $(ei \ 6) \ abb(abb(ac)) = ac,$
- $(ei \ 7) \ ab(ab(baa)) = ba(abb).$

PROOF. Assume that algebra \mathcal{A} satisfies $(ei\ 1)-(ei\ 7)$. Let us define two relations on $A\times A$:

$$\theta_E = \{ \langle a, b \rangle : a(bb)(b(aa)b) = b \}$$

$$\theta_I = \{ \langle a, b \rangle : a(bb)(b(aa)b) = a \}$$

which are congruence of the algebra \mathcal{A} such that:

- 1^0 $\theta_E \cap \theta_I = \omega_A$, where ω_A is the smallest congruence of A,
- 2^0 $\theta_E \vee \theta_I = \iota_{\mathcal{A}}$, where $\iota_{\mathcal{A}}$ is the smallest congruence of \mathcal{A} ,
- 3^0 $\theta_E\theta_I=\theta_I\theta_E$, what means that θ_E and θ_I are permutable,
- 4^0 $\mathcal{A}/\theta_E \in E, \mathcal{A}/\theta_I \in I$ and θ_E, θ_I are the smallest congruence relations having this property.

Now from Theorem 19.3 [2] we inference that $\mathcal{A} \cong \mathcal{A}/\theta_E \times \mathcal{A}/\theta_I$, so $\mathcal{A} \in EI$. Simple computations showing that $(ei\ 1) - (ei\ 7)$ hold in all E- and I-algebras complete the proof of this theorem.

The following arbitrary EI-algebra:

THEOREM 3. If
$$A_1 \in E$$
, $A_2 \in I$, then $\mathcal{L}(A_1 \times A_2) \cong \mathcal{L}(A_1) \times \mathcal{L}(A_2)$.

PROOF. Assume that $\mathcal{D} \in EI$. For any congruence φ of algebra \mathcal{D} we define two relations on $B \times B$:

$$\varphi_1 = \{ \langle a, b \rangle : \langle a(bb)(b(aa)b), b \rangle \in \varphi \}$$

$$\varphi_2 = \{ \langle a, b \rangle : \langle a(bb)(b(aa)b), a \rangle \in \varphi \}$$

which are congruence of ${\mathcal D}$ such that:

```
1^{0} \varphi_{1} \wedge \varphi_{2} = \varphi, 

2^{0} \varphi_{12} = \varphi_{21} = \iota_{\mathcal{D}}, 

3^{0} \varphi_{11} = \varphi_{1}, \varphi_{22} = \varphi_{2}, 

4^{0} (\varphi \cap \psi)_{1} = \varphi_{1} \cap \psi_{1}, (\varphi \cap \psi)_{2} = \varphi_{2} \cap \psi_{2}, 

5^{0} (\varphi \vee \psi)_{1} = \varphi_{1} \vee \psi_{1}, (\varphi \vee \psi)_{2} = \varphi_{2} \vee \psi_{2}.
```

Let $\mathcal{L}(\mathcal{D})$ denote congruence lattice of algebra \mathcal{D} . Further we define two relations on $C(\mathcal{D}) \times C(\mathcal{D})$:

$$\Delta' = \{ \langle \varphi, \psi \rangle : \varphi_1 = \psi_1 \}$$
$$\Delta'' = \{ \langle \varphi, \psi \rangle : \varphi_2 = \psi_2 \}$$

which are congruences of $\mathcal{L}(\mathcal{D})$ and fulfill the following conditions:

$$1^{0} \Delta' \cap \Delta'' = \omega_{\mathcal{L}(\mathcal{D})},$$

$$2^{0} \Delta' \vee \Delta'' = \iota_{\mathcal{L}(\mathcal{D})},$$

$$3^{0} \Delta' \Delta'' = \Delta'' \Delta'.$$

From Theorem 19.3 [2] we know that $(\mathcal{D}) \cong \mathcal{L}(\mathcal{D})/\Delta' \times \mathcal{L}(\mathcal{D})/\Delta''$. Relations θ_E , θ_I (defined on \mathcal{D} in the same way as in the proof of the previous theorem) are elements of the set $C(\mathcal{D})$, so let us define two subsets of $C(\mathcal{D})$:

$$[\theta_E) = \{ \varphi : \varphi \in C(\mathcal{D}), \theta_E \subseteq \varphi \}$$
$$[\theta_I) = \{ \varphi : \varphi \in C(\mathcal{D}), \theta_I \subseteq \varphi \}$$

 $\langle [\theta_E), \subseteq \rangle$ and $\langle [\theta_I), \subseteq \rangle$ are sublattices of the lattice $\mathcal{L}(\mathcal{D})$. It is easy to check that:

$$\langle [\theta_E, \subseteq \rangle \cong \mathcal{L}(\mathcal{D})/\Delta' ; \langle [\theta_I, \subseteq \rangle \cong \mathcal{L}(\mathcal{D})/\Delta''$$

We set up a required isomorphisms h_1, h_2 as follows:

$$h_1([\varphi]\Delta') = \varphi_1 \; ; \; h_2([\varphi]\Delta'') = \varphi_2.$$

Now from Theorem 11.3 [2] we conclude that for an arbitrary algebra $\mathcal{D} \in EI : \mathcal{L}(\mathcal{D}) \cong \mathcal{L}(\mathcal{D}/\theta_E) \times \mathcal{L}(\mathcal{L}/\theta_I)$. If we assume that $\mathcal{A}_1 \in E$, $\mathcal{A}_2 \in I$, then $\mathcal{A}_1 \times \mathcal{A}_2 \in EI$. So $\mathcal{L}(\mathcal{A}_1 \times \mathcal{A}_2) = \mathcal{L}((\mathcal{A}_1 \times \mathcal{A}_2)/\theta_E) \times \mathcal{L}((\mathcal{A}_1 \times \mathcal{A}_2)/\theta_I)$, where θ_E , θ_I are defined on $\mathcal{A}_1 \times \mathcal{A}_2$ in the same way as in the proof of Theorem 2. Because of the minimal property θ_E , θ_I : $(\mathcal{A}_1 \times \mathcal{A}_2)/\theta_E = \mathcal{A}_1$ and $(\mathcal{A}_1 \times \mathcal{A}_2)/\theta_I = \mathcal{A}_2$, so we conclude that $\mathcal{L}(\mathcal{A}_1 \times \mathcal{A}_2) \cong \mathcal{L}(\mathcal{A}_1) \times \mathcal{L}(\mathcal{A}_2)$.

Since all E- and I-algebras have a modular congruence lattices, from above theorem and from Theorem 1 [3] we immediately have the following two corollaries:

COROLLARY 2. Each EI-algebra have a modul congruence lattice.

COROLLARY 3. An arbitrary algebra $A \in EI$ has, up to isomorphism, a unique representation in $E \times I : A \cong A_1 \times A_2$, where $A_1 \in E$, $A_2 \in I$.

Let \mathcal{F}_{EI}^n denote a free algebra free-generated by an *n*-elementary set over some class K. We can prove:

Theorem 4. $\mathcal{F}_{EI}^n \cong \mathcal{F}_E^n \times \mathcal{F}_I^n$.

PROOF. Assume that \mathcal{F}_{EI}^n is a free algebra over EI, free-generated by an n-elementary set $\{a_1,\ldots,a_n\}$. Observe that θ_E , θ_I , defined on \mathcal{F}_{EI}^n in the same way as in the proof of Theorem 2, are fully invariant congruence relations. So from Theorem 25.6 [2] we have that $\mathcal{F}_{EI}^n/\theta_E$ is a free algebra with the free-generating set $\{[a_1]\theta_E,\ldots,[a_n]\theta_E\}$, and $\mathcal{F}_{EI}^n/\theta_I$ is a free algebra with the free-generating set $\{[a_1]\theta_I,\ldots,[a_n]\theta_I\}$. From Theorem 1 [3]: $\mathcal{F}_{EI}^n\cong\mathcal{F}_{EI}^n/\theta_E\times\mathcal{F}_{EI}^n/\theta_I$, where $\mathcal{F}_{EI}^n/\theta_E\in E$, $\mathcal{F}_{EI}^n/\theta_I\in I$. Let be the 1-1 mapping of the generating set of \mathcal{F}_{EI}^n onto a set of free generators of \mathcal{F}_E^n and let f_h extend this mapping to a homomorphism. Let the symbol $Ker(f_h)$ denote kernel of this homomorphism. Since $\mathcal{F}_{EI}^n/Ker(f_h)\cong\mathcal{F}_E^n$, $\mathcal{F}_{EI}^n/Ker(f_h)$ has an exactly n-elementary set of generators. It is obvious that $\mathcal{F}_{EI}^n/Ker(f_h)\in E$, so from the minimal property of $\theta_E:\theta_E\subseteq Ker(f_h)$ and $\mathcal{F}_{EI}^n/\theta_E$ has an exactly n-elementary generating family. This means that $\mathcal{F}_{EI}^n/\theta_E/\theta_E\cong\mathcal{F}_E^n$. By similar arguments we prove that $\mathcal{F}_{EI}^n/\theta_I\cong\mathcal{F}_I^n$ and this complete the proof of the theorem.

Since every E- and every I-algebra with finite set of generators are finite, from Theorem 4 we have:

COROLLARY 4. Every finitely generated EI-algebra is finite.

References

- [1] A. Diego, Sur les algébras de Hilbert, Collection de logique mathématique, Ser. A, fasc. 21, Paris, 1966.
 - [2] G. Grätzer, Universal Algebra, Princeton, 1968.
- [3] G. Grätzer, H. Lakser and J. Płonka, *Joins and direct products of equational classes*, **Canad. Math. Bull.**, vol. 12, no. 6 (1969), pp. 741–744
- [4] J. Kabziński and A. Wroński, On equivalential algebras, Proceedings of the 1975 International Symposium of Multiple-Valued Logics, Indiana Univ., Bloomington, May 13–16, 1975, pp. 419–428.

Department of Logic Jagiellonian University