Bulletin of the Section of Logic Volume 8/2 (1979), pp. 48–52 reedition 2010 [original edition, pp. 48–53]

Wiesław Dziobiak

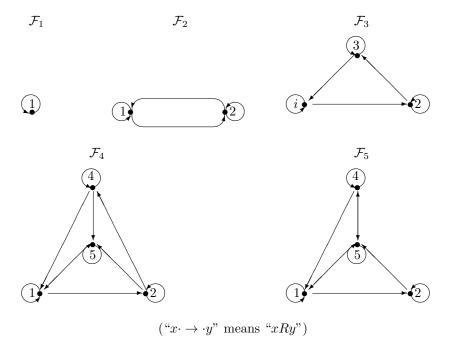
AN EXAMPLE CONCERNING THE LATTICE OF THE STRUCTURAL CONSEQUENCE OPERATIONS

This is an abstract of a lecture read at the Autumn School on Strongly Finite Sentential Calculi organized by Section of Logic, Polish Academy of Sciences, Institute of Philosophy and Sociology, Ustronie (Poland), November 1978.

Let \mathcal{C} be the set of all structural consequence operations defined on some fixed sentential language \underline{L} . We know (see [5]) that (\mathcal{C}, \leqslant) is a complete lattice, where the ordering \leqslant is defined as follows: for each C_1, C_2 from $\mathcal{C}, C_1 \leqslant C_2$ iff $C_1(X) \subseteq C_2(X)$ for all $X \subseteq L$. Let SF^* denote the subset of \mathcal{C} containing all strongly finite consequence operations (see [4]) for which there are strongly adequate matrices of degree 1 (see [5]). Our aim is to show that SF need not be closed under sup and inf in (\mathcal{C}, \leqslant) .

From now on, let $\underline{L}=(L,\vee,\wedge,\neg,\Box)$ be the sentential language of the type $\langle 2,2,1,1\rangle$. A modal algebra is an algebra $\mathcal{A}=(A,+,\cdot,-,\ ^o)$ similar to \underline{L} and satisfying: (i) $(A,+,\cdot,-)$ is Boolean algebra, (ii) $1^o=1$ (1 is Boolean unit) and (ii) $(x\cdot y)^o=x^o\cdot y^o$ for all $x,y\in A$. It is known that from every frame $\mathcal{F}=(W,R)$, i.e. W is a non-empty set and $R\subseteq W\times W$, one can build the modal algebra $\mathcal{A}=(P(W),\cup,\cap,-,\ ^o)$ where $A^o=\{x\in W; \forall y(xRy\to y\in A)\}$ for all $A\in P(W)$.

Let us consider the modal algebras A_i (i = 1, 2, 3, 4, 5) which are build from the frames \mathcal{F}_i (i = 1, 2, 3, 4, 5), given by the following diagrams, respectively.



For these algebras one can prove the following lemma

LEMMA 1. i)
$$IS(\{A_i\}) = I(\{A_i, A_3, A_2, A_1) \text{ for } i = 4, 5$$

ii) A_4 and A_5 are not isomorphic.

Each variety of modal algebras is congruence distributive and all algebras A_i are simple. Then, by the above Lemma 1 and Corollary 3.4 from [1] we obtain the following

COROLLARY.
$$HSP(\{A_4\}) \cap HSP(\{A_5\}) = HSP(\{A_3, A_2, A_1\})$$

For each A_i let Cn_i (i = 1, 2, 3, 4, 5) denote the consequence operation on \underline{L} determined by the matrix $(A_i, \{1\})$.

Proposition 1. i)
$$\sup\{Cn_4, Cn_5\} = \inf\{Cn_2, Cn_3\}$$

ii) $\sup\{Cn_4, Cn_5\} \not\leqslant Cn_2, Cn_3$

PROOF. (i): First we prove $(*)sup\{Cn_4, Cn_5\}(\emptyset) = inf\{Cn_2, Cn_3\}(\emptyset)$. Lemma 1(i) implies \subseteq . Since $sup\{Cn_4, Cn_5\}(\emptyset)$ is a normal modal logic 50 Wiesław Dziobiak

which contains logics defined by the matrices $(\mathcal{A}_4, \{1\})$ and $(\mathcal{A}_5, \{1\})$ then the variety of modal algebras determined by it is contained in $HSP(\{\mathcal{A}_4\}) \cap HSP(\{\mathcal{A}_5\})$. Hence, by Corollary, we have $inf\{Cn_1, Cn_2, Cn_3\}(\emptyset) \subseteq sup\{Cn_4, Cn_5\}(\emptyset)$, but $\mathcal{A}_1 \in IS(\{\mathcal{A}_i\})$ (i = 2, 3) and so the inclusion \supseteq holds.

By virtue of Lemma 1(i), we prove only that $\inf\{Cn_2, Cn_3\} \leq \sup\{Cn_4, Cn_5\}$. Take any $\alpha \in Cn_i(X)$ (i=2,3). Since \mathcal{A}_2 and \mathcal{A}_3 are finite then by Theorem 3 of [2] we have $\alpha \in Cn_i(X_f)$ (i=2,3) for some finite $X_f \subseteq X$. Hence, $\square^2 \bigwedge X_f \to \alpha \in Cn_i(\emptyset)$ for i=1,2 $(\bigwedge X_f$ denotes conjunction of all formulas from X_f). This and (*) give us that $\alpha \in \sup\{Cn_4, Cn_5\}(X)$, which completes the proof of (i).

(ii): Follows from (i) and from $Cn(\emptyset) \subsetneq Cn_3(\emptyset)$ and $Cn_3(\emptyset) \subsetneq Cn_2(\emptyset)$ (see [3]). QED

Notice that Proposition 1(i) implies that $sup\{Cn_4, Cn_5\}$ is a strongly finite consequence operation on \underline{L} .

It is easy to prove

LEMMA 3. Let $A = (A, +, \cdot, -, \circ)$ be an algebra similar to \underline{L} and (A, D) be a matrix of degree 1 satysfying: (i) all classical tautologies and the formula $\Box(p \to q) \to (\Box p \to \Box q)$ are valid in (A, D), (ii) the modus ponens for \to and the necessitation rule are rules of the consequence operation $Cn_{(A,D)}$ determined by (A, D). Then,

- (1) the relation \equiv_D defined $x \equiv_D y$ iff $(-x + y) \cdot (-y + x) \in D$ is a congruence relation on A.
- (2) A/\equiv_D is a modal algebra in which D is Boolean unit
- (3) $Cn_{(A,D)} = Cn_{(A/\equiv_D,\{D\})}$.

PROPOSITION 2. There is no matrix of degree 1 strongly adequate for $\sup\{Cn_4, Cn_5\}$, as well as for $\inf\{Cn_2, Cn_3\}$.

PROOF. By virtue of Proposition 1 it is enough to settle this for \sup . Suppose that $\sup\{Cn_4, Cn_5\}$ has a strongly adequate matrix of degree 1. Then, by Lemma 3 we can assume that $\sup\{Cn_4, Cn_5\} = Cn_{(\mathcal{A},\{1\})}$ for modal algebra \mathcal{A} . Then, by Proposition 1, we obtain $\mathcal{A} \in HSP(\{\mathcal{A}_2, \mathcal{A}_3\})$. Hence and from Birkhoff's Theorem there are subdirectly irreducible algebras \mathcal{A}_t , $t \in T$, belonging to $HSP(\{\mathcal{A}_2, \mathcal{A}_3\})$ such that \mathcal{A} is isomorphic to some subdirect product of them. Therefore, $Cn_{(\mathcal{A},\{1\})} \geqslant Cn_{(\prod{\mathcal{A}_t;t \in T},\{1\})}$. Notice

that the only non-trivial and non-isomorphic subdirectly irreducible modal algebras from $HSP(\{A_2,A_3\})$ are A_1 , A_2 and A_3 . Then, by Theorem 1 of [6] and Proposition 1(ii), we have that the consequence operation determined on \underline{L} by $(\prod \{A_t; t \in T\}, \{1\})$ must be equal to one of the following: $Cn_{(A_1 \times A_2, \{1\})}$, $Cn_{(A_1 \times A_3, \{1\})}$, $Cn_{(A_2 \times A_3, \{1\})}$ and $Cn_{(A_1 \times A_2 \times A_3, \{1\})}$. Let α denote the formula $(p \land \neg \Box p) \lor (q \land \neg \Box q)$. It is easy to check that $Cn_1(\alpha) = L$, $Cn_2(\alpha) \neq L$ and $Cn_3(\alpha) = L$. All matrices $(A_i, \{1\})$ (i = 1, 2, 3) are proper in the sense of (6). Hence $Cn_{(A_1 \times A_2, \{1\})}(\alpha) = Cn_{(A_1,A_3, \{1\})}(\alpha) = Cn_{(A_1,A_3, \{1\})}(\alpha) = Cn_{(A_1,A_3, \{1\})}(\alpha) = L$, but, by Lemma 1(i) and from our assumption, we have $Cn_{(A, \{1\})}(\alpha) \neq L$, which is impossible. QED

From the above considerations we obtain

- (1) SF^* need not be closed under sup and inf in (\mathcal{C}, \leqslant) also, we get
- (2) The set of all consequence operations belonging to \mathcal{C} and being uniform (see [2]) need not be closed under \sup and \inf in (\mathcal{C}, \leq)
- (3) The problem of supremum of finite set of strongly finite consequence operations on \underline{L} which is stated in [4] has negative answer in the subset of \mathcal{C} consisting of all consequence operations having finite strongly adequate matrices of degree 1.

References

- [1] B. Jonsson, Algebras whose congruence lattice are distributive, Mathematica Scandinavica 21 (1967), pp. 110–121.
- [2] J. Łoś, R. Suszko, *Remarks on sentential logics*, **Indagationes** Mathematicae 20 (1958), pp. 177-183.
- [3] W. Rautenberg, Some properties of the hierarchy of modal logics, Bulletin of the Section of Logic, Institute of Philosophy and Sociology, Polish Academy of Sciences, 5, no. 3 (1976), pp. 103–105.
- [4] R. Wójcicki, Strongly finite sentential calculi, [in:] Selected papers of Łukasiewicz sentential calculi, R. Wójcicki, G. Malinowski (eds), Warszawa-Wrocław, 1977, pp. 53–77.
- [5] R. Wójcicki, Some remarks on the consequence operation in sentential logics, Fundamenta Mathematicae 68 (1970), pp. 269–279.

52 Wiesław Dziobiak

[6] J. Zygmunt, A note on direct products and ultraproducts of logical matrices, Studia Logica 33, no. 4 (1974), pp. 349–357.

Institute of Mathematics N. Copernicus University Toruń