Andrzej Wroński

A THREE ELEMENT MATRIX WHOSE CONSEQUENCE OPERATION IS NOT FINITELY BASED

The question whether the consequence operation of a finite matrix is always finitely based was proposed by S. L. Bloom [1] and also by R. Wójcicki [3]. The negative answer – a six-element matrix – was given in [4] and next a five-element matrix was found by A. Urquhart [2]. In this paper we will show that no finite basis exists for the consequence operation $C_{\mathbb{M}}$ of the matrix $\mathbb{M} = \langle \langle \{0,1,2\}, \cdot \rangle, \{2\} \rangle$ where \cdot is a binary operation such that $0 \cdot 1 = 0$ and $a \cdot b = 2$ otherwise. Our proof is a slight modification of that given by A. Urquhart in [2] and most of the notions and techniques used here are borrowed from [2]. Our result, however, is the best possible because every consequence operation of a two element matrix is finitely based (oral information of Prof. Wolfgang Rautenberg).

Let the symbol V denotes an infinite set of variables and the symbol F the set of formulas constructed as usual by means of variables from V and one binary connective \cdot . We adopt the convention of associating to the left and ignoring the symbol of the connective. Thus for example we shall write $x_1x_2\ldots x_n$ instead of $(\ldots(x_1\cdot x_2)\ldots)\cdot x_n$. The symbol $i(\alpha)$ denotes the initial variable of the formula $\alpha\in F$ and the symbol $n(\alpha)$ denotes the set of variables occurring in α at non-initial places. A formula α is regular iff it is left associated (i.e. $\alpha=x_{f_1}\ldots x_{f_n}$ where all x_{f_j} are variables) and $i(\alpha)\not\in n(\alpha)$. The symbol R denotes the set of all regular formulas. First let us note two simple lemmas:

LEMMA 1. If v is a valuation of variables in the matrix \mathbb{M} then the following conditions are satisfied:

- (i) if $\alpha \in F R$ then $v(\alpha) = 2$,
- (ii) if $v(\alpha) = 0$ then $v(i(\alpha)) = 0$,

(iii) if
$$\alpha \in R$$
 then $v(\alpha) = 0$ iff $v(i(\alpha)) = 0$ and $vn(\alpha) \subseteq \{1\}$.

LEMMA 2. If $\alpha \in R$, $X \subseteq F$ and $n(\alpha) \cap X = \emptyset$ then the following conditions are equivalent:

- (i) $\alpha \in C_{\mathbb{M}}(X)$,
- (ii) for some $\beta \in X \cap R$, $i(\beta) = i(\alpha)$ and $n(\beta) \subseteq n(\alpha)$.

A sequent is a pair $\langle X, \alpha \rangle$ where $\alpha \in F$, $X \subseteq F$ and $|X| < \aleph_0$. A sequent $\langle X, \alpha \rangle$ is derivable from a set of sequents B iff there exists a finite sequence of sequents:

$$\langle X_1, \alpha_1 \rangle, \dots, \langle X_n, \alpha_n \rangle$$

such that $\langle X_n, \alpha_N \rangle = \langle X, \alpha \rangle$ and for every $i = 1, \ldots, n$ the sequent $\langle X_i, \alpha_i \rangle$ satisfies one of the following conditions (see [2]):

- (i) $\alpha_i \in X_i$,
- (ii) $\langle X_i, \alpha_i \rangle$ results from a sequent of B by means of a substitution,
- (iii) $\langle X_i, \alpha_i \rangle$ results from some previous sequents by means of one of the following rules:

$$\begin{split} \langle Y, \beta \rangle & \Longrightarrow \langle Y \cup \{\gamma\}, \beta, \rangle, \\ \langle Y, \beta \rangle, \langle Z \cup \{\beta\}, \gamma \rangle & \Longrightarrow \langle Y \cup Z, \gamma \rangle. \end{split}$$

It is easy to see that a sequent $\langle X, \alpha \rangle$ is derivable in the above sense from a set of sequents B if and only if $\alpha \in C_B(X)$ where C_B is the structural consequence operation determined by the basis B.

Now, for every n = 1, 2, ..., we define a set of sequences B_n putting $\langle X, \alpha \rangle \in B_n$ iff $\alpha \in C_{\mathbb{M}}(X)$ and every formula of the set $X \cup \{\alpha\}$ has at most n variables. Using induction on the length of a derivation one can prove the following:

LEMMA 3. For every sequent $\langle X, \alpha \rangle$ derivable from the set B_n the following condition is satisfied:

(*) If $\alpha \in R$ and every formula in $X \cap R$ has at least n+1 variables then there exists a formula $\beta \in X \cap R$ whose second (from the left) variable is just the same as the second variable of the formula α .

Finally, for every $n=3,4,\ldots$ we define two formulas α_n and β_n putting:

$$\alpha_n = x_1 x_2 \dots x_n, \qquad \beta_n = x_1 x_n \dots x_2$$

70 Andrzej Wroński

Then $\alpha_n \in C_{\mathbb{M}}(\{\beta_n\})$ and the sequent $\langle \{\beta_n\}, \alpha_n \rangle$ is not derivable from B_{n-1} by virtue of Lemma 3. This proves the following:

Theorem. There is no finite basis of sequential rules for the consequence operation $C_{\mathbb{M}}$.

References

- [1] S. L. Bloom, Some theorems on structural consequence operations, **Studia Logica** 34 (1975), pp. 1–9.
- [2] A. Urquhart, A finite matrix whose consequence relation is not finitely axiomatizable, **Reports on Mathematical Logic** 9 (1977), pp. 71–73.
- [3] R. Wójcicki, Strongly finite sentential calculi, [in:] Selected papers on Łukasiewicz sentential calculi, Eds. R. Wójcicki and G. Malinowski, Warszawa-Wrocław, 1976.
- [4] A. Wroński, On finitely based consequence operations, Studia Logica 35 (1976), pp. 453–458.

Department of Logic Jagiellonian University Cracow