Janusz Czelakowski

'LARGE' MATRICES WHICH INDUCE FINITE CONSEQUENCE OPERATIONS

By a propositional language we shall mean an absolutely free algebra

$$\underline{L} = \langle L; F_1, \dots, F_n \rangle, \ n \leqslant \omega,$$

generated by an *infinite* set V(L) of absolutely free generators and equipped with at most countably many operations F_n , $n \leq \omega$, all of finite arity.

P(L) is the power set of L. A function $C: P(L) \to P(L)$ is a consequence operation in \underline{L} iff for each $X,Y\subseteq L$ the following conditions are satisfied:

C1.
$$X \subseteq C(X) = C(C(X))$$

C2. if $X \subseteq Y$ then $C(X) \subseteq C(Y)$.

C is finite iff for each $X \subseteq L$

 $C(X) = \bigcup \{C(Y) : Y \subseteq X \& Y \text{ is finite}\}.$

By a matrix for a propositional language \underline{L} we shall mean a couple

$$\mathcal{M} = (\underline{A}, D),$$

where \underline{A} is an algebra similar to \underline{L} and D is a subset of A (A – the carrier of \underline{A}). Every matrix \mathcal{M} for \underline{L} induces the consequence operation $Cn_{\mathcal{M}}$ on L, where

$$\begin{array}{ll} \alpha \in Cn_{\mathcal{M}}(X) & \text{iff for all} & h \in Hom(\underline{L},\underline{A}), \\ h(\alpha) \in D & \text{whenever} & h(X) \subseteq D. \end{array}$$

 $Hom(\underline{L},\underline{A})$ is the set of all valuations of \underline{L} in \mathcal{M} , i.e. homomorphisms from \underline{L} into \underline{A} .

Let I be a nonempty set and \mathcal{F} – an ultrafilter over I. In the usual model – theoretic way we define the ultraproduct $\mathcal{M} = \prod_{i \in I} \mathcal{F} \mathcal{M}_i$ of matrices

 $\mathcal{M}_i = (\underline{A}_i, D_i), i \in I, \text{ modulo } \mathcal{F}.$

80 Janusz Czelakowski

A filter \mathcal{F} over a non empty set I is said to be *countably incomplete* iff \mathcal{F} is not closed under countable intersections.

Our purpose is to prove the following theorem.

THEOREM A. Let $\mathcal{M}_i = (A_i, D_i)$, $i \in I$, be a non empty family of matrices for a countable propositional language \underline{L} . Let be a countably incomplete ultrafilter over a set I. Then the consequence operation induced by the matrix $\mathcal{M} = \prod_{i \in I} \mathcal{F} \mathcal{M}_i$ in \underline{L} is finite.

PROOF (CF. THEOREM 6.1.1 IN [1], P. 305). Let $\beta \in L$, $X = \{\gamma_n : n \in N\} \subseteq L$ be an infinite set of propositional formulas such that for each finite $Y \subset X$, $\beta \notin Cn_{\mathcal{M}}(Y)$. Hence for each $Y \subset X$, Y-finite, there is a valuation $h^Y = \langle h_i^Y : i \in I \rangle$ of \underline{L} in $\prod_{i \in I} \mathcal{M}_i$ such that

$$S_Y =_{df} \bigcap_{\gamma \in Y} \{i : h_i^Y(\gamma) \in D_i\} \cap \{i : h_i^Y(\beta) \notin D_i\} \in \mathcal{F}$$

Let $Y_n = \{\gamma_1, \ldots, \gamma_n\}$, $n \geqslant 1$. As \mathcal{F} is countably incomplete, we find a descending chain $I = I_0 \supset I_1 \supset I_2 \supset \ldots$ such that each $I_n \in \mathcal{F}$ and $\bigcap_{n < \omega} I_n = \emptyset$. Let $T_0 = I$ and for each positive $n < \omega$ let $T_n = I_n \cap S_{Y_n}$. Clearly $T_n \in \mathcal{F}$, $\bigcap_{n < \omega} T_n = \emptyset$, $T_n \supseteq T_{n+1}$. It follows that for each $i \in I$ there is a greatest $n(i) < \omega$ such that $i \in T_{n(i)}$.

Define a valuation $h = \langle h_i : i \in I \rangle$ in $\prod_{i \in I} \mathcal{M}_i$ as follows:

- (i) if n(i) = 0, then h_i is an arbitrary valuation of \underline{L} in \mathcal{M}_i
- (ii) if n(i) > 0, then h_i is a valuation of \underline{L} in \mathcal{M}_i such that
- (*) $h_i(Y_{n(i)}) \subseteq D_i$ and $h_i(B) \notin D_i$.

Notice that if n(i) > 0 then the valuation $h_i^{Y_{n(i)}}$ fulfils (*). Indeed, if n(i) > 0 then

$$i \in S_{Y_{n(i)}} = \bigcap_{\gamma \in Y_{n(i)}} \{j : h_j^{Y_{n(i)}}(\gamma) \in D_j\} \cap \{j : h_j^{Y_{n(i)}}(B) \notin D_j\}.$$

Thus a valuation h with properties (i) - (ii) exists.

We have:

for each $n \ge 1$ $T_n \subseteq \{i : h_i(\gamma_n) \in D_i\}.$

Indeed, if n > 0 and $i \in T_n$ then $n \leq n(i)$. Hence $\gamma_n \in Y_{n(i)}$ and, consequently, by (*) $h_i(\gamma_n) \in D_i$ in \mathcal{M}_i . Thus we have proved: for every $\gamma \in X$ $\{i : h_i(\gamma) \in D_i\} \in \mathcal{F}$.

Now notice that if n(i) > 0 then $h_i(B) \notin D_i$. But $T_1 = \{i : n(i) > 0\}$. Hence $\{i : h_i(B) \notin D_i\} \in \mathcal{F}$, i.e., $\{i : h_i(B) \in D_i\} \notin \mathcal{F}$. Consequently $h_{\mathcal{F}}(X) \subseteq \prod_{i \in I} \mathcal{F}D_i$ and $h_{\mathcal{F}}(B) \notin \prod_{i \in I} \mathcal{F}D_i$. Therefore $B \notin Cn(X)$.

COROLLARY. Let $\{\mathcal{M}_n : n \in \omega\}$ be a countable family of matrices. Let \mathcal{F} be a non-principial ultrafilter over ω . Then the consequence operation induced by $\prod_{n \in \omega} \mathcal{F} \mathcal{M}_n$ in a countable propositional language \underline{L} is finite.

For an uncountable \underline{L} (i.e. when $V(\underline{L})$ has the cardinality $> \aleph_0$) we state the following theorem.

THEOREM B. Let \underline{L} be a propositional language of power $< \mathfrak{m}$. Let \mathcal{M}_i , $i \in I$, be a nonempty family of matrices for \underline{L} . Let \mathcal{F} be a countably incomplete \mathfrak{m} -good ultrafilter over a set I. Then the consequence operation induced by the matrix $\mathcal{M} = \prod_{i \in I} \mathcal{F} \mathcal{M}_i$ in \underline{L} is finite.

PROOF RESEMBLES THE PROOF OF THEOREM A (CF. THEOREM 6.1.8, [1], P. 313). For a definition of m-good ultrafilters consult [1].

References

[1] C. C. Chang and H. J. Keisler, **Model theory**, North-Holland American Elsevier, Amsterdam, New York, 1973.

Polish Academy of Sciences Institute of Philosophy and Sociology The Section of Logic, Wrocław