Janusz Czelakowski

A CHARACTERIZATION OF Matr(C)

This is an abstract of the paper "Reduced products of logical matrices" submitted to Studia Logica.

Propositional language are defined as in the note [2]. If \underline{L} and \underline{L}' are two propositional languages and \underline{L} is a subalgebra of \underline{L}' then \underline{L} will be called a sublanguage of \underline{L}' and \underline{L}' an extension of \underline{L} , symbolically $\underline{L} \subseteq \underline{L}'$. Notice that a subalgebra of \underline{L}' need not be a sublanguage of \underline{L}' .

Let C be a consequence operation on a language \underline{L} . By the cardinality of C, card(C), we shall mean the least cardinal n such that for all $X \subseteq L$

$$C(X) = \bigcup \{C(Y) | Y \subseteq X \ \& \ \bar{\bar{Y}} < \mathfrak{n} \}$$

C is finite iff $card(C) < \aleph_0$.

Given two consequence operations C_1, C_2 on \underline{L} we write $C_1 \leqslant C_2$ iff $C_1(X) \subseteq C_2(X)$, all $X \subseteq L$.

If $\mathcal{M} = (\underline{A}, D)$ is a matrix for \underline{L} then $Cn_{\mathcal{M},\underline{L}}$ is the consequence operation on \underline{L} induced by \mathcal{M} . If \mathbb{K} is a class of matrices for \underline{L} then

$$Cn_{\mathbb{K},\underline{L}} =_{df} \inf_{\mathcal{M} \in \mathbb{M}} Cn_{\mathcal{M},\underline{L}}$$

where the infimum is taken with respect to \leq .

If C is consequence operation on \underline{L} then we define Matr(C) to be the class of all matrices \mathcal{M} for \underline{L} such that $C \leq Cn_{\mathcal{M},L}$.

A consequence operation C on \underline{L} is structural provided that $\varepsilon(C(X)) \subseteq C(\varepsilon(X))$, all $X \subseteq L$, all endomorphisms ε of \underline{L} .

By an \mathfrak{m} -filter over a set I we shall mean a filter \mathcal{F} closed with respect to intersections of fewer than \mathfrak{m} members of \mathcal{F} . Every improper filter \mathcal{F} is an \mathfrak{m} -filter.

Let \mathbb{K} be a class of matrices for \underline{L} . We use the following terminology:

84 Janusz Czelakowski

 $S(\mathbb{K})$ – the class of all isomorphic images of submatrices of members of $\mathbb{K},$

 $P(\mathbb{K})$ – the class of all isomorphic images of direct products of arbitrary systems (possibly empty) of members of \mathbb{K} ,

 $P_{\mathfrak{m}-r}(\mathbb{K})$ – the class of all isomorphic images of \gg -reduced products (i.e. direct products modulo \mathfrak{m} -filters) of arbitrary systems of members of \mathbb{K} .

 $H_s(\mathbb{K})$ – the class of all strong homomorphic images of members of K,

 $\overline{H}_s(\mathbb{K})$ – the class of all strong homomorphic counter – images of members of \mathbb{K} . Hence $\mathcal{M} \in \overline{H}_s(\mathbb{K})$ iff there exists a strong homomorphisms from \mathcal{M} onto a matrix in \mathbb{K} . Clearly $\mathbb{K} \subseteq H_s(\mathbb{K})$ and $\mathbb{K} \subseteq \overline{H}_s(\mathbb{K})$.

If $\mathfrak{m} = \aleph_0$ then we write

 $P_r(\mathbb{K})$ instead of $P_{\aleph_0-r}(\mathbb{K})$.

THEOREM 1. Let C be a structural consequence operation on a propositional language \underline{L} . Let $\{\mathcal{M}_i\}_{i\in I}$ be a family of matrices for \underline{L} such that $C \leq Cn_{\mathcal{M}_i,\underline{L}}$, all $i \in I$. Let \mathfrak{m} be an infinite cardinal $\geq card(C)$ and let be an \mathfrak{m} -filter over I.

Form the
$$\mathfrak{m}$$
-reduced product $\mathcal{M} = \prod_{i \in I} \mathcal{F} \mathcal{M}_i$. Then $C \leqslant Cn_{\mathcal{M},\underline{L}}$.

Theorem 2. Let \mathbb{K} be a class of matrices for a propositional language \underline{L} . Let \mathfrak{m} be a regular infinite cardinal such that $card(Cn_{\mathbb{K},\underline{L}}) \leqslant \mathfrak{m} \leqslant \bar{L}^+$. Then

$$Matr(Cn_{\mathbb{K},\underline{L}}) = \overleftarrow{H_s}H_sSP_{\mathfrak{m}-r}(\mathbb{K}).$$

For a given structural C in \underline{L} let

 $Th(C) =_{df} \{X | X \subseteq L \& C(X) = X\}$ and

 $\mathbb{L}_C =_{df} \{ \underline{L}_X | \underline{L}_X = (\underline{L}, X) \& X \in Th(C) \}.$

 \mathbb{L}_C is called the *Lindenbaum bundle* of C. As known $C = Cn_{\mathbb{L}_C,\underline{L}}$ [1]. Let $\mathbb{L}_C^* = \{\underline{L}_{X/\theta_X} | X \in Th(C)\}$, where θ_X is the greatest congruence is the matrix \underline{L}_X (see [1]).

Theorem 3. Let C be a structural consequence operation on a propositional language \underline{L} . Let \mathfrak{m} be an infinite regular cardinal such that $\operatorname{card}(C) \leqslant \mathfrak{m} \leqslant \bar{L}^+$. Then

$$Matr(C) = \overleftarrow{H_s} \ S \ P_{\mathfrak{m}-r}(\mathbb{L}_C^*).$$

Theorem 4. Let \mathbb{K} be a class of matrices for a propositional language \underline{L} .

The following are equivalent:

- (a) $Matr(Cn_{\mathbb{K},L}) = \overline{H_s}H_sSP(\mathbb{K})$
- (b) For every extension \underline{L}' of \underline{L}

$$Matr(Cn_{\mathbb{K},\underline{L}}) \subseteq Matr(Cn_{\mathbb{K},\underline{L'}}).$$

Theorem 5. Let \mathbb{K} be a finite family of finite matrices for a propositional language \underline{L} . Then

$$Matr(Cn_{\mathbb{K},\underline{L}}) = \overleftarrow{H_s}H_sSP(\mathbb{K}).$$

For a given class \mathbb{K} of matrices for \underline{L} (\underline{L} -fixed) define

$$\mathcal{M} \sim \mathcal{N} \text{ iff } Cn_{\mathcal{M},L} = Cn_{\mathcal{N},L}$$

$$\mathcal{M} \lesssim \mathcal{N} \text{ iff } Cn_{\mathcal{M},\underline{L}} \leqslant Cn_{\mathcal{N},\underline{L}}$$

 $(\mathcal{M}, \mathcal{N} \in \mathbb{K})$. Then $\mathbb{K}/_{\sim}$ is a set and $\mathbb{K}/_{\sim}$ is partially ordered by \lesssim .

THEOREM 6. Let \mathbb{K} be a finite class of matrices for a propositional language \underline{L} . Then the partially ordered sets $\langle Matr(Cn_{\mathbb{K},\underline{L}})/_{\sim}, \preceq \rangle$ and $\langle SP(\mathbb{K})/_{\sim}, \preceq \rangle$ are isomorphic.

References

- [1] R. Wójcicki, Matrix approach in methodology of sentential calculi, **Studia Logica**, Vol. XXXII 1973.
- [2] J. Czelakowski, 'Large' matrices which induce finite consequence operations, this **Bulletin**, pp. 79–82.

Polish Academy of Sciences Institute of Philosophy and Sociology The Section of Logic, Wrocław