Wiesław Dziobiak

AN EXAMPLE OF STRONGLY FINITE CONSEQUENCE OPERATION WITH 2^{\aleph_0} STANDARD STRENGTHENINGS

The paper gives the affirmative answer to the following question: are there strongly finite logics with the degree of maximality greater than \aleph_0 . The question was posed by M. Tokarz in [4].

Let $\mathcal{A} = ((\{0,1,2,3,4,5,6\},\circ),\{1,2,3\})$ be a matrix whose the binary operation \circ is given as follows:

$x \circ y$	0	1	2	3	4	5	8
0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0
2	0	2	2	0	0	0	0
3	0	0	0	5	3	3	0
4	0	0	0	3	4	3	0
5	0	0	0	3	3	5	0
6	0	0	6	0	0	0	1

Notice that the algebra of the submatrix of \mathcal{A} generated by the set $\{0,1,2\}$ is the Murskii's algebra (see [3]), while the submatrix of \mathcal{A} generated by $\{3,4,5\}$ is isomorphic with the matrix considered by A. Wroński in [5].

It is easy establish the following

LEMMA 1. Let α be a formula and v a valuation in \mathcal{A} such that $v(Var) \subseteq \{2,6\}$. Then, $v(l(\alpha)) = 6$ only if $v(\alpha) \in \{0,1,6\}$, where $l(\alpha)$ denotes the variable occurring in α first from the left.

The following formulae play a central role in our considerations: $\beta_{2n+1} = \alpha_{2n+1}(x_0/x_0x_0, x_1/x_1x_1, \dots, x_{2n+1}/x_{2n+1}x_{2n+1}), n \ge 1$ where all α_{2n+1} $(n \ge 1)$ are defined in §2 of [1].

96 Wiesław Dziobiak

Lemma 2. For any k, n the following conditions hold:

- (i) $Cn_{\mathcal{A}}(\beta_{2k+1}) \neq L$
- (ii) if $k \neq n$ then $e\beta_{2k+1} \notin Cn_{\mathcal{A}}(\beta_{2n+1})$ for all $e \in Hom(\underline{L},\underline{L})$.

PROOF. (i) Take a valuation v in \mathcal{A} such that $v(x_{2k+2}) = 1$ and v(x) = 2 otherwise, and observe that $v(\beta_{2k+1}) = 2$ and $v(x_{2k+2}x_{2k+2}) = 0$.

(ii) CASE 1: k > n. Assume $e\beta_{2k+1} \in Cn_{\mathcal{A}}$ (β_{2n+1}) for some $e \in Hom(\underline{L},\underline{L})$. Hence, we have $Var(e\beta_{2k+1}) \subseteq Var(\beta_{2n+1})$. Indeed, if it were not true, then there would be x_j such that $x_j \in Var(e\beta_{2k+1}) \setminus Var(\beta_{2n+1})$, and then taking a valuation v in \mathcal{A} defined as follows: v(x) = 0 when $x = x_j$, and v(x) = 2 otherwise, we would have $v(e\beta_{2k+1}) = 0$ and $v(\beta_{2n+1}) = 2$, but this contradicts our assumption. Thus $ex_i \in L^{(2n+2)}$ for all $x_i \in Var(\beta_{2k+1})$, where $\underline{L}^{(2n+2)}$ is a sublanguage of \underline{L} generated by $\{x_i; i < 2n+2\}$. Then, since k > n we have $l(ex_i) = l(ex_j)$ for some $x_i, x_j \in Var(\beta_{2k+1})$. Now, take a valuation v in A such that v(x) = 6, when $x = l(ex_i)$, and v(x) = 2, otherwise. We have for it by Lemma 1, $v(ex_i), v(ex_j) \in \{0, 1, 6\}$, furthermore $((ex_iex_i)(ex_jex_j)) = 0$, so consequently $v(e\beta_{2k+1}) = 0$. On the other hand, by Lemma 2.2 and 2.3 in [1], we obtain $v(\beta_{2n+1}) \in \{1, 2\}$, but this and the initial assumption yield a contradiction. Thus the proof of CASE 1 is complete.

CASE 2: k < n (cf. the proof of Lemma 1.1 of [5]). Let e be a substitution, i.e. $e \in Hom(\underline{L},\underline{L})$. Since k < n then there must exist $x_j \in Var(\beta_{2n+1})$ such that $x_j \notin Var(ex_i)$ or $\{x_j\} \subsetneq Var(ex_i)$, for all $x_i \in Var(\beta_{2k+1})$. Take a valuation v in $\mathcal A$ defined as follows: v(x) = 4, when $x = x_j$, and v(x) = 5, otherwise, and notice that we have for it $v(ex_i) \in \{3,5\}$, for all $x_i \in Var(\beta_{2k+1})$, what implies $v(e\beta_{2k+1}) = 5$. To complete the proof we must show now $(*)v(\beta_{2k+1}) = 3$.

SUBCASE 2a: j is odd. Denote by δ_i^{*k} (i < k) the formula $\delta_i^k(x_i/x_ix_i, x_{i+1}/x_{i+1}x_{i+1}, \dots, x_k/x_kx_k)$, where δ_i^k is defined in §2 of [1]. Since (2n+1)-j is even we have $v(\delta_j^{*2n+1})=5$. Also $v(\delta_k^{*2n+1})=5$ (j < k < 2n+1) because x_j does not occur in δ_k^{*2n+1} . In every δ_k^{2n+1} $(0 \le k < j)$ x_j has exactly one occurrence, so, $v(\delta_k^{*2n+1})=3$ whenever $0 \le k < j$. Thus, since $card\{k; k < j\}$ is odd, we get $v(\delta_0^{*2n+1}\dots\delta_{2n}^{*2n+1})=3$ and, consequently, $v(\beta_{2n+1})=3$.

SUBCASE 2b: j is even. The proof of (*) goes here similarly to the previous one.

In this way we obtain $v(e\beta_{2k+1}) = 5$ and $v(\beta_{2n+1}) = 3$ which give us

 $e\beta_{2k+1} \notin Cn_{\mathcal{A}}(\beta_{2n+1})$, and so the proof is complete. QED

THEOREM 2. $card\{Cn; Cn \text{ is a standard consequence operation on } \underline{L} \text{ such that } Cn_{\mathcal{A}}\} \leqslant Cn = 2^{\aleph_0}.$

PROOF. For a non-empty subset A of $\{\beta_{2n+1}; n \geq 1\}$, let Cn_A be a consequence operation on \underline{L} determined by a set of rules obtained by adding to some fixed standard basis of Cn_A all rules of the form $\{(e\beta_{2n+1}, ex_{2n+2}); e \in Hom(\underline{L},\underline{L})\}$ for $\beta_{2n+1} \in A$. From the definition of Cn_A and via Łoś-Suszko's theorem (see [2]) we know that all Cn_A are standard strengthening of Cn_A . Therefore, to complete the proof it is enough to show that $Cn_A \neq Cn_B$, whenever $A \neq B$. Assume that $A \setminus B \neq \emptyset$ and take any $\beta_{2n+1} \in A \setminus B$. Using Lemma 1 we get $Cn_B(\beta_{2n+1}) \subseteq Cn_A(\beta_{2n+1}) \neq L$, but $Cn_A(\beta_{2n+1}) = L$ so, indeed, $Cn_A \neq Cn_B$. QED

References

- [1] W. Dziobiak, On strongly finite consequence operation, this volume, pp. 87–94.
- [2] J. Łoś, R. Suszko, *Remarks on sentential logics*, **Indagationes** Mathematicae 20 (1958), pp. 177–183.
- [3] V. L. Murskii, The existence in the three-valued logic of a closed class with a finite basis having no finite complete system of identities (in Russian), **Dokl. Acad. Nauk SSSR** 163 (1965), pp. 815–818.
- [4] M. Tokarz, A strongly finite logic with infinite degree of maximality, **Studia Logica** 35 (1976), no. 4, pp. 447-451.
- [5] A. Wroński, On finitely based consequence operations, Studia Logica 35 (1976), no. 4, pp. 453–458.

Institute of Mathematics N. Copernicus University Toruń