Janusz Czelakowski

ω -SATURATED MATRICES

The paper is a continuation of the investigations of [3]. We assume that the reader is familiar with the notion of an ω -saturated model and the notation applied in the theory of models. We refer to [2] for all model-theoretic terms which appear in this note.

By a propositional language we shall mean a countable absolutely free algebra

$$\underline{L} = \langle L; F_1, \dots, F_n \rangle, \ n \leqslant \omega$$

with infinitely many absolutely free generators $V(L) = \{p_n : n \in \omega\}$. Every operation F_k in \underline{L} has a finite arity. By an elementary matrix for a propositional language \underline{L} we shall mean a pair $\mathfrak{M} = (\underline{A}, D)$, where \underline{A} is an algebra similar to \underline{L} and D is a subset of A (A – the carrier of \underline{A}). If $\mathfrak{M} = (\underline{A}, D)$ is a matrix for \underline{L} , then $Cn_{\mathfrak{M}}$ is the consequence operation in \underline{L} induced by \mathfrak{M} :

$$\alpha \in Cn_{\mathfrak{M}}(X)$$
 iff $\forall h \in Hom(\underline{L},\underline{A})$

$$[h(X) \subseteq D \Rightarrow h(\alpha) \in D] \ (\alpha \in L, X \subseteq L).$$

Let \underline{L} be a propositional language. Let \underline{L}^* be the first-order language with equality of the class of all matrices for \underline{L} . \underline{L}^* has one unary predicate letter, say D. We assume that the variables of \underline{L}^* are identified with the elements of $V(\underline{L})$, the set of free generators of \underline{L} . Thus the algebra of terms of \underline{L}^* is identical with the propositional language \underline{L} . Consequently, the models for \underline{L}^* are exactly matrices for \underline{L} (cf. [1]).

A matrix $\mathfrak{M} = (\underline{A}, D)$ is ω -saturated iff it is ω -saturated in the usual sense [2, p. 96] as a model for \underline{L}^* .

Our aim is to prove the following theorem:

 ω -Saturated Matrices 121

THEOREM. Let $\mathfrak{M}=(\underline{A},D)$ be an elementary matrix for a countable propositional language \underline{L} . Assume that \mathfrak{M} is ω -saturated. Then the consequence operation $Cn_{\mathfrak{M}}$ induced by \mathfrak{M} in \underline{L} is finitistic.

PROOF. Let $X \subseteq L$, $\alpha \in L$, and assume that for every $Y \subset X$, if $\bar{Y} < \omega$ then $\alpha \notin Cn_{\mathfrak{M}}(Y)$. It means that every *finite* subset of the following set of open formulas from L^*

$$\Sigma_0 =_{df} \{D(\gamma) : \gamma \in X\} \cup \{\neg D(\alpha)\}$$

is realized in \mathfrak{M} . Assume that $\Sigma_0 = \Sigma_0(x_1x_2...x_n...)$. Let Σ be the closure Σ_0 under finite conjunctions. Define:

$$\Sigma_n = \{ \sigma \in \Sigma | \sigma = \sigma(x_1 \dots x_n) \}, \text{ all } n \in \omega$$

and

$$\Sigma^{(k)} = \bigcup_{n \geqslant k+1} \{ \exists x_{k+1} \dots \exists x_n \sigma | \sigma \in \Sigma_n \}, \text{ all } k \in \omega.$$

Notice that $\Sigma^{(k)} = \Sigma^{(k)}(x_1 \dots x_k)$. In particular, $\Sigma^{(0)}$ is the set of existential closures formulas from Σ .

To the set of symbols of the language L^* add a countable number of constant symbols $\{C_n : n \in N\}$. For each $k \in N$ and each $1 \leq m \leq k$, let

$$\Sigma_{c_1 \dots c_m}^{(k)} =_{df} \{ \sigma(x_1/c_1 \dots x_m/c_m) | \sigma \in \Sigma^{(k)} \}.$$

Thus $\Sigma_{c_1...c_m}^{(k)}$ is a set of formulas of $L^* \cup \{c_1, ..., c_m\}$. Moreover $\Sigma_{c_1...c_m}^{(k)} = \Sigma_{c_1...c_m}^{(k)}(x_{m+1}...x_k)$.

Consider $\Sigma^{(1)}$. Σ is consistent with $Th(\mathfrak{M})$ and it is closed under conjunctions. Consequently, $\Sigma^{(1)}$ is consistent with $Th(\mathfrak{M})$. Since \mathfrak{M} is ω -saturated, there is $a_1 \in A$ such that $\mathfrak{M} \models \Sigma^{(1)}[x_1/a_1]$. Take $L^* \cup \{c_{a_1}\}$. Then $\Sigma^{(1)}_{c_{a_1}} \subset Th(\mathfrak{M}, a_1)$. Consequently, since Σ is closed under conjunctions, $\Sigma^{(2)}_{c_{a_1}}$ is also consistent with $Th(\mathfrak{M}, a_1)$. Due to ω -saturation of \mathfrak{M} , there is $a_2 \in A$ such that $(\mathfrak{M}, a_1) \models \Sigma^{(2)}_{c_{a_1}}[x_2/a_2]$. Thus we inductively define a countable sequence $(a_1, a_2, \ldots, a_k, \ldots)$ of elements of A such that

$$\mathfrak{M} \models \Sigma^{(1)}[x_1/a_1]$$

and for each $k \in N$

$$(\mathfrak{M}, a_1, \dots, a_k) \models \Sigma_{c_{a_1} \dots c_{a_k}}^{(k+1)} [x_{k+1}/a_{k+1}].$$

122 Janusz Czelakowski

Therefore for each $k \geqslant 1$

$$\Sigma_{c_{a_1}...c_{a_k}}^{(k)} \subset Th(\mathfrak{M}, a_1, ..., a_k).$$

It follows that

$$\bigcup_{k \in N} \Sigma_{c_{a_1} \dots c_{a_k}}^{(k)} \subset Th(\mathfrak{M}, a_1, \dots, a_k, \dots).$$

Hence

$$\mathfrak{M} \models \Sigma(x_1 \dots x_n \dots)[x_1/a_1, \dots, x_n/a_n, \dots],$$

i.e., The set Σ is realized in \mathfrak{M} by the sequence (a_1,\ldots,a_n,\ldots) . It means that

$$\alpha \notin Cn_{\mathfrak{M}}(X)$$
.

Q.E.D.

REMARK. As a corollary we obtain Theorem A from [3]. Indeed, if \mathfrak{F} is a countably incomplete ultrafilter over I, then the matrix $\mathfrak{M} = \Pi_{i \in I} \mathfrak{M}_i$ is ω_1 -saturated [2, Theorem 6.1.1]. Hence \mathfrak{M} is ω -saturated.

References

- [1] S. L. Bloom, Some theorems on structural consequence operations, **Studia Logica**, vol. XXXIV, no. 1 (1975), pp. 1–9.
- [2] C. C. Chang and H. J. Keisler, **Model theory**, North-Holland American Elsevier, Amsterdam, New York, 1973.
- [3] J. Czelakowski, Large matrices which induce finite consequence operations, Bulletin of the Section of Logic, vol. 8 (1979), no. 2, pp. 79–82.

The Section of Logic Institute of Philosophy and Sociology Polish Academy of Sciences