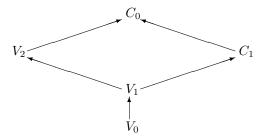
Ayda I. Arruda and Elias H. Alves

A SEMANTICAL STUDY OF SOME SYSTEMS OF VAGUENESS LOGIC

1. Introduction

In [1] we have characterized four types vagueness related to negation, and constructed the corresponding propositional calculi adequate to formalize each type of vagueness. The calculi obtained were named V_0, V_1, V_2 and C_1 (C_1 is the first system of the hierarchy of paraconsistent logic of da Costa [2]). The relations among these calculi and the classical propositional calculus C_0 can be represented in the following diagram, where the arrows indicate that a system is a proper subsystem of the other



In this paper we present a two-valued semantics for each of these systems. The semantics used here is the Henkin-style semantics which has proven fruitful in treating other paraconsistent logics (see, fort example, [3]).

The terminology and notations here are those of [1]). The postulates of V_0 are the following (with the definitions: ${}^0A =_{df} A \vee \neg A$, $A^0 =_{df} \neg (A \& \neg A)$, $\neg^*A =_{df} A \supset (\neg A \& A^0)$):

- 1. $A \supset (B \supset A)$
- 2. $(A \supset B) \supset ((A \supset (B \supset C)) \supset (A \supset C))$
- 3. $A, A \supset B/B$
- 4. $A \supset (B \supset A \& B)$
- 5. $A \& B \supset A$
- 6. $A \& B \supset B$
- 7. $A \supset A \lor B$
- 8. $B \supset A \lor B$
- 9. $(A \supset C) \supset ((B \supset C) \supset (A \lor B \supset C))$
- 10. ${}^{0}A \& B^{0} \& (A \supset B) \& (A \supset \neg B) \supset \neg A$
- 11. $A^0 \& B^0 \supset (A \supset B)^0 \& (A \& B)^0 \& (A \lor B)^0$
- 12. ${}^{0}A \& {}^{0}B \supset {}^{0}(A \supset B) \& {}^{0}(A \& B) \& {}^{0}(A \lor B)$
- 13. $A^0 \supset (\neg A)^0$
- 14. ${}^{0}A \supset {}^{0}(\neg A)$
- 15. $\neg^* \neg^* A \supset A$

The postulates of V_1 are 1-14 of V_0 plus:

15.
$$\neg^* \neg^* A \supset A$$

16.
$$A \vee \neg^* A$$

where $\neg^* A$ is defined by $A^0 \& (A \supset \neg A)$.

The postulates of V_2 are 1-9 of V_1 plus:

10.
$${}^{0}A \& (A \supset B) \& (A \supset \neg B) \supset \neg A$$

11.
$${}^{0}A \& {}^{0}B \supset {}^{0}(A \supset B) \& {}^{0}(A \& B) \& {}^{0}(A \lor B)$$

12.
$${}^{0}A \supset {}^{0}(\neg A)$$

13.
$$\neg(A \& \neg A)$$

14.
$$\neg^* \neg^* A \supset A$$

where $\neg^* A$ is defined by $A \supset \neg A$.

2. The semantics of V_0

Let \mathbb{F} denote the set of formulas of V_0 . Γ will designate any subset of \mathbb{F} . The set $\{A \in \mathbb{F} : \Gamma \vdash A\}$ will be denoted by $\overline{\Gamma}$.

DEFINITION. The set Γ of formulas is said to be trivial in V_0 if $\mathbb{F} = \overline{\Gamma}$; otherwise, Γ is called nontrivial.

DEFINITION. Γ is a maximal nontrivial set if it is nontrivial and, for all A, if $A \notin \Gamma$, then $\Gamma \cup \{A\}$ is trivial.

Theorem 1. If Γ is maximal nontrivial, then:

$$\begin{array}{ll} \Gamma \vdash A \Leftrightarrow A \in \Gamma & A \in \Gamma & \sigma r \neg^* A \in \Gamma \\ A \in \Gamma \Rightarrow \neg^* A \not\in \Gamma & \vdash A \Rightarrow A \in \Gamma \\ \neg^* A \in \Gamma \Rightarrow A \not\in \Gamma & \neg A \& A^0 \in \Gamma \Rightarrow A \not\in \Gamma \\ \neg^* A \in \Gamma \Rightarrow A \not\in \Gamma & A, A \supset B \in \Gamma \Rightarrow B \in \Gamma. \end{array}$$

DEFINITION. A valuation for V_0 is a function $\vartheta : \mathbb{F} \to \{0,1\}$ such that:

- 1. $\vartheta(A \supset B) = 1 \Leftrightarrow \vartheta(A) = 0 \text{ or } \vartheta(B) = 1$
- 2. $\vartheta(A \& B) = 1 \Leftrightarrow \vartheta(A) = \vartheta(B) = 1$
- 3. $\vartheta(A \vee B) = 1 \Leftrightarrow \vartheta(A) = 1 \text{ or } \vartheta(B) = 1;$
- 4. $\vartheta(A^0) = \vartheta(B^0) = 1 \Rightarrow \vartheta((A \supset B)^0) = \vartheta((A \& B)^0) = \vartheta((A \lor B)^0) = 1;$
- 5. $\vartheta({}^0\!A) = \vartheta({}^0\!B) = 1 \Rightarrow \vartheta({}^0(A \supset B)) = \vartheta({}^0(A \& B)) = \vartheta({}^0(A \lor B)) = 1;$
- 6. $\vartheta(A^0) = 1 \Rightarrow \vartheta((\neg A)^0) = 1$
- 7. $\vartheta(^{0}A) = 1 \Rightarrow \vartheta(^{0}(\neg A)) = 1;$
- 8. $\vartheta(A) = \vartheta(\neg A) = 1 \Rightarrow \vartheta(A^0) = 0$.

LEMMA. If ϑ is a valuation for V_0 then $\vartheta(A) = 1 \Leftrightarrow \vartheta(\neg^*A) = 0$.

DEFINITION. The formula A is valid in V_0 if for each valuation ϑ , $\vartheta(A) = 1$. A valuation ϑ is a model of the set Γ if $\vartheta(A) = 1$ for all formulas $A \in \Gamma$. If each model of Γ is a model of $\{A\}$ we write $\Gamma \models A$. (In particular, $\models A$ means that A is valid.)

Theorem 2 (Theorem of Soundness). $\Gamma \vdash A \Rightarrow \Gamma \models A$.

PROOF. By induction on the length of a deduction of A from Γ .

LEMMA. If Γ is nontrivial, then Γ is contained in a maximal nontrivial set.

PROOF. By an obvious adaptation of the corresponding classical theorem.

Lemma. Every maximal nontrivial set of formulas has a model.

PROOF. We define the function $\vartheta : \mathbb{F} \to \{0,1\}$ as follows: for every formula A, if $A \in \Gamma$, then $\vartheta(A) = 1$, otherwise $\vartheta(A) = 0$. Then we prove that ϑ is a valuation for V_0 .

Theorem 3 (Theorem of Completeness). $\Gamma \models A \Rightarrow \Gamma \vdash A$.

Proof. Consequence of the preceding lemmas.

As an application of the semantics we can prove the following theorem.

THEOREM 4. In V_0 , the following schemas (among others) are not valid: $(A \lor \neg A) \lor \neg (A \& \neg A)$ $A \lor \neg A$ $A \lor \neg (A \& \neg A)$ $A \lor A \lor A$ $A \lor A$ A $A \lor A$ A A A A A A A A

3. The semantics of the system V_1

A semantics for the system V_1 can be obtained by strengthening clause 8 of Definition 3, in the following way:

8'.
$$\vartheta(A) = \vartheta(\neg A) = 1 \Leftrightarrow \vartheta(A^0) = 0.$$

With this definition of valuation it is easy to prove the theorems of soundness and completeness. We need only to show that function ϑ which appears in the proof of the last lemma satisfies the clause 8' of the definition of valuation for V_1 , and this is not difficult.

As an application of the semantics we can prove the following result:

THEOREM 5. In V_1 , the following schemas (among others) are not valid: $A \supset \neg \neg A$, $\neg \neg A \supset A$, $A \lor \neg A$, $\neg (A \& \neg A)$.

Theorem 6. V_2 is a proper subsystem of V_1 .

PROOF. It is enough to verify that axiom 15 of V_0 is a theorem of V_1 , and that there are formulas which are not valid in V_0 are theorems of V_1 (for instance, ${}^0A \vee A^0$).

4. The semantics of the system V_2

 V_2 is obtained from V_1 by adding as new axiom the law of contradiction, $\neg (A \& \neg A)$. A semantics for the system V_2 can be obtained by adding in the definition of valuation for V_1 , the following clause:

9.
$$\vartheta(A) = 1 \Rightarrow \vartheta(\neg A) = 0$$
.

With this definition of valuation, it is easy to prove the theorems of soundness and completeness. We will only show that the new axiom is valid in V_2 . Suppose not: then there is a valuation ϑ , such that $\vartheta(\neg(A \& \neg A)) =$

0. Then, by clause 8', we have $\vartheta(A) = \vartheta(\neg A) = 1$, which contradicts clause 9.

As an application of the semantics, we have the following result:

THEOREM 7. In V_2 , the following schemas (among others) are not valid: $\neg \neg A \supset A$, $A \lor \neg A$, $\neg A \lor \neg B \supset \neg (A \& B)$, $(A \supset B) \supset \neg A \lor B$.

Theorem 8. V_1 is a proper subsystem of V_2 .

PROOF. It is immediate, taking into account the construction of V_2 and the fact that $\neg(A \& \neg A)$ is not a theorem of V_1 (see Theorem 5).

5. Final remarks

Observe that the semantics of V_1 can also be extended in order to obtain a semantics for the system C_1 of da Costa. This can be done by adding the following clause in the definition of valuation:

9'.
$$\vartheta(A) = 0 \Rightarrow \vartheta(\neg A) = 1$$
.

It is easy to show that this definition of valuation is equivalent to that formulated, for example, in [3].

Finally, we observe that a decision method for each of the system V_0 , V_1 , and V_2 can be obtained by an adaptation of the method proposed in da Costa and Alves [3].

References

- [1] A. I. Arruda and E. H. Alves, *Some remarks on the logic of vague-ness*, **Bul. of the Section of Logic**, Polish Academy of Sciences..
- [2] N. C. A. da Costa, On the theory of inconsistent formal systems, Notre Dame J. of Formal Logic XI (1974), pp. 497–510.
- [3] N. C. da Costa and E. H. Alves, A semantical analysis of the calculi C_n , Notre Dame Journal of Formal Logic XVIII (1977), pp. 621–630.

Departamento de Matemática Universidade Estadual de Campinas 13100 Campinas, Brazil and

Centro de Lógica, Epistemologia e História da Ciência Universidade Estadual de Campinas 12100 Campinas, Brazil