Bulletin of the Section of Logic Volume 9/1 (1980), pp. 30–32 reedition 2010 [original edition, pp. 30–32]

Robert K. Meyer Steve Giambrone

R_+ IS CONTAINED IN T_+

Although the system T of ticket entailment is obviously related to its cousins E and R (it is, after all, a relevant logic, and moreover a subsystem of E and therefore of R), it is motivated along quite distinctive lines in Anderson and Belnap [1975]. It would seem, accordingly, that T is more nearly akin to the system P-W studied in Martin [1978] (see also Anderson and Belnap [1975], pp. 94–95, noting that $T \to -W$ is P-W) than to E and R. The result presented here, however, at least suggests the contrary.

As the title announces, a formula is provable in R_+ only if (in fact, iff) its "translation" is provable in T_+ . Below we merely state this result precisely and give the major lemmas for its proof, sparing the reader the details, which are at any rate straightforward.

We assume R_+ and T_+ to be formulated axiomatically as in Anderson and Belnap [1975]. T_+^t is obtained from T_+ by first adding the propositional constant t to the vocabulary, and then adding the following rules to T_+ :

(a)
$$\frac{\vdash A}{\vdash t \to A}$$
 (b) $\frac{\vdash t \to A}{\vdash A}$

For each wffA of T_+^t , define A' as $A[t/p_i]$ (the proper substitution of p_i for t in A), where p_i is the first propositional variable (in some assumed ordering thereof) which does not occur in A. And define t_A as $(p_i \& (p_i \to (p_i \to p_i)) \& (p_i \to (p_h \to p_h)) \& \dots \& (p_i \to (p_k \to p_k))$, where p_i is as before, and p_h, \dots, p_k are the propositional variables occurring in A. Then

LEMMA 1. $\vdash_{T_+} tA \text{ iff } \vdash_{T_+} (t'_{A'} \to A').$

We have noted (as Anderson and Belnap [1975] essentially records, pp. 100–101) that if a theory of modality is wanted for T, the definition scheme

$$\Box A = (t \to A)$$

suggests itself. On this scheme, a slight modification of the coding of R_+ into E_+ in Meyer [1966] (itself and adaptation of the well-known Mckinsey-Tarski 1948 coding of intuitionist logic into S4) codes R_+ into T_+ as well. Specifically, let A,B,C be arbitrary wffs of R_+ . Define A^* inductively as follows:

$$A^* = (\Box A)$$
, for A a propositional variable;
 $(B\&C)^* = (B^*\&C^*)$;
 $(B\lor C)^* = (\Box(B^*\lor C^*))$;
 $(B\to C)^* = (B^*\to C^*)$.

Then

LEMMA 2. $\vdash_{R_+} A \text{ iff } \vdash_{T_+} tA^*$.

With A^* , A' and $t_{A'}$ defined as above, it follows immediately from Lemmas 1 and 2 that

Theorem.
$$\vdash_{R_+} A \text{ iff } \vdash_{T_+} (t_{A^{*\prime}} \to A^{*\prime}).$$

Before closing, we note as a corollary of this theorem: If R_+ is undecidable, T_+ is likewise. So a negative answer to the R_+ decision question would settle negatively all of the still-open decision questions for the major relevant systems T, E and R.

References

- [1] A. R. Anderson and N. D. Belnap, Jr., **Entailment, The Logic of Relevance and Necessity**, Vol. 1, Princeton University Press, Princeton, 1975.
- [2] J. C. C. McKinsey and A. Tarski, Some Theorems about the Sentential Calculi of Lewis and Heyting, Journal of Symbolic Logic, Vol. 13 (1948), pp. 1–15.
- [3] E. P. Martin, **The** P-W **Problem**, Doctoral Disseration, ustralian National University, 1978.

[4] R. K. Meyer, **Topics in Modal and Many-Valued Logic**, Doctoral Dissertation, University of Pittsburgh, 1966.

Department of Philosophy, RSSS Australian National University