Ryszard Wójcicki

MORE ABOUT REFERENTIAL MATRICES

This paper was presented at the Annual Conference of the Australian Association for Logic, Melbourne, November, 1979.

The present note being complementary to [1], I shall only briefly recall the key notions to be exploited here, and for more details the reader is advised to consult [1].

By a propositional logic we mean a couple (\underline{L},C) , where \underline{L} is a propositional language (algebra of formulas) and C a structural consequence defined on \underline{L} . A couple $W=(\underline{A},D)$ is said to be a referential matrix for the language \underline{L} iff there exists a non-empty set T such that the following two conditions are satisfied:

i. \underline{A} is an abstract algebra similar to \underline{L} , whose all elements belong to $\{0,1\}^T$, i.e. they are mappings from T into the two-element set $\{0,1\}$.

ii.
$$D = \{ \{ a \in \underline{A} : a(t) = 1 \} : t \in T \}.$$

Let (\underline{L}, C) be a propositional logic. The main theorem of [1] says that a referential matrix W such that $C = Cn_W$ (Cn_W being the consequence operation determined by W) exists iff C is self-extensional, i.e.

(a)
$$C(\alpha) = C(\beta)$$

implies

(a') $C(\varphi(\alpha/p)) = C(\varphi(\beta/p))$, for all formulas φ of \underline{L} and all propositional variables p.

THEOREM. Let (\underline{L}, C) be a propositional logic. A referential matrix W such that $C(\emptyset) = Cn_W(\emptyset)$ exists iff C in weakly self-extensional, i.e.

(b) $\alpha, \beta \in C(\emptyset)$

implies

(b') $\varphi(\alpha/p) \in C(\emptyset)$ iff $\varphi(\beta/p) \in C(\emptyset)$.

PROOF (AN OUTLINE). (\rightarrow) . Suppose that $C(\emptyset) = Cn_W(\emptyset)$. Assume (b). This implies that $Cn_W(\alpha) = Cn_W(\beta)$. But Cn_W is self-extensional. Hence $\varphi(\alpha/p) \in Cn_W(\emptyset) = C(\emptyset)$ iff $\varphi(\beta/p) \in Cn_W(\emptyset) = C(\emptyset)$, which yields (b').

- (\leftarrow) Define a consequence operation C_0 on \underline{L} by the following condition. For each $\alpha \in \underline{L}$, each $X \subseteq \underline{L}$, $\alpha \in C(X)$ iff α is provable from $X \cup C(\emptyset)$ by means of the following rule:
- (R) If $\alpha, \beta \in C(\emptyset)$, then from $\varphi(\alpha/p)$ (any formula of this form) infer $\varphi(\beta/p)$.

Observe that the rule R is structural. Indeed, given any couple of formulas $\varphi(\alpha/p)$, $\varphi(\beta/p)$ and any endomorphism $e \in Hom(\underline{L},\underline{L})$ one may find a formula ψ such that $e\varphi(\alpha/p) = \psi(e\alpha/p)$ and $e\varphi(\beta/p) = \psi(e\beta/p)$. Of course if $\alpha, \beta \in C(0)$, then also $e\alpha, e\beta \in C(\emptyset)$, hence if $\varphi(\beta/p)$ is derivable by R from $\varphi(\alpha/p)$ so is $e\varphi(\beta/p)$ from $e\varphi(\alpha/p)$.

The structurality of R together with the fact that $C(\emptyset)$ is closed under substitutions implies that C_0 is structural. Moreover, since, as one may easily see, $C(\emptyset)$ is closed under R, we have $C(\emptyset) = C_0(\emptyset)$.

The next step in the argument consists in showing that C_0 is self-extensional. In order to see this, it is enough to notice that whenever $C_0(\alpha) = C_0(\beta)$ and $\alpha_1, \ldots, \alpha_n$ is a proof of α from $\{\beta\} \cup C(\emptyset)$ by means of R, then for each formula of the form $\varphi(\alpha/p)$, the proof $\alpha_1, \ldots, \alpha_n$ can be transformed to the proof $\alpha'_1, \ldots, \alpha'_n$ of $\varphi(\alpha/p)$ from $\{\varphi(\beta/p)\} \cup C(\emptyset)$ by means of R in the following way. If $\alpha_i \in C(\emptyset)$, put $\alpha'_i = \alpha_i$. If $\alpha_i = \beta$, put $\alpha'_i = \varphi(\beta/p)$. Finally, if α_i results from α_j , j < i, by R, define α'_i to be the formula which results from α'_j by the application of R which involves the formulas from $C(\emptyset)$ used in order to get α_i from α_j and which is ordered out with respect to the same variable as in the case of α_i and α_j .

The self-extensionality of C_0 implies that there exists a referential matrix W such that $C_0 = Cn_W$. But $C_0(\emptyset) = C(\emptyset)$ and hence we obtain $C(\emptyset) = Cn_W(\emptyset)$, concluding the proof.

References

[1] Ryszard Wójcicki, Referential matrix semantics for propositional calculi, Bulletin of the Section of Logic 8 (1979), pp. 170–176.

Section of Logic Institute of Philosophy and Sociology Polish Academy of Sciences