reedition 2010 [original edition, pp. 73-77]

G. E. Hughes

MODAL LOGICS BETWEEN S4.2 and S4.3

Ι

The logics S4.2 and S4.3 are formed by adding to S4 the axioms

$$G.$$
 $MLp \supset LMp$

and Lem.
$$L(Lp \supset q) \lor L(Lq \supset p)$$

respectively. As is well known, S4.3 properly contains S4.2. It is also a standard result that S4.2 is characterized by the class of all frames (W, R) in which R is reflexive, transitive and *convergent* in the sense that

$$(\forall x, y, z \in W)((xRy \land zRz) \supset (\exists w \in W)(yRw \land zRw))$$

and that S4.3 is characterized by the class of all frames in which R is reflexive, transitive and connected in the sense that

$$(\forall x, y, z \in W)((xRy \land xRz) \supset (yRz \lor zRy)).$$

This paper defines an infinite sequence of logics properly between S4.2 and S4.3 and shows what classes of frames characterize them.

Π

For each $n \geq 0$, let Lem_n be

$$L(Lp_0 \supset a_n) \lor L(Lp_1 \supset p_0)$$

where a_n is defined inductively as follows:

$$a_0$$
 is p_1
 a_{k+1} is $p_{k+1} \supset L(p_{k+1} \lor a_k)$.

74 G. E. Hughes

Then, again for each $n \ge 0$, we define $S4.3_n$ as $S4.2 + Lem_n$.

In particular instances we shall write p for p_0 , q for p_1 , etc., and replace $q \vee q$ by q. Thus Lem_0 will be $L(Lp \supset q) \vee L(Lq \supset p)$. Lem_1 will be $L(Lp \supset (q \supset Lq)) \lor L(Lq \supset p)$. Lem₂ will be $L(Lp \supset (r \supset L(r \lor (q \supset L(p \supset q)))))$ $L(q)))) \lor L(L(q \supset p))$, and so forth. Clearly $L(m_0)$ is the original $L(m_0)$ and hence $S4.3_0$ is simply S4.3.

I shall consider $S4.3_1$ in some detail and then show in outline how to generalize the results for the whole sequence of $S4.3_n$ logics.

Theorem 1. S4.3 contains $S4.3_1$.

PROOF. Clearly it is sufficient to show that $\vdash_{S4.3} Lem_1$. We do so as follows (L is the rule: $\vdash \alpha \supset \beta \rightarrow \vdash L\alpha \supset L\beta$):

- $(1) \quad L(Lp\supset (q\supset Lq))\vee L(L(q\supset Lq)\supset p)$ $[Lem(q \supset Lq/q)]$ [S4]
- (2) $Lq \supset L(q \supset Lq)$
- (3) $L(L(q \supset Lq) \supset p) \supset L(Lq \supset p)$ $[(2), PC, \underline{L}]$
- $(4) \quad L(Lp \supset (q \supset Lq)) \lor L(Lq \supset p) \ (Lem_1) \quad [(1), (3), PC]$

Theorem 2. S4.2 does not contain $S4.3_1$.

The frame of Figure 1, with R assumed to be reflexive and transitive, is clearly convergent, and hence a frame for S4.2. But Lem_1 is false at x in the model on this frame in which $V(p) = \{y, w, v\}$ and $V(q) = \{y, z, v\}.$

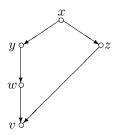


Fig. 1

Theorem 3. $S4.3_1$ does not contain S4.3.

PROOF. The frame of Figure 2 (R reflexive and transitive) is a frame for $S4.3_1$, but Lem is false at x in the model on this frame in which ($V(p) = \{y, w\}$ and $V(q) = \{z, w\}$.

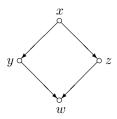


Fig. 2

THEOREM 4. S4.3₁ is characterized by the class of frames $\langle W, R \rangle$ in which R is reflexive, transitive, convergent, and such that, for all $x, y, z, w \in W$,

$$\underline{C}$$
. $(xRy \land xRz) \supset (yRz \lor ((yRw \land y \neq w) \supset zRw))$

PROOF. (a) For soundness it is sufficient to show that Lem_1 cannot be falsified in any model in which R satisfies \underline{C} . To show this, suppose that Lem_1 is false at x in some such model. Then there must be points y and z such that xRy and xRz and such that (i) $Lp \supset (q \supset Lq)$ is false at y and (ii) $Lq \supset p$ is false at z. From (i) it follows that (iii) Lp is true at y, (iv) q is true at y, and (v) Lq is false at y. By (iv) and (v) there must be some point w such that yRw and (vi) q is false at w; and hence (vii) $y \neq w$. Moreover from (ii) it follows that (viii) Lq is true at z and (ix) p is false at z. But now it is clear that \underline{C} cannot be satisfied: for since we have xRy and xRz, to satisfy \underline{C} we should have to have either yRz, which is impossible by (iii) and (ix), or else zRw, which is impossible by (viii) and (vi).

- (b) For *Completeness* we use the method of canonical models. Since $S4.3_1$ is an extension of S4.2 it is sufficient to show that in the canonical model for $S4.3_1$, R satisfies \underline{C} . We first note that a straightforward transform of Lem_1 is
- (1) $M(Lp \land q \land M \sim q) \supset L(\sim p \supset M \sim q)$ and that from (1) by $[q \lor \sim r/q]$ and PC we obtain
 - $(2) \quad M(Lp \wedge (q \vee \sim r) \wedge M(\sim q \wedge r)) \supset L(\sim p \supset M(\sim q \wedge r)).$

76 G. E. Hughes

Now let x, y, z, w be any points in the canonical model for $S4.3_1$ such that (i) xRy, (ii) xRz, (iii) $\sim yRz$, (iv) yRw, and (v) $y \neq w$. It will be sufficient to show that in that case we have zRw.

By (iii) there is some $wff\ I\alpha \in y$ such that (vi) $\sim \alpha \in z$. By (v) there is some $\beta \in y$ such that $\sim \beta \in w$. Let γ be any arbitrary wff in w. To show that zRw it is sufficient to show that $M\gamma \in z$.

Now since $\sim \beta \in w$ and $\gamma \in w$, then by (iv) we have $M(\sim \beta \wedge \gamma) \in y$. Since we also have $I\alpha \in y$ and $\beta \in y$ (and hence $\beta \vee \sim \gamma \in y$), then (i) we have $M(L\alpha \wedge (\beta \vee \sim \gamma) \wedge M(\sim \beta \wedge \gamma)) \in x$. Therefore by (2) we have $L(\sim \alpha \supset M(\sim \beta \wedge \gamma)) \in x$. Hence by (ii), $\sim \alpha \supset M(\sim \beta \wedge \gamma) \in z$. From this and (vi) we have $M(\sim \beta \wedge \gamma) \in z$, and therefore $My \in z$, which is what we required.

IV

The generalizations of Theorems 1-4 are as follows.

Theorem 5. Each $S4.3_n$ contains $S4.3_{n+1}$.

Sketch Proof. For $n \geq 1$, to obtain Lem_{n+1} from Lem_n the key substitutions are $[p_2 \vee (p_1 \supset Lp_1)/p_1, p_3/p_2, \dots, p_{n+1}/p_n]$. The required simplifications are then straightforward.

THEOREM 6. S4.2 does not contain any S4.3_n; and if m > n, S4.3_m does not contain S4.3_n.

PROOF. The frame of Figure 3, with R assumed reflexive and transitive, is a frame for $S4.3_m$ (and of course for S4.2); but if m > n, Lem_n can be falsified at x.

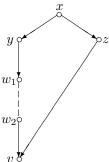


Fig. 3

Given R, let us say that xR'y iff $xRy \land x \neq y$. And in general, let us say that xR'^ny iff there are z_0, \ldots, z_n such that (a) $z_0 = x$ and $z_n = y$, (b) $z_0Rz_1, \ldots, z_{n-1}Rz_n$, and (c) for every i $(0 \leq i < n)$, $z_i \neq z_{i+1}$. (Less formally, we say that xR'^ny iff y can be reached from x in n steps, each of which takes us from one element to a distinct one.) We interpret xR'^0y as x = y. We can then state

Theorem 7. Each $S4.3_n$ is characterized by the class of frames $\langle W, R \rangle$ in which R is reflexive, transitive, convergent, and such that, for all $x, y, z, w \in W$,

$$(xRy \wedge xRz) \supset (yRz \vee (yR'^nw \supset zRw)).$$

The proof is a generalization of the proof of Theorem 4.

Victoria University of Wellington Wellington, New Zealand