Marek Pałasiński

SOME REMARKS ON BCK-ALGEBRAS

This is an abstract of the paper presented at the seminar held by prof. A. Wroński at the Jagiellonian University.

It was announced in [1] that T. Traczyk showed that any commutative BCK-algebra such that any two elements have an upper bound is a distributive lattice. In this paper we give a generalization of that theorem.

Let us recall a few fundamental definitions.

By a *BCK*-algebra we mean a general algebra $\langle X,*,0\rangle$ of type $\langle 2,0\rangle$ satisfying the following axioms:

- (1) $(x*y)*(x*z) \le z*y$,
- $(2) \quad x * (x * y) \le y,$
- $(3) \quad x \le x,$
- $(4) \quad 0 \le x,$
- (5) $x \le y$ and $y \le x$ imply x = y,

where $x \leq y$ means x * y = 0.

It was proved in [2] that \leq is a partial ordering. So $\langle X, \leq \rangle$ is a poset.

A BCK-algebra X is called commutative if for any $x, y \in X$

$$x * (x * y) = y * (y * x)$$

A BCK-algebra such that any two elements have an upper bound, in the sense of \leq , is called directed.

First let us note the following key Lemma.

LEMMA. In a commutative directed BCK-algebra

$$(y*x)*(x*y) = y*x$$

86 Marek Pałasiński

Following [3], by a Łukasiewicz algebra we mean a general algebra $\langle Y, *, 0 \rangle$ of type $\langle 2, 0 \rangle$ satisfying the following axioms:

- (6) x = x * 0,
- $(7) x * y \le x,$
- (8) $(x*y)*(x*z) \le z*y$,
- (9) X * (x * y) = y * (y * x),
- (10) x * y = (x * y) * (y * x).

It was proved in [2] that (6) and (7) hold in every BCK-algebra, so using Lemma we obtain

COROLLARY. A commutative directed BCK-algebra is a Łukasiewicz algebra.

Using Lemma we can prove the following theorem which gives us an equational characterization of subdirectly irreducible, linearly ordered BCK-algebras.

Theorem 1. In a subdricetly irreducible BCK-algebra X the following conditions are equivalent:

- a) X is linearly ordered by \leq ;
- b) (x * (x * (y * z))) * (x * (zXy)) = 0 holds j = X.

The following theorem is a generalization of the result obtained by T. Traczyk.

Theorem 2. A commutative directed BCK-algebra is a subdirect product of linearly ordered BCK-algebras.

References

- [1] K. Iseki, On some problems on BCK-algebras, Mathematics Seminar Notes 7 (1979), pp. 173–178.
- [2] K. Iseki, S. Tanaka, An introduction to the theory of BCK-algebras, Mathematica Japonicae 23 (1978), pp. 1–26.
- [3] Y. Komori, The separation theorem of the ℵ₀-valued Łukasiewicz propositional logic, reports of Faculty of Science, Shizuoka University

12 (1978), pp. 1–5.

 $\begin{tabular}{ll} Mathematical Institute\\ Jagiellonian University\\ Cracow \end{tabular}$