Janusz Czelakowski

EQUIVALENTIAL LOGICS (I)

In the present note we continue the investigations undertaken in [2]. A full version of the paper has been submitted to Studia Logica.

§1

Our goal is to give a characterization of the so called factorial matrices for a logic. A matrix $\underline{M} = (\underline{A}, D)$ is factorial iff the greatest congruence $\Theta_{\underline{M}}$ of \underline{M} coincides with the diagonal of A. Recall that Θ is a congruence of a matrix $\underline{M} = (\underline{A}, D)$ iff Θ is a congruence of the algebra \underline{A} and for any $a, b \in A$, if $a\Theta b$ then

$$a \in D$$
 iff $b \in D$.

If $\underline{M} = (\underline{A}, D)$ is a matrix for a propositional language \underline{L} , then $\Theta_{\underline{M}}$ can be characterized as follows: $a\Theta_{\underline{M}}b$ iff for each formula $\varphi \in L$, each propositional variable p occurring in φ and each homomorphism $h \in Hom(L, A)$:

$$h(^{a}/_{p}(\varphi) \in D \text{ iff } h(^{b}/_{p})(\varphi) \in D,$$

where $h(^a/_p) \in Hom(\underline{L},\underline{A})$ is defined on the propositional variables of \underline{L} as follows

$$h(^{a}/_{p})(q) = \begin{cases} h(q) & \text{if } q \neq p \\ a & \text{if } q = p. \end{cases}$$

Thus for each matrix $\underline{M}=(\underline{A},D)$, the quotient matrix $\underline{M}/\Theta_{\underline{M}}=(\underline{A}/\Theta_{\underline{M}},D/\Theta_{\underline{M}})$ is factorial $(D/\Theta_{\underline{M}}=\{[a]_{\Theta_{\underline{M}}}:a\in D\})$. If \mathbb{K} is a class of matrices for \underline{L} , then \mathbb{K}^* denotes the class of factorial matrices $\{\underline{M}/\Theta_{\underline{M}}:\underline{M}\in\mathbb{K}\}$.

Our purpose is to investigate the following problem. Given a class \mathbb{K} of matrices for a propositional language \underline{L} , let $C = Cn_{\mathbb{K}}$ be the consequence operation determined by \mathbb{K} in \underline{L} . What model-theoretic operations should one impose on \mathbb{K}^* in order to obtain the class $Matr(C)^*$ consisting of

all factorial matrices from Matr(C)? We give a solution in the case of equivalential logics.

If $\alpha(p_1,\ldots,p_n)$ is a formula from L in n variables and $\underline{M}=(\underline{A},D)$ is a matrix for \underline{L} , then $\alpha_{\underline{A}}$ (or $\alpha_{\underline{M}}$) denotes the corresponding n-ary function on A. If $a_1,\ldots,a_n\in A$, then $\alpha_{\underline{A}}[a_1/p_1,\ldots,a_n/p_n]$ (or simply $\alpha_{\underline{A}}[a_1,\ldots,a_n]$) denotes the value of $\alpha_{\underline{A}}$ in $\langle a_1,\ldots,a_n\rangle$.

By a logic we shall mean a pair (\underline{L},C) , where \underline{L} is a propositional language, i.e. a finitary absolutely free algebra generated by an infinite denumerable set of propositional variables, and C is a structural consequence operation on \underline{L} . Thus in this note we assume that propositional languages are countable.

Let E(p,q) be a nonempty set of propositional formulas from \underline{L} in two variables, p and q. We write $E(\alpha,\beta)$ to denote the set of all formulas which results by the simultaneous substitution of α for p and β for q in all formulas from E.

DEFINITION 1. ([3]). A logic (\underline{L} , C) is equivalential (with respect to a set E(p,q)) iff the following conditions hold true

```
(i) E(\alpha, \alpha) \subseteq C(\emptyset)
```

- (ii) $E(\alpha, \beta) \subseteq C(E(\beta, \alpha))$
- (iii) $E(\alpha, \gamma) \subseteq C(E(\alpha, \beta) \cup E(\beta, \gamma))$
- (iv) for every n-ary connective F from \underline{L} $(n < \omega)$ $E(F(\alpha_1 \dots \alpha_n), F(\beta_1 \dots \beta_n)) \subseteq C(E(\alpha_1, \beta_1) \cup \dots \cup E(\alpha_n, \beta_n))$
- (v) $\alpha \in C(E(\alpha, \beta) \cup \{\beta\})$.

If (\underline{L}, C) is equivalential, then we refer to the above set E(p, q) as to a set of C-equivalencies of the logic (\underline{L}, C) .

EXAMPLES (1). If (\underline{L}, C) is equivalential with respect to a set E(p, q) consisting of a single formula, then the unique element of E is usually denoted as $p \Leftrightarrow q$.

- (2). A logic (\underline{L}, C) is *implicational* ([4],[5]) iff among the connectives of \underline{L} there exists a binary one, denoted \Rightarrow , such that for every formulas $\alpha, \beta, \gamma \in L$ and each variable p occurring in γ the following conditions are satisfied:
- (i_1) $\alpha \Rightarrow \alpha \in C(\emptyset)$
- (i₂) $\beta \in C(\alpha, \alpha \Rightarrow \beta)$

90 Janusz Czelakowski

- $(i_3) \ \alpha \Rightarrow \gamma \in C(\alpha \Rightarrow \beta, \beta \Rightarrow \gamma)$
- (i_4) $\beta \Rightarrow \alpha \in C(\alpha)$
- (i₅) $\gamma(\alpha/p) \Rightarrow \gamma(\beta/p) \in C(\alpha \Rightarrow \beta, \beta \Rightarrow \alpha)$

 $(\gamma(\alpha/p))$ results from γ by substitution of α for all occurrences of p.)

The connective \Rightarrow mentioned above is called an *implication* of the logic (\underline{L}, C) .

Observe that if (\underline{L},C) is implicational and \Rightarrow is its implicational, then (\underline{L},C) is equivalential with respect to the set $E(p,q)=\{p\Rightarrow q,q\Rightarrow p\}$, where $p\neq q$.

PROPOSITION 2. If (\underline{L},C) is equivalential (w.r. to E(p,q)) and $\underline{M} = (\underline{A},D) \in Matr(C)$, then $a\Theta_{\underline{M}}b$ iff for every $\gamma \in E$, $\gamma_{\underline{A}}[a,b] \in D$, where $\Theta_{\underline{M}}$ is the greatest congruence of \underline{M} .

By the Lindenbaum bundle for a logic (\underline{L},C) we mean the family \mathbb{L}_C of all matrices (\underline{L},X) , where $X\in Th(C)$. $(Th(C)=\{X\subseteq L:C(X)=X\}$. It is easy to prove that a logic (\underline{L},C) is equivalent iff for each $X\in Th(C)$, the set $\{(\alpha,\beta):E(\alpha,\beta)\subseteq X\}$ is the greatest congruence of the matrix (L,X).

THEOREM 3. (cf. Theorem 2 in [2]). Let \mathbb{K} be a class of matrices for \underline{L} . Assume that the logic $(\underline{L}, Cn_{\mathbb{K}})$ is equivalential w.r. to a set E(p, q). The:

- (1) If $Cn_{\mathbb{K}}$ is finitistic and E is finite, then $Matr(Cn_{\mathbb{K}})^* = SP_R(\mathbb{K}^*) = SPP_u(\mathbb{K}^*).$
- (2) If $Cn_{\mathbb{K}}$ is not finitistic, then $Matr(Cn_{\mathbb{K}})^* = SP_{\sigma-R}(\mathbb{K}^*),$

where $P_{\sigma-R}$ denotes the operation of taking σ -reduced products of matrices, i.e. reduced products modulo σ -filters.

Corollary 4. Let (\underline{L},C) be equivalential with respect to a set E(p,q). Then

- (1) If C is finitistic and E is finite, then $Matr(C)^* = SP_R(\mathbb{L}_C^*) = SPP_u(\mathbb{L}_C^*).$
- (2) If C is not finitistic, then $Matr(C)^* = SP_{\sigma-R}(\mathbb{L}_C^*)$.

where \mathbb{L}_{C}^{*} is the factorial Lindenbaum bundle for C.

ADDENDUM. In the note [2] we made use but we did not define the notion of a strong homomorphism of matrices. Let $\underline{M} = (\underline{A}, D)$, $\underline{N} = \underline{B}, E$) be matrices for \underline{L} . A mapping $h: A \to B$ is said to be a strong homomorphism (or, equivalently – matrix homomorphism) iff h is a homomorphism from the algebra \underline{A} into \underline{B} and for every $a \in A$, $a \in D$ iff $h(a) \in E$. The above definition differs from the one accepted in model theory (cf. [1], p. 242).

References

- [1] C. C. Chang and H. J. Keisler, **Model theory**, North-Holland & American Elsevier, Amsterdam New York, 1973.
- [2] J. Czelakowski, A characterization of Matr(C), Bull. Sect. Logic, Polish Academy of Sciences, Institute of Philosophy and Sociolgy, Vol. 8, No. 2 (1979), pp. 83–86.
- [3] T. Prucnal and A. Wroński, An algebraic characterization of the notion of structural completeness, Bull. Sect. Logic, Polish Academy of Sciences, Institute of Philosophy and Sociology, Vol. 3, No. 1 (1974), pp. 30–33.
- [4] H. Rasiowa, **An algebraic to non-classical logics**, North-Holland PWN, Amsterdam Warsaw, 1974.
- [5] R. Wójcicki, *Matrix approach in sentential calculi*, **Studia Logica** XXXII (1973), pp. 7–37.

Polish Academy of Sciences Institute of Philosophy and Sociology The Section of Logic Szewska 36, 50–139 Wrocław, Poland