Bogusław Wolniewicz

ON THE LATTICE OF ELEMENTARY SITUATIONS

In [8] we adopted a set SE of elementary situations (E-situations) as our universe of discourse, sketching only roughly its assumed properties. These are to be specified now.

1. Prerequisites

Consider a purely conjunctive propositional language: a set of propositions L_C consisting only of the atomic ones and their conjunctions. E-situations are the *objectives* of L_C -propositions. (The objective of α – the medieval significatum propositionis, cf. [3] – we denote by " $S(\alpha)$ ".) Starting with an augmented set of E-situations SE", we assume:

- 1.1. SE'' comprises at least the two *improper E*-situations: the *empty* one \underline{o} , and the *impossible* one λ , with $o \neq \lambda$. The set $SE' = SE'' \{\lambda\}$ is that of *possible E*-situations, and the set $SE = SE'' \{o, \lambda\}$ of *proper E*-situations coincides with that of the *contingent* ones. (For illustrations cf. [9], [10], [11].)
- 1.2. SE'' is a bounded poset, with o = zero, and $\lambda = unit$. Thus $o \le x \le \lambda$, for any $x \in SE''$. The formula " $x \le y$ " is read: x obtains in y (cf. [5]). Two E-situations are compossible iff there is a proper E-situation in which they both obtain.
- 1.3. In SE'' any $A \subset SE''$ has a supremum. So SE'' is a complete lattice, with the join $x; y = \sup\{x, y\}$, and the meet $x!y = \inf\{x, y\}$. The join is to be the counterpart of conjunction. So, if $\alpha, \beta \in L_C$, then for some

 $x,y \in SE'': x = S(\alpha), y = S(\beta), \text{ and } x; y = S(\alpha \wedge \beta).$ E-situations x,yare incompatible iff $x; y = \lambda$.

- 1.4. SE may be empty. But if there is any contingent E-situation at all, then there is also another one incompatible with it: $x \in SE \Rightarrow$ $\bigvee x; y = \lambda$. Thus either SE is empty, or it comprises at least two distinct and incompatible elements.
- 1.5. SE'' is atomistic. I.e., there is a non-empty set $SA = \{x \in SE'' : x\}$ covers o} of atomic situations ("A-situations" or "atoms"), and every E-situation is the join of some of them: $\bigwedge_{x \in SE''} \bigvee_{A \subset SA} x = \sup A$. Observe that $o = \sup \emptyset.$
 - 1.6. SE'' is distributive on condition. This is to say:

 - 1) $(x; y \neq \lambda \land x; z \neq \lambda) \Rightarrow (x; y)!(x; z) \leq x; (y!z),$ 2) $(y; z \neq \lambda) \Rightarrow x!(y; z) \leq (x!y); (x!z).$

Note the theorem: if $A \subset SA$, A is finite, $\sup A \neq \lambda$, and $s \in SA$, then $s \leq \sup A \Rightarrow s \in A$. Setting $At(x) = \{s \in SA : s \leq x\}$, one gets the corollary: $A = At(\sup A)$, for any $A \subset SA$ as stipulated.

1.7. SE'' is relatively complemented on condition. I.e.,

$$(x \le y \land y \ne \lambda) \Rightarrow \bigvee_{x} (x; x' = y \land x! x' = o).$$

Relatively to a given y, the complement of x is by 1.6.2 unique. Consequently, every interval [o, y] of SE'', such that $y \neq \lambda$, is a Boolean lattice.

There is a non-empty set $SP = \{x \in SE'' : \lambda \text{ covers } x\}$ of maximal possible E-situations ("dual atoms", possible worlds, or logical points, cf. [5]), and every possible E-situation obtains in at least one of them: $\bigwedge_{x \in SE'} \bigvee_{w \in SP} x \leq w$. The set SP is the logical space of the language in question (cf. [1], [4], and [7]). Observe that $SP = \{o\}$, if SE is empty.

A corollary is: $x \leq w \Leftrightarrow x; w \neq \lambda$, for any $x \in SE''$, $w \in SP$. Hence, for any $w_i \in SP$, the set $R_i = \{x \in SE'' : x \leq w_i\}$ is a maximal ideal of SE''. Following [2], we call these ideals realizations, marking their totality by \underline{R} .

- 1.9. In SP, a point w_o is designated as representing the real world. Thus $R_o = \{x : x \leq w_o\}$ is the set of real E-situations, the rest $SE'' R_o$ comprising all the *imaginary* ones. Clearly, $o \in R_o$.
- 1.10. Any two *E*-situations are separated by a possible world: $x, y \in SE'', x \neq y \Rightarrow \bigvee_{w \in SP} ((x \leq w \land w \leq w) \lor (\sim x \leq w \land y \leq w))$. Thus, in the sense of [2], \underline{R} divides SE''.

2. W-independence

An ontology satisfying 1.1 - 1.10 might be called "quasi-Wittgensteinian". To make it properly so, more has to be assumed about SA. This we precede with two definitions pertaining to SE''-sets (i.e., subsets of SE'').

2.1. Let A be an SE''-set. We call it W-independent (cf. [6]) iff A is not empty, $\sup A \neq \lambda$, and for any $x,y \in A: x=y$ or x!y=o. Thus, in particular, $\{x,y\}$ is W-independent iff $x;y \neq \lambda$, x!y=o. We say then that x,y are W-independent of one another.

Observe: If A is W-independent, so is any non-empty subset of it. Save $\{\lambda\}$, every unit set is W-independent. If A is W-independent, so is $A \cup \{o\}$. The empty E-situation is W-independent of every possible one. No E-situation is W-independent of λ . If A_1, A_2 are two disjoint subsets of a W-independent SE''-set, then $\sup A_1$ and $\sup A_2$ are W-independent of one another.

2.2. Let \underline{A} be any finite, non-empty, injectively indexed family of SE''-sets, none of them empty, and all disjoint. I.e., $\underline{A} = \{A_i\}_{i \in K}$, $K = \{1, 2, \ldots, k\}$, $A_i \subset SE''$, $A_i \neq \emptyset$, and $i \neq j$ implying $A_i \cap A_j = \emptyset$. We call that family orthogonal iff for any $X^k = \{x_1, x_2, \ldots, x_k\}$ such that $x_1 \in A_1$, $x_2 \in A_2, \ldots, x_k \in A_k$, the SE''-set X^k is W-independent.

So a finite family of non-empty SE''-sets is orthogonal iff it is disjoint, with every selection of E-situations, one taken from each member-set, forming a W-independent set. Observe: $\{A\}$ is orthogonal iff $A \neq \emptyset$ and $\lambda \notin A$. $\{A_1, A_2\}$ is orthogonal iff $x_1; x_2 \neq \lambda$, and $x_1!x_2 = o$, for any $x_1 \in A_1$, $x_2 \in A_2$. And \underline{A} being the family of unit subsets of A, \underline{A} is orthogonal iff A is W-independent.

3. Further Assumptions

Generalizing the logical atomism of [1], we stipulate:

- 3.1. Contingent E-situations are incompatible iff they contain incompatible atoms. Actually we have only to assume: $x, y \neq o \Rightarrow (x; y = \lambda \Rightarrow \bigvee_{s,t \in SA} (s \leq x \land t \leq y \land s; t = \lambda))$. The converse of the consequent is clearly a theorem.
- 3.2. Any two distinct A-situations that are incompatible with a third one, are also incompatible with each other. I.e., for any $x, y, z \in SA$, $(x; z = \lambda \land y; z = \lambda) \Rightarrow (x = y \lor x; y = \lambda)$. Hence the relation $x \sim_d y \Leftrightarrow (x; y \in SA \land (x = y \lor x; y = \lambda))$ is an equivalence on SA. The classes of the partition $\underline{D} = SA / \sim_d$ are the logical dimensions of L_c .
- 3.3. \underline{D} is finite. This is arbitrary, but not quite. For arguably any human language may be of finite complexity only, and the cardinality of \underline{D} might be a measure of that.

4. Some Consequences

The first is in fact the principle of logical atomism, appearing here as a theorem (by 3.1-3.3):

- 4.1. Provided $SE \neq \emptyset$, \underline{D} is orthogonal. (If SE is empty, then $SA = \{\lambda\}$, and so \underline{D} degenerates to $\{\{\lambda\}\}$.)
- 4.2. Every possible world contains one atom of each dimension. I.e., if $SE \neq \emptyset$, then $\bigwedge_{w \in SP} \bigwedge_{D \in \underline{D}} \bigvee_{x \in SA} (x \in D \land x \leq w)$. Indeed, suppose this were

not the case for some $w \in SP$, $D \in \underline{D}$; i.e., we had then $x \in D \Rightarrow \sim (x \le w)$, for every $x \in SA$. Set $\underline{a} \in D$ (D is not empty!). Hence $\sim (a \le w)$, and by the corollary of 1.8: $a; w = \lambda$. Thus, by 3.1, $s \le a \wedge t \le w \wedge s; t = \lambda$, for some $s, t \in SA$. But $a \in SA$, so s = a, i.e. $t \le w \wedge a; t = \lambda$. In view of the latter we have $a \sim_d t$; so $t \in D$ and $t \le w$, contradicting the supposition.

Thus $D \cap R \neq \emptyset$, for any $D \in \underline{D}$, $R \in \underline{R}$. Clearly, $D \cap R$ is always a unit set, so in each dimension exactly one atom is real.

- 4.3. $Card(D) \geq 2$, for any $D \in D$ (by 1.4 and 3.1). This generalizes [1], where in effect all dimensions were minimal, i.e. such that card(D) = 2. Now, given any non-degenerate \underline{D} , we easily construct a set SA^+ corresponding to the Sachverhalte of [1]. Of each dimension D_i we take an arbitrary bi-partition $\{D_i^+, D_i^-\}$, members of one class to be regarded as indistinguishable. Then from each D_i^+, D_i^- we select a fixed pair of representatives $+s_i, -s_i$, taking as designated whichever belongs to the class of the atom $s_i \in R_o$. So SA^+ is simply the set of the "positive" representatives: $SA^+ = \{+s_i\}$, with $i = 1, \ldots, n$, and $n = card(\underline{D})$. Clearly SA^+ is W-independent, and $\underline{D}' = \{\{+s_1, -s_1\}, \ldots, \{+s_n, -s_n\}\}$ is orthogonal.
- 4.4. How are the lattices $\langle SE'', ;, ! \rangle$ and $\langle \underline{P}(SA), \cup, \cap \rangle$ related? By completeness $x = \sup At(x)$, so At(x) = At(y) implies x = y. Hence the map $\underline{At}: SE'' \to \underline{P}(SA)$ is one-one. By atomicity $At(x!y) = At(x) \cap At(y)$, so \underline{At} is a meet-homomorphism into $\underline{P}(SA)$, and thus a meet-embedding. (We have also $At(x) \cup At(y) \subset At(x;y)$, but the converse fails. Take, e.g., $x, y \in D$, and $x \neq y$.)

By completeness $sup(A \cup B) = supA; supB$. So $\underline{sup} : \underline{P}(SA) \to SE''$ is a join-homomorphism and onto. (Also $sup(A \cap B) \leq supA!supB$, but the converse fails again. Take, e.g., $a \in S_1, b, b' \in D_2, b \neq b'$, and set $A = \{a, b\}, B = \{b, b'\}.$)

Finally let us note that on condition both converses hold. I.e., by corollary of 1.6: supA, $supB \neq \lambda \Rightarrow supA!supB \leq sup(A \cap B)$; and by 1.6(2): $x; y \neq \lambda \Rightarrow At(x; y) \subset At(x) \cup At(y)$.

References

- [1] L. Wittgenstein, **Tractatus Logico-Philosophicus**, London-New York 1922.
- [2] J. Łoś, Fields of Events and Their Definition in the Axiomatic Treatment of Probability, Studia Logica 9 (1960), pp. 95–132.
- [3] Paul of Venice, **Logica Magna** (Secunda Pars), Oxford 1978, British Academy.
- [4] E. Stenius, **Wittgenstein's "Tractatus"**, Oxford 1960, Basil Blackwell.

- [5] R. Suszko, Ontology in the Tractatus of L. Wittgenstein, Notre Dame Journal of Formal Logic 9 (1968), pp. 7–33.
- [6] B. Wolniewicz, Four Notions of Independence, **Theoria** 36 (1970), Part 2, pp. 161–164.
- [7] B. Wolniewicz, Zur Semantik des Satzkalkils: Frege und Wittgenstein, [in:] Der Mensch Subjekt und Objekt (Festschrift für Adam Schaff), Wien 1973, Europaverlag, pp. 411–419.
- [8] B. Wolniewicz, *Objectives of Propositions*, this **Bulletin** 7, no. 1 (1978), pp. 143–147.
- [9] B. Wolniewicz, Situations as the Reference of propositions, **Dialectics and Humanism** 5, no. 1 (1978), pp. 171–182.
- [10] B. Wolniewicz, A Wittgensteinian Semantics for Propositions, [in:] Intention and Intentionality (Essays in Honor of G. E. M. Anscombe), Brighton 1979, Hervester Press, pp. 165–178.
- [11] B. Wolniewicz, *Obiektyw negacji*, **Studia Filozoficzne** 8 (1979), pp. 73–82.

Institute of Philosophy Warsaw University