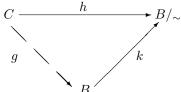
Jacek Hawranek

A MATRIX ADEQUATE FOR S5 WITH MP AND RN

This is an abstract of a lecture read at the seminar of the Section of Logic, Polish Academy of Sciences, Wrocław, January 1980.

Definition. A Boolean algebra C is projective if every homomorphism from C to a quotient can be lifted to the numerator, i.e., the following diagram



commutes for an arbitrary Boolean algebra B, any congruence \sim on B, and any homomorphism h.

Lemma (cf. [1]). Each countable Boolean algebra is projective.

COROLLARY. Each countable Boolean algebra B is a retract of the countable free Boolean algebra B_0 , i.e., there are homomorphisms g, f such that

$$B\frac{1-1}{g}B_0 \frac{onto}{f}B$$

and $f \circ g = id$.

Let H_0 be the Henle algebra resulting from B_0 by adding a new unary operator I defined as follows: I1 = 1 and Ia = 0 if $a \neq 1$. R. Suszko (unpublished) has proved that the matrix (H_0, U_0) , where U_0 is a special ultrafilter in B_0 , is strongly adequate for the consequence based on S5 and MP (modus ponens).

Using the same method we shall show that the matrix $(H_0, \{1\})$ is strongly adequate for S5 with MP and RN (the rule of necessitation). Denote this consequence by Cn.

LEMMA. Let H be a countable Henle algebra. Then the matrix $(H, \{1\})$ may be embedded into $(B_0, \{1\})$.

Theorem. The class of all countable Henle algebras with the unit as the designated element is strongly adequate for Cn.

In the proof we use the following facts:

(1) The deduction theorem for Cn holds in the form:

$$B \in Cn(Z, \{A\}) \text{ iff } \Box A \to B \in Cn(Z)$$

- (2) The family of all Cn-consistent sets is a basis for Cn.
- (3) Each Cn-maximal set Z has the property:

$$\Box A \in Z \text{ or } \neg \Box A \in Z$$

for every formula A.

Now observe that $(H_0, \{1\})$ belongs to the class $Matr(Cn) = \{\mathfrak{M} : Cn \leq Cn_{\mathfrak{M}}\}$ and by the latter Lemma we get

THEOREM. The matrix $(H_0, \{1\})$ is strongly adequate for Cn.

References

- [1] P. R. Halmos, Lectures on Boolean algebras, Princeton 1963.
- [2] H. Rasiowa, An algebraic approach to non-classical logics, Warsaw 1974.
- [3] R. Suszko, *Identity connective and modality*, **Studia Logica** 27 (1971), pp. 7–42.

The Section of Logic Institute of Philosophy and Sociology Polish Academy of Sciences