Janusz Czelakowski

A REMARK ON FREE PRODUCTS

According to [2], p. 184, we admit the following

DEFINITION. Let K be a class of similar algebras and let \underline{A}_i , $i \in I$, be algebras of K. Then \underline{A} is the *free product in* K of the algebras \underline{A}_i , if:

- (i) $\underline{A} \in K$
- (ii) there exist 1-1 homomorphisms ψ_i of \underline{A}_i into \underline{A} , for $i \in I$
- (iii) the set-theoretic sum $\bigcup_{i\in I} \psi_i(A_i)$ generates \underline{A}
- (iv) if \underline{B} is an algebra in K and φ_i is a homomorphism of \underline{A}_i into \underline{B} for $i \in I$, then there exists a homomorphism $\varphi : \underline{A} \to \underline{B}$ such that $\varphi_i = \varphi \cdot \psi_i$, all $i \in I$.

Note that φ is necessarily unique.

A free product consists of \underline{A} together with the homomorphisms ψ_i , $i \in I$. If it exists, then it is unique up to isomorphism.

Our aim is to prove the following theorem:

(I) Theorem. Let (\underline{L}, C) be a finitistic equivalential logic having an algebraic semantics. Assume that $C = Cn_{\underline{B}}$ for some algebra $\underline{B} \in ALG^*(C)$. Then for each family \underline{A}_i , $i \in I$, of nontrivial algebras from $ALG^*(C)$, the free product of \underline{A}_i in $ALG^*(C)$ exists.

(Here we assume that (\underline{L}, C) has a finite set of C-equivalences). We refer to [5] for all indispensable definitions.

The proof of theorem (I) is based on the following lemma due to D. J. Christensen and R. S. Pierce [1] (see also [2], p. 186.)

(II) LEMMA. Let K be a class of algebras such that $S(K) \subseteq K$ and $P(K) \subseteq K$. Let $\underline{A}_i \in K$, $i \in I$. The free product of the \underline{A}_i exists in K

126 Janusz Czelakowski

provided that there is an algebra $\underline{C} \in K$ and a family of embeddings ψ_i of \underline{A}_i into \underline{C} for all $i \in I$.

 $ALG^*(C)$ is closed under S and P. Thus in order to prove theorem it suffices to show the following fact:

(III) PROPOSITION. Under the assumptions of Theorem (I), for every family \underline{A}_i , $i \in I$, of algebras from $ALG^*(C)$ there exists an algebra $\underline{C} \in ALG^*(C)$ such that each \underline{A}_i is isomorphic with a subalgebra of \underline{C} .

First we shall prove the following lemma.

(IV) LEMMA. Let the assumptions of Theorem (I) be fulfilled. Let $\underline{A} \in ALG(C)$ and let m be an infinite cardinal such that $2^{card(A)} \leq m$. Then \underline{A} is embeddable into some ultrapower $\prod_F(\underline{B}^{\aleph_0})$ of \underline{B}^{\aleph_0} such that the cardinality of $\prod_F(\underline{B}^{\aleph_0})$ is $\leq n^m$, where n is the cardinality of the algebra \underline{B}^{\aleph_0} .

PROOF. By Theorem (11) in [5] (cf. also [3]), each denumerable algebra of power > 1 from $ALG^*(C)$ is embeddable into \underline{B}^{\aleph_0} . Let I be the family of all nonempty denumerable subsets of A and let, for every $i \in I$, \underline{A}_i be the subalgebra of \underline{A} generated by the set i. By Lemma (5.5) in [4] we find an ultrafilter F over I such that \underline{A} is isomorphic with a subalgebra of the reduced product $\prod_F \underline{A}_i$. But each \underline{A}_i is isomorphic with a subalgebra of \underline{B}^{\aleph_0} . Consequently, $\prod_F \underline{A}_i$, and thus \underline{A} , is isomorphic with a subalgebra of the ultrapower $\prod_F (\underline{B}^{\aleph_0})$.

By a straighforward computation we get that the cardinality of $\prod_F (\underline{B}^{\aleph_0})$ is $\leq n^m$.

Since C is finitistic, $\prod_{E}(\underline{B}^{\aleph_0})$ is in $ALG^*(C)$. \vdash

Let \mathcal{L}^* be the first order language describing the algebras from $ALG^*(C)$. To be precise, \mathcal{L}^* has only function symbols corresponding to the operations of the algebras from ALG(C). \mathcal{L}^* is countable.

Now we are ready to give the proof of Proposition (III). We shall make use of some facts from the theory of models.

Let \underline{A}_i , $i \in I$, be a family of algebras from $ALG^*(C)$. Let m be a cardinal such that $2^{card(A_i)} \leq m$ for all $i \in I$. By Lemma (IV), for each algebra \underline{A}_i we find an ultrapower $\underline{C}_i = \prod_{F_i} (\underline{B}^{\aleph_0})$ such that \underline{A}_i is embedded in \underline{C}_i and

(*) $card(C_i) \le m^n$ for all $i \in I$ $(n = (card(B))^{\aleph_0})$.

Each algebra \underline{C}_i is a model for the countable language \mathcal{L}^* . Moreover, each $\underline{C}_{i\aleph_0}$, being an ultrapower of \underline{B}^{\aleph_0} , is elementarily equivalent to \underline{B}^{\aleph_0} . Hence any two algebras \underline{C}_i , \underline{C}_j $(i,j\in I)$, are elementarily equivalent.

Let T be an arbitrary set of power m^n . By Proposition 4.3.5 in [0], there exists an (m^n) – regular ultrafilter F over T. Then, by Theorem 4.3.12 [0], the ultrapower $\prod_F(\underline{B}^{\aleph_0})$ is $(m^n)^+$ – universal, that is, for every algebra \underline{D} of power $\leq m^n$ and elementarily equivalent to $\prod_F(\underline{B}^{\aleph_0})$. This and (*) yield that every algebra \underline{C}_i is (elementarily) embedded into $\prod_F(\underline{B}^{\aleph_0}) \in ALG^*(C)$. Thus we have shown that each algebra \underline{A}_i , $i \in I$, is isomorphic with a subalgebra of $\prod_F(\underline{B}^{\aleph_0})$.

Proposition (III) has been proved. This at the same time concludes the proof of Theorem (I).

The proof of Theorem (I) can be simplified in the case when the algebra B is finite.

(V) COROLLARY. Let (\underline{L},C) be a finitistic implicational logic. Assume that $C=Cn_{\underline{B}}$ for some $\underline{B}\in ALG^*(C)$. Then for each family $\underline{A}_i\in ALG(C)$, $i\in I$, the free product of the \underline{A}_i , $i\in I$, in $ALG^*(C)$ exists.

It would be interesting to discover topological aspects of Theorem (I). By means of Theorem (I) one can prove the following fact.

- (VI) THEOREM. Let (\underline{L}, C) be a finitistic equivalential logic having an algebraic semantics. Then the following conditions are equivalent:
 - (i) (\underline{L}, C) has a strongly adequate matrix
 - (ii) The class $ALG^*(C)$ is closed under free products, that is, for any family of nontrivial algebras $\underline{A}_i \in ALG^*(C)$, $i \in I$, the free product of the \underline{A}_i , $i \in I$, in $ALG^*(C)$ exists.

Let (\underline{L},C) be the *n*-valued Łukasiewicz logic, $2 \leq n < \omega$. Then, roughly speaking, the class $ALG^*(C)$ coincides with the class of so called MV_n -algebras [6], [7]. From Theorem (I) we obtain that in (equational) class MV_n is closed under free products.

As known, the intuitionistic logic has a strongly adequate matrix. Consequently, by Theorem (I), the class of pseudo-Boolean algebras is closed under free products. But in this case, the construction of free products can

128 Janusz Czelakowski

be given explicitly in topological terms.

References

- [0] C. C. Chang and H. J. Keisler, **Modal Theory**, North-Holland and American Elsevier, Amsterdam-New York, 1973.
- [1] D. J. Christensen and R. S. Pierce, Free products of α -distributive Boolean algebras, Math. Scandinavica 7 (1959), pp. 81–105.
- [2] G. Grätzer, **Universal algebra**, Van Nostrand, Princeton, New jersey, 1968.
- [3] J. Czelakowski and J. Hawranek, $\omega\textsc{-Universal\ matrices\ for\ a\ logic},$ to appear.
- [4] J. Czelakowski, Reduced products of logical matrices, Studia Logica 39 (1980), to appear.
- [5] J. Czelakowski, *Equivalential logics (I)*, **Bull. Sect. Logic** Institute of Philosophy and Sociology Polish Academy of Sciences, vol. 9, no. 2 (1980), pp. 40–45; *Equivalential logics (II)*, this volume.
- [6] Revaz Grigolia, Algebraic analysis of Lukasiewicz-Tarski's n-valued logical systems, [in:] Selected papers on Lukasiewicz sentential calculi, Ossolineum, Wrocław 1977, pp. 81–92.
- [7] G. Malinowski, S-algebras for n valued sentential calculi of Łukasiewicz. The degrees of maximality of some Łukasiewicz's logics, [in:] Selected papers on Łukasiewicz sentential calculi, Ossolineum, Wrocław 1977, pp. 149–160.

Polish Academy of Sciences Institute of Philosophy and Sociology The Section of Logic Szewska 36, 50-139 Wrocław, Poland