Marek Pałasiński

ON IDEALS IN DIRECTED COMMUTATIVE BCK-ALGEBRAS

This is an abstract of the paper presented at the seminar held by Prof. A. Wroński at the Jagiellonian University.

In [1], K. Iseki proved that every maximal ideal in an implicative BCK-algebra is prime. A. B. Thaheem established in [2] that in an implicative BCK-algebra the converse is also true. In this paper we extend the result obtained by Iseki to commutative directed BCK-algebras and we show that the converse does not hold in the general case (it holds for finite bounded commutative BCK-algebras). We give an example of a bounded commutative BCK-algebra in which a prime ideal is not maximal. The reader is referred to [3] and [4] for the definition and basic properties of BCK-algebras.

First, let us note the following lemma:

LEMMA. In a commutative direct BCK-algebra the following identity holds

$$(1) (x*y)*(y*x) = x*y$$

where "directed" means that any two elements have an upper bound.

We will use this lemma to establish some properties of certain ideals in commutative directed BCK-algebras. It was proved in [5] that every bounded BCK-algebra X contains at least one maximal ideal.

PROPOSITION 1. Let X be a directed commutative BCK-algebra and A a maximal ideal in X. Then for all $x, y \in X$, $x * y \in A$ or $y * x \in A$.

PROOF. We have three cases

- 1. $x \in A$ and $y \in A$. Then $x * y \leq y$ imply $x * y \in A$ and $y * x \in A$.
- 2. $x \in A$ and $y \notin A$. Then $x * y \leqslant x$ implies $x * y \in A$.

146 Marek Pałasiński

3. $x \notin A$ and $y \notin A$. Let us suppose that $y * x \notin A$. Then, due to maximality of the ideal A, an ideal B generated by $A \cup \{y * x\}$ is equal to X. So for some natural n there are $a_0, \ldots, a_n \in A \cup \{y * x\}$ such that

$$(\dots((x*y)*a_0)*\dots)*a_n=0.$$

If all a_i , $1 \le i \le n$, belong to A, then $x * y \in A$. If there are a_i equal to y * x, then, using the fact that (x * y) * z = (x * z) * y holds in any BCK-algebra and employing (1), we have

$$(\dots((x*y)*a_{i_1})*\dots)*a_{i_k}=0,$$

where each a_{i_j} belongs to A and therefore $x * y \in A$. This completes the proof of Proposition 1.

PROPOSITION 2. Let X be a directed commutative BCK-algebra and A a prime ideal in X. Then for all $x, y \in X$, $x * y \in A$ or $y * x \in A$.

PROOF. Easily follows from (1).

Theorem 1. Let X be a directed commutative BCK-algebra and A a maximal ideal in X. Then A is a prime ideal.

PROOF. Let $x, y \in X$ and $x \wedge y \in A$. It follows from Proposition 1 that $x * y \in A$ or $y * x \in A$. Assume that $x * y \in A$. The fact that $x \wedge y \in A$ implies that three exist $a_0, \ldots, a_n \in A$ such that

$$(\dots((x \wedge y) * a_0) * \dots) * a_n = 0.$$

But in a commutative BCK-algebra $x \wedge y = x * (x * y)$. Thus we have

$$(\dots((x*(x*y))*a_0)*\dots)*a_n=0$$

and this equality means that $x \in A$.

In the same manner we can prove that if $y*x\in A$ then $y\in A$. This completes the proof of Theorem 1.

Let us recall two following Theorems.

THEOREM 2. (see [4]). Let X and Y be BCK-algebras. A non-empty subset I of the product $X \times Y$ is an ideal in $X \times Y$ iff $I = I_1 \times I_2$, where I_1 , I_2 are ideals of X and Y, respectively.

THEOREM 3. (see [6]). Every finite bounded commutative BCK-algebra is a product of linearly ordered BCK-algebras.

It was noticed in [6] that any finite linearly ordered commutative BCK-algebra is simple. Thus it is easily seen, using Theorem 2, that in the finite bounded commutative BCK-algebra each prime ideal is maximal. In the general case however this does not hold true. We have the following counterexample.

EXAMPLE: Let $X = \{x : x \in \mathbb{R}, 0 \le x \le 1\}$. We define a binary operation on X by $x * y = max\{0, x - y\}$. $\langle X, *, 0 \rangle$ is a commutative bounded lineary ordered BCK-algebra (see [3]).

Let F be an ultrafilter over \mathbb{N} generated by cofinite subsets of \mathbb{N} . We form an ultrapower $X^{\mathbb{N}}/_F$ of X and denote it by X_F . Clearly it is a commutative bounded lineary ordered BCK-algebra. Let I denote the set of all infinitesimals in X_F (see [7]) and 0_F the smallest element of X_F . It can be proved that $I \neq \emptyset$ and $I \cup \{0_F\}$ forms a non-trivial ideal in X_F . This ideal is a maximal ideal in X_F . The ideal $\{0_F\}$ is prime but it is not maximal in X_F because $\{0_F\} \subsetneq I \cup \{0_F\}$.

References

- [1] K. Iseki, On some ideals in BCK-algebras, Mathematics Seminar Notes 3 (1975), pp. 65–70.
- [2] A. B. Thaheem, Characterizations of certain ideals in implicative BCK-algebras, Mathematics Seminar Notes 6 (1978), pp. 465–481.
- [3] K. Iseki, S. Tanaka, An introduction to the theory of BCK-algebras, Mathematics Japonica 23 (1978), pp. 1–26.
- [4] K. Iseki, S. Tanaka, *Ideal theory of BCK-algebras*, Mathematica Japonica 21 (1976), pp. 351–366.
- [5] J. Ahsan, A. B. Thaheem, On ideals in BCK-algebras, Mathematics Seminar Notes 5 (1977), pp. 167–172.
 - [6] A. Romanowska, T. Traczyk, On commutative BCK-algebras, preprint.
- [7] A. Robinson, **Non-standard analysis**, North Holland Publishing Company 1974.

Mathematical Institute Jagiellonian University Cracow