Zdzisław Dywan Teodor Stępień

EVERY TWO-VALUED PROPOSITIONAL CALCULUS HAS THE INTERPOLATION PROPERTY

It is known that two-valued calculi, one with implication, negation (+ other connectives) and the other pure implicational (cf. [1]) have the Interpolation Property. In this paper we prove that every two-valued calculus with implication + other connectives has this property.

Let $\underline{L} = (L, Con)$ be an algebra of formulas formed in the usual manner by means of propositional variables and operations from Con denoted by propositional connectives. We assume that Con contains the implication (\rightarrow) and that all operations of Con are finite. Let \underline{M} be a matrix (connected with the language \underline{L}) with the set $\{0,1\}$ as the universum and 1 as the distinguished value. We also assume that \rightarrow is defined in \underline{M} in the usual manner. Symbols V_a $(a \in L)$ and T denote the set of variables of the formula a and the set of tautologies of the matrix \underline{M} , respectively.

THEOREM. If $a \to b \in T$ and $V_a \cap V_b \neq \emptyset$, then there exists a formula c such that $V_c \subseteq V_a \cap V_b$ and $a \to c$, $c \to b \in T$.

Consider two cases: 1^o , there exists an n argument $(n \ge 0)$ connective f of Con such that $f(1, \ldots, 1) = 0, 2^o$, such a connective does not exist.

If 1° holds, then the formula: $p \to f(p \to p, \dots, p \to p)$ defines the classical negation, and in this case the proof is well-known. Assume that the second case holds. Denote the set of formulas $V_a \cap V_b \cup \{p \to p : p \in V_a \cap V_b\}$ by the symbol W.

Let S be the set of all substitutions s such that for every variable p the following conditions are satisfied:

if $p \in V_a - V_b$ then $sp \in W$,

if
$$p \notin V_a - V_b$$
 then $sp = p$.

Since the set $V_a - V_b$ is finite, then the set S is also finite. So, let c = $s_1 a \vee ... \vee a_k a$, where $\{s_1, ..., s_k\} = S$. (The symbol \vee denotes the classical disjunction. This connective is obviously defined by \rightarrow). If $s \in S$, then $s(a \to b) = sa \to b$. Hence $c \to b \in T$. Now, we prove that $a \to c \in T$. Suppose that for some valuation v va = 1 and vc = 0. Hence and by assumption 2^o , there is a variable $p \in V_a \cap V_b$ such that vp = 0. Let s be a substitution such that for every variable q:

if
$$q \in V_a - V_b$$
 then $sq = \begin{cases} p & \text{if } vq = 0 \\ p \to p & \text{otherwise} \end{cases}$
if $q \notin V_a - V_b$ then $sq = q$.

So for every variable q, vq = vsq. Hence va = vsa. It can easily be noticed that $s \in S$. So $1 = vsa \leq vc$. Contradiction.

References

[1] R. Edelstein, An interpolation lemma for the pure implicational calculus, Journal of Symbolic Logic 40 (1975), pp. 443–444.

The Catholic University of Lublin The Pedagogical College, Cracow