Marek Pałasiński

AN EXAMPLE OF THE COMMUTATIVE BCK-ALGEBRA

A. Romanowska and T. Traczyk posed the following problem (see [1] Problem 1):

Does there exist a commutative BCK-chain that is not subdirectly irreducible?

In this note we shall solve the above problem in the affirmative by constructing a linearly ordered commutative BCK-algebra which is not subdirectly irreducible. For the definition and properties of BCK-algebras we refer the reader to [2] and [3]. We will make use of an ultraproduct construction. For details concerning this concept see [4].

It was shown in [3] that the algebra $X = \langle \{x : x \in \mathbb{R}, 0 \leqslant x \leqslant 1\}, *, 0 \rangle$ where * is defined by $x*y = max\{0, x-y\}$ is a commutative BCK-algebra. Let F be an ultrafilter over \mathbb{N} generated by cofinite subsets of N. Let us consider an ultrapower $X^{\mathbb{N}}/_F$ of X and denote it by X_F . We will denote elements of X_F by $\overline{x}, \overline{y}, \ldots$ It is easy to see that X_F is an elementary extension of X and so we have an elementary embedding $f: X \to X_F$. Every \overline{x} such that for some $x \in X$, $\overline{x} = f(x)$ will be called a real number. Clearly X_F is a commutative BCK-algebra linearly ordered by relation \leqslant_F . Let us denote the binary operation and the zero element of the algebra X_F by $*_F$ and 0_F , respectively. We have the following definition (see [4]).

DEFINITION. A non-zero element $\overline{y} \in X_F$ is called infinitesimal iff for every non-zero real number $\overline{x} \in X_F$, $\overline{y} \leqslant_F \overline{x}$.

It is easily seen that the set of all infinitesimal elements is not empty. Let us recall the following Lemma:

Lemma 1. Let $Y = \langle Y, *, 0 \rangle$ be a BCK-algebra. An element $y \in Y$ belongs

164 Marek Pałasiński

to an ideal generated by x iff for some natural number k

$$(\dots(y * \underbrace{x) * \dots) * x}_{k-times} = 0$$

To prove that the algebra X_F is not subdirectly irreducible it is sufficient to show the following:

LEMMA 2. For every infinitesimal $\overline{x} \in X_F$ there exists a nontrivial ideal I such that $\overline{x} \notin I$.

PROOF. Let \overline{x} be an infinitesimal element determined by a sequence (x_0,x_1,\ldots) . Then for any $x\in(0,1]$ $\{i:0< x_i\leqslant x\}\in F$. Let \overline{x} be determined by a sequence $(x'_0,x'_1,\ldots,x'_n,\ldots)=(x_0,x_1,\frac{1}{2}x_2,\ldots,\frac{1}{n}x_n,\ldots)$. It is obvious that $\{i:0< x'_i< x_i\}\in F$, so $\overline{x}'<_F \overline{x}$. We will prove that \overline{x} does not belong to the ideal generated by \overline{x}' . Following Lemma 1 it is sufficient to prove that for any natural k an element $\overline{z}^{(k)}$ defined by

$$\overline{z}^{(k)} = (\dots(\overline{x}\underbrace{*_F \overline{x}') *_F \dots) *_F \overline{x}'}_{k-times}$$

is not equal to 0_F .

Let us observe that $\overline{z}^{(k)}$ is determined by a sequence $(z_0^{(k)}, z_1^{(k)}, \ldots)$ where $\overline{z}_n^{(k)} = \max\{0, x_n - \frac{k}{n}x_n\}$. It is easy to see that for n > k $x_n > 0$ iff $z_n^{(n)} > 0$. Hence the set

$${i: x_i > 0} - {i: z_i^{(k)} > 0}$$

is finite and $\{i: x_i > 0\} \in F$ implies $\{i: z_i^{(k)} > 0\} \in F$. Thus we have proved that for any natural $k \ \overline{z}^{(k)} >_F 0_F$ and therefore \overline{x} does not belong to the ideal generated by \overline{x}' . This completes the proof of Lemma 2.

References

- [1] A. Romanowska, T. Traczyk, **On commutative** *BCK*-algebras, preprint.
- [2] K. Iseki, S. Tanaka, An introduction to the theory of BCK-algebras, Mathematica Japonicae 23 (1978), pp. 1–26.

- [3] K. Iseki, S. Tanaka, *Ideal theory of BCK-algebras*, Mathematica Japonicae 21 (1976), pp. 351–366.
- $[4]\;$ A. Robinson, **Non-standard analysis**, North Holland Publishing Company 1974.

 $\begin{tabular}{ll} Mathematical Institute\\ Jagiellonian University\\ Cracow \end{tabular}$