Bulletin of the Section of Logic Volume 9/4 (1980), pp. 166–169 reedition 2010 [original edition, pp. 166–169]

Marek Pałasiński Barbara Woźniakowska

FINITELY GENERATED IDEALS IN DIRECTED COMMUTATIVE BCK-ALGEBRA

This main aim of this paper is to prove that in a direct commutative BCK-algebra an ideal I is finitely generated if and only if I is a principal ideal. This result generalizes the result obtained by E. Y. Deeba in [2]. We also give an answer to the question posed by E. Y. Deeba in [1]: for what class of BCK-algebras is every Noetherian algebra a principal ideal algebra (i.e. an algebra whose all ideals are principal)?

By a BCK-algebra we mean a general algebra $X = \langle , *, 0 \rangle$ of type $\langle 2, 0 \rangle$ satisfying the following conditions:

I.
$$(x*y)*(x*z) \leqslant z*y$$

II. $x*(x*y) \leqslant y$
III. $x \leqslant x$
IV. $0 \leqslant x$
V. $x \leqslant y, y \leqslant x \Rightarrow x = y$

where $x \leq y$ means x * y = 0.

It is easily seen that \leq is a partial ordering on X (see for example [4]). A BCK-algebra X is called commutative iff $x \wedge y = y \wedge x$, where $x \wedge y$

A BCK-algebra X is called commutative iff $x \wedge y = y \wedge x$, we is defined as y * (y * x).

It was shown in [4] that a commutative BCK-algebra is a lower semillatice with respect to \wedge .

We call a BCK-algebra X directed iff for every two elements x, y of X there exists an element z belonging to X such that $x \leq z$ and $y \leq z$.

Let us recall the following result obtained by T. Traczyk:

THEOREM 1 (SEE [5]). A commutative directed BCK-algebra is a distributive lattice with respect to \land , \lor , where $x \lor y$ is defined as $c * ((c*x) \land (c*y))$ and c is any upper bound for x and y.

It was shown in [4] that in a BCK-algebra the following identity holds: (1) (x*y)*z = (x*z)*y. Moreover, if a BCK-algebra X is directed and commutative, then (2) (c*x)*(c*y) = y*x, where c is an element of X such that $x \le c$ and $y \le c$.

Let X be a BCK-algebra. a non-empty subset I of X is called an ideal of X iff it satisfies the following conditions:

- 1. $0 \in I$
- $2. \ x, y * x \in I \Rightarrow y \in I.$

It was shown in [3] that if A is a non-empty subset of an algebra X, then the set I of all elements $x \in X$ such that there exist elements $a_0, \ldots, a_n \in A$ satisfying the equation

$$(\dots((x*a_0)*a_1)*\dots)*a_n=0$$

is an ideal of X generated by A. If A is a finite set, then I is called finitely generated, and if A is a one element set, the I is called principal. For a non-empty subset A of X, by (A] we denote an ideal of X generated by A. If $A = \{a_1, \ldots, a_n\}$, we write $(a_1, \ldots, a_n]$ instead of $(\{a_1, \ldots, a_n\}]$.

LEMMA. (i) Let P,Q be principal ideals of a BCK-algebra X generated by a and b, respectively. Then $(P \cup Q)] = (a,b]$

(ii) In a directed commutative BCK-algebra X $(x,y] = (x \lor y]$ for every $x,y \in X$.

PROOF. We shall only show (ii), which is a non trivial part of our Lemma. The inclusion $(a_1, a_2] \subseteq (a_1 \vee a_2]$ is obvious. To prove that $(a_1 \vee a_2] \subseteq (a_1, a_2]$ it is sufficient to show that $a_1 \vee a_2 \in (a_1, a_2]$. Let us observe that it easily follows from the following:

$$((a_1 \lor a_2) * a_1) * a_2 = 0$$

Now we shall give a proof of this identity. Let $c \in X$ be an upper bound of a_1 and a_2 . Then we have

```
\begin{array}{rcl} ((a_1 \vee a_2) * a_1) * a_2 &=& ((c*((c*a_1)*((c*a_1)*(c*a_2)))) * a_1) * a_2 \\ & \text{by (1)} &=& ((c*a_1)*((c*a_1)*((c*a_1)*(c*a_2)))) * a_2 \\ & \text{by (1)} &=& ((c*a_1)*a_2)*((c*a_1)*((c*a_1)*(c*a_2))) \\ & \text{by (I)} &\leqslant& ((c*a_1)*(c*a_2)) * a_2 \\ & \text{by (2)} &=& (a_2*a_1)*a_2 \\ &=& 0 \text{ because } x*y \leqslant x \text{ holds in any } BCK\text{-algebra}. \end{array}
```

This completes the proof of our Lemma.

¿From the above Lemma, in a straightforward way we get the following

THEOREM 2. Let X be a directed commutative BCK-algebra. Then an ideal I of X is finitely generated iff I is principal.

We shall call a BCK-algebra X Noetherian iff every ideal of X is finitely generated (comp. [1]).

From Theorem 2 we easily obtain

Theorem 3. Let X be a directed commutative BCK-algebra. Then X is Noetherian iff X is a principal ideal algebra.

The above Theorem gives a partial answer to the question posed by E. Y. Deeba in [5] whether every complete Noetherian BCK-algebra is a principal ideal algebra. Let us recall that X is a complete BCK-algebra iff every subset of X has both supremum and infimum. We can assume only directness of a BCK-algebra, which is considerably weaker than completeness.

References

- [1] E. Y. Deeba, A characterization of complete BCK-algebras, Math. Seminar Notes 7 (1979), pp. 343–349, Kobe University.
- [2] E. Y. Deeba, Finitely generated ideals of a BCK-algebra, Math. Seminar Notes 7 (1979), pp. 385–390, Kobe University.
- [3] K. Iseki, S. Tanaka, *Ideal theory of BCK-algebras*, **Math. Japonicae** 21 (1976), pp. 351–366.
- [4] K. Iseki, S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonicae (1978), pp. 1–26.

[5] T. Traczyk, On the variety of bounded commutative BCK-algebras, Math. Japonicae (1979), pp. 283–292.

 $\begin{tabular}{ll} Mathematical Institute\\ Jagiellonian University\\ Cracow \end{tabular}$

Department of Logic Jagiellonian University Cracow