
Towards a general proof theory of term-forming
operators 2

Andrzej Indrzejczak

Department of Logic, University of Lodz

ExtenDD Seminar,  Lódź, April 18, 2023

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Brief Recall:

Term-forming operators (variable-binding term operators) -
examples:

iota-operator (Peano): ıxϕ - the (only) x such that ϕ;

epsilon-operator (Hilbert): εxϕ - a(n) x such that ϕ;

abstraction-operator: {x : ϕ} - the set of (all) x satisfying ϕ;

counting-operator (Frege): ]xϕ - the number of x such that
ϕ;

lambda-operator (Church): λxϕ - the property of being ϕ.

There are two attempts to develop a general theory:

1 A theory independently proposed by Scott, by Hatcher,
Corcoran and Herring, and by Da Costa.

2 An approach developed by Neil Tennant.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Brief Recall:

Term-forming operators (variable-binding term operators) -
examples:

iota-operator (Peano): ıxϕ - the (only) x such that ϕ;

epsilon-operator (Hilbert): εxϕ - a(n) x such that ϕ;

abstraction-operator: {x : ϕ} - the set of (all) x satisfying ϕ;

counting-operator (Frege): ]xϕ - the number of x such that
ϕ;

lambda-operator (Church): λxϕ - the property of being ϕ.

There are two attempts to develop a general theory:

1 A theory independently proposed by Scott, by Hatcher,
Corcoran and Herring, and by Da Costa.

2 An approach developed by Neil Tennant.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Brief Recall:

Term-forming operators (variable-binding term operators) -
examples:

iota-operator (Peano): ıxϕ - the (only) x such that ϕ;

epsilon-operator (Hilbert): εxϕ - a(n) x such that ϕ;

abstraction-operator: {x : ϕ} - the set of (all) x satisfying ϕ;

counting-operator (Frege): ]xϕ - the number of x such that
ϕ;

lambda-operator (Church): λxϕ - the property of being ϕ.

There are two attempts to develop a general theory:

1 A theory independently proposed by Scott, by Hatcher,
Corcoran and Herring, and by Da Costa.

2 An approach developed by Neil Tennant.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Brief Recall:

Term-forming operators (variable-binding term operators) -
examples:

iota-operator (Peano): ıxϕ - the (only) x such that ϕ;

epsilon-operator (Hilbert): εxϕ - a(n) x such that ϕ;

abstraction-operator: {x : ϕ} - the set of (all) x satisfying ϕ;

counting-operator (Frege): ]xϕ - the number of x such that
ϕ;

lambda-operator (Church): λxϕ - the property of being ϕ.

There are two attempts to develop a general theory:

1 A theory independently proposed by Scott, by Hatcher,
Corcoran and Herring, and by Da Costa.

2 An approach developed by Neil Tennant.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Brief Recall:

Term-forming operators (variable-binding term operators) -
examples:

iota-operator (Peano): ıxϕ - the (only) x such that ϕ;

epsilon-operator (Hilbert): εxϕ - a(n) x such that ϕ;

abstraction-operator: {x : ϕ} - the set of (all) x satisfying ϕ;

counting-operator (Frege): ]xϕ - the number of x such that
ϕ;

lambda-operator (Church): λxϕ - the property of being ϕ.

There are two attempts to develop a general theory:

1 A theory independently proposed by Scott, by Hatcher,
Corcoran and Herring, and by Da Costa.

2 An approach developed by Neil Tennant.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Brief Recall:

Term-forming operators (variable-binding term operators) -
examples:

iota-operator (Peano): ıxϕ - the (only) x such that ϕ;

epsilon-operator (Hilbert): εxϕ - a(n) x such that ϕ;

abstraction-operator: {x : ϕ} - the set of (all) x satisfying ϕ;

counting-operator (Frege): ]xϕ - the number of x such that
ϕ;

lambda-operator (Church): λxϕ - the property of being ϕ.

There are two attempts to develop a general theory:

1 A theory independently proposed by Scott, by Hatcher,
Corcoran and Herring, and by Da Costa.

2 An approach developed by Neil Tennant.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Brief Recall:

Term-forming operators (variable-binding term operators) -
examples:

iota-operator (Peano): ıxϕ - the (only) x such that ϕ;

epsilon-operator (Hilbert): εxϕ - a(n) x such that ϕ;

abstraction-operator: {x : ϕ} - the set of (all) x satisfying ϕ;

counting-operator (Frege): ]xϕ - the number of x such that
ϕ;

lambda-operator (Church): λxϕ - the property of being ϕ.

There are two attempts to develop a general theory:

1 A theory independently proposed by Scott, by Hatcher,
Corcoran and Herring, and by Da Costa.

2 An approach developed by Neil Tennant.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Brief Recall:

Term-forming operators (variable-binding term operators) -
examples:

iota-operator (Peano): ıxϕ - the (only) x such that ϕ;

epsilon-operator (Hilbert): εxϕ - a(n) x such that ϕ;

abstraction-operator: {x : ϕ} - the set of (all) x satisfying ϕ;

counting-operator (Frege): ]xϕ - the number of x such that
ϕ;

lambda-operator (Church): λxϕ - the property of being ϕ.

There are two attempts to develop a general theory:

1 A theory independently proposed by Scott, by Hatcher,
Corcoran and Herring, and by Da Costa.

2 An approach developed by Neil Tennant.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Brief Recall:

Term-forming operators (variable-binding term operators) -
examples:

iota-operator (Peano): ıxϕ - the (only) x such that ϕ;

epsilon-operator (Hilbert): εxϕ - a(n) x such that ϕ;

abstraction-operator: {x : ϕ} - the set of (all) x satisfying ϕ;

counting-operator (Frege): ]xϕ - the number of x such that
ϕ;

lambda-operator (Church): λxϕ - the property of being ϕ.

There are two attempts to develop a general theory:

1 A theory independently proposed by Scott, by Hatcher,
Corcoran and Herring, and by Da Costa.

2 An approach developed by Neil Tennant.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Brief Recall:

Term-forming operators (variable-binding term operators) -
examples:

iota-operator (Peano): ıxϕ - the (only) x such that ϕ;

epsilon-operator (Hilbert): εxϕ - a(n) x such that ϕ;

abstraction-operator: {x : ϕ} - the set of (all) x satisfying ϕ;

counting-operator (Frege): ]xϕ - the number of x such that
ϕ;

lambda-operator (Church): λxϕ - the property of being ϕ.

There are two attempts to develop a general theory:

1 A theory independently proposed by Scott, by Hatcher,
Corcoran and Herring, and by Da Costa.

2 An approach developed by Neil Tennant.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Brief Recall:

The first theory (Scott, Hatcher, Corcoran and Herring, Da Costa)

It is based on two general principles added to PFFOLI (positive
free first-order logic with identity) [Scott] or to CFOLI (classical
FOLI) [the remaining authors].

EXT: ∀x(ϕ(x)↔ ψ(x))→ τxϕ(x) = τxψ(x)
AV: τxϕ(x) = τyϕ(y)

The formalisation GT1: to GC add:

ϕ(a), Γ⇒ ∆, ψ(a) ψ(a), Γ⇒ ∆, ϕ(a)
(Ext)

Γ⇒ ∆, τxϕ(x) = τxψ(x)

τxϕ(x) = τyϕ(y), Γ⇒ ∆
(AV )

Γ⇒ ∆

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Brief Recall:

The first theory (Scott, Hatcher, Corcoran and Herring, Da Costa)

It is based on two general principles added to PFFOLI (positive
free first-order logic with identity) [Scott] or to CFOLI (classical
FOLI) [the remaining authors].

EXT: ∀x(ϕ(x)↔ ψ(x))→ τxϕ(x) = τxψ(x)
AV: τxϕ(x) = τyϕ(y)

The formalisation GT1: to GC add:

ϕ(a), Γ⇒ ∆, ψ(a) ψ(a), Γ⇒ ∆, ϕ(a)
(Ext)

Γ⇒ ∆, τxϕ(x) = τxψ(x)

τxϕ(x) = τyϕ(y), Γ⇒ ∆
(AV )

Γ⇒ ∆

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Brief Recall:

The first theory (Scott, Hatcher, Corcoran and Herring, Da Costa)

It is based on two general principles added to PFFOLI (positive
free first-order logic with identity) [Scott] or to CFOLI (classical
FOLI) [the remaining authors].

EXT: ∀x(ϕ(x)↔ ψ(x))→ τxϕ(x) = τxψ(x)
AV: τxϕ(x) = τyϕ(y)

The formalisation GT1: to GC add:

ϕ(a), Γ⇒ ∆, ψ(a) ψ(a), Γ⇒ ∆, ϕ(a)
(Ext)

Γ⇒ ∆, τxϕ(x) = τxψ(x)

τxϕ(x) = τyϕ(y), Γ⇒ ∆
(AV )

Γ⇒ ∆

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Brief Recall:

The first theory (Scott, Hatcher, Corcoran and Herring, Da Costa)

It is based on two general principles added to PFFOLI (positive
free first-order logic with identity) [Scott] or to CFOLI (classical
FOLI) [the remaining authors].

EXT: ∀x(ϕ(x)↔ ψ(x))→ τxϕ(x) = τxψ(x)
AV: τxϕ(x) = τyϕ(y)

The formalisation GT1: to GC add:

ϕ(a), Γ⇒ ∆, ψ(a) ψ(a), Γ⇒ ∆, ϕ(a)
(Ext)

Γ⇒ ∆, τxϕ(x) = τxψ(x)

τxϕ(x) = τyϕ(y), Γ⇒ ∆
(AV )

Γ⇒ ∆

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Brief Recall:

The first theory (Scott, Hatcher, Corcoran and Herring, Da Costa)

It is based on two general principles added to PFFOLI (positive
free first-order logic with identity) [Scott] or to CFOLI (classical
FOLI) [the remaining authors].

EXT: ∀x(ϕ(x)↔ ψ(x))→ τxϕ(x) = τxψ(x)
AV: τxϕ(x) = τyϕ(y)

The formalisation GT1: to GC add:

ϕ(a), Γ⇒ ∆, ψ(a) ψ(a), Γ⇒ ∆, ϕ(a)
(Ext)

Γ⇒ ∆, τxϕ(x) = τxψ(x)

τxϕ(x) = τyϕ(y), Γ⇒ ∆
(AV )

Γ⇒ ∆

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Brief Recall:

The second theory (Tennant)

Developed in the setting of NFFOLI (negative free FOLI) where
quantifier rules are weaker and the identity is not (unconditionally)
reflexive.
If we add existence predicate E , which is usually defined as
Et := ∃x(x = t), then the following hold for FFOLI:

∀xϕ ∧ Et → ϕ[x/t]
ϕ[x/t] ∧ Et → ∃xϕ

Moreover, in NFFOLI additionally atomic formulae with
nondenoting terms are false which implies that:

Et → t = t

and also:

ϕ(t)→ Et
for any atomic formula ϕ.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Brief Recall:

The second theory (Tennant)

Developed in the setting of NFFOLI (negative free FOLI) where
quantifier rules are weaker and the identity is not (unconditionally)
reflexive.
If we add existence predicate E , which is usually defined as
Et := ∃x(x = t), then the following hold for FFOLI:

∀xϕ ∧ Et → ϕ[x/t]
ϕ[x/t] ∧ Et → ∃xϕ

Moreover, in NFFOLI additionally atomic formulae with
nondenoting terms are false which implies that:

Et → t = t

and also:

ϕ(t)→ Et
for any atomic formula ϕ.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Brief Recall:

The second theory (Tennant)

Developed in the setting of NFFOLI (negative free FOLI) where
quantifier rules are weaker and the identity is not (unconditionally)
reflexive.

If we add existence predicate E , which is usually defined as
Et := ∃x(x = t), then the following hold for FFOLI:

∀xϕ ∧ Et → ϕ[x/t]
ϕ[x/t] ∧ Et → ∃xϕ

Moreover, in NFFOLI additionally atomic formulae with
nondenoting terms are false which implies that:

Et → t = t

and also:

ϕ(t)→ Et
for any atomic formula ϕ.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Brief Recall:

The second theory (Tennant)

Developed in the setting of NFFOLI (negative free FOLI) where
quantifier rules are weaker and the identity is not (unconditionally)
reflexive.
If we add existence predicate E , which is usually defined as
Et := ∃x(x = t), then the following hold for FFOLI:

∀xϕ ∧ Et → ϕ[x/t]
ϕ[x/t] ∧ Et → ∃xϕ

Moreover, in NFFOLI additionally atomic formulae with
nondenoting terms are false which implies that:

Et → t = t

and also:

ϕ(t)→ Et
for any atomic formula ϕ.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Brief Recall:

The second theory (Tennant)

Developed in the setting of NFFOLI (negative free FOLI) where
quantifier rules are weaker and the identity is not (unconditionally)
reflexive.
If we add existence predicate E , which is usually defined as
Et := ∃x(x = t), then the following hold for FFOLI:

∀xϕ ∧ Et → ϕ[x/t]
ϕ[x/t] ∧ Et → ∃xϕ

Moreover, in NFFOLI additionally atomic formulae with
nondenoting terms are false which implies that:

Et → t = t

and also:

ϕ(t)→ Et
for any atomic formula ϕ.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Brief Recall:

The second theory (Tennant)

Developed in the setting of NFFOLI (negative free FOLI) where
quantifier rules are weaker and the identity is not (unconditionally)
reflexive.
If we add existence predicate E , which is usually defined as
Et := ∃x(x = t), then the following hold for FFOLI:

∀xϕ ∧ Et → ϕ[x/t]
ϕ[x/t] ∧ Et → ∃xϕ

Moreover, in NFFOLI additionally atomic formulae with
nondenoting terms are false which implies that:

Et → t = t

and also:

ϕ(t)→ Et
for any atomic formula ϕ.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Brief Recall:

The second theory (Tennant)

Based on the following ND rules:

τ I If ϕ(a),Ea ` aRt and aRt ` ϕ(a) and Et, then t = τxϕ(x);
τE1 If t = τxϕ(x) and ϕ(b) and Eb, then bRt
τE2 If t = τxϕ(x), then Et
τE3 If t = τxϕ(x) and bRt, then ϕ(b)

where a is an eigenvariable, and R is the specific relation involved
in the characterisation of τ ; e.g. = for ι, ∈ for set builder.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Brief Recall:

The second theory (Tennant)

Based on the following ND rules:

τ I If ϕ(a),Ea ` aRt and aRt ` ϕ(a) and Et, then t = τxϕ(x);
τE1 If t = τxϕ(x) and ϕ(b) and Eb, then bRt
τE2 If t = τxϕ(x), then Et
τE3 If t = τxϕ(x) and bRt, then ϕ(b)

where a is an eigenvariable, and R is the specific relation involved
in the characterisation of τ ; e.g. = for ι, ∈ for set builder.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Brief Recall:

The second theory (Tennant)

Based on the following ND rules:

τ I If ϕ(a),Ea ` aRt and aRt ` ϕ(a) and Et, then t = τxϕ(x);
τE1 If t = τxϕ(x) and ϕ(b) and Eb, then bRt
τE2 If t = τxϕ(x), then Et
τE3 If t = τxϕ(x) and bRt, then ϕ(b)

where a is an eigenvariable, and R is the specific relation involved
in the characterisation of τ ; e.g. = for ι, ∈ for set builder.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

The corresponding sequent rules:

Γ⇒ ∆,Et Ea, ϕ(a), Γ⇒ ∆, aRt aRt, Γ⇒ ∆, ϕ(a)
(⇒ τ)

Γ⇒ ∆, t = τxϕ(x)

where a is not in Γ,∆, ϕ

Γ⇒ ∆,Eb Γ⇒ ∆, ϕ(b) Γ⇒ ∆, t = τxϕ(x)
(⇒ τE1)

Γ⇒ ∆, bRt

Γ⇒ ∆, t = τxϕ(x)
(⇒ τE2)

Γ⇒ ∆,Et

Γ⇒ ∆, bRt Γ⇒ ∆, t = τxϕ(x)
(⇒ τE3)

Γ⇒ ∆, ϕ(b)

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

The corresponding sequent rules:

Γ⇒ ∆,Et Ea, ϕ(a), Γ⇒ ∆, aRt aRt, Γ⇒ ∆, ϕ(a)
(⇒ τ)

Γ⇒ ∆, t = τxϕ(x)

where a is not in Γ,∆, ϕ

Γ⇒ ∆,Eb Γ⇒ ∆, ϕ(b) Γ⇒ ∆, t = τxϕ(x)
(⇒ τE1)

Γ⇒ ∆, bRt

Γ⇒ ∆, t = τxϕ(x)
(⇒ τE2)

Γ⇒ ∆,Et

Γ⇒ ∆, bRt Γ⇒ ∆, t = τxϕ(x)
(⇒ τE3)

Γ⇒ ∆, ϕ(b)

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

The corresponding sequent rules:

Γ⇒ ∆,Et Ea, ϕ(a), Γ⇒ ∆, aRt aRt, Γ⇒ ∆, ϕ(a)
(⇒ τ)

Γ⇒ ∆, t = τxϕ(x)

where a is not in Γ,∆, ϕ

Γ⇒ ∆,Eb Γ⇒ ∆, ϕ(b) Γ⇒ ∆, t = τxϕ(x)
(⇒ τE1)

Γ⇒ ∆, bRt

Γ⇒ ∆, t = τxϕ(x)
(⇒ τE2)

Γ⇒ ∆,Et

Γ⇒ ∆, bRt Γ⇒ ∆, t = τxϕ(x)
(⇒ τE3)

Γ⇒ ∆, ϕ(b)

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

More standard sequent rules:

To get more standard SC we apply Rule-maker lemma and obtain
left introduction rules for τ :

Γ⇒ ∆,Eb Γ⇒ ∆, ϕ(b) bRt, Γ⇒ ∆
(τ ⇒ 1)

t = τxϕ(x), Γ⇒ ∆

Et, Γ⇒ ∆
(τ ⇒ 2)

t = τxϕ(x), Γ⇒ ∆

Γ⇒ ∆, bRt ϕ(b), Γ⇒ ∆
(τ ⇒ 3)

t = τxϕ(x), Γ⇒ ∆

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

More standard sequent rules:

To get more standard SC we apply Rule-maker lemma and obtain
left introduction rules for τ :

Γ⇒ ∆,Eb Γ⇒ ∆, ϕ(b) bRt, Γ⇒ ∆
(τ ⇒ 1)

t = τxϕ(x), Γ⇒ ∆

Et, Γ⇒ ∆
(τ ⇒ 2)

t = τxϕ(x), Γ⇒ ∆

Γ⇒ ∆, bRt ϕ(b), Γ⇒ ∆
(τ ⇒ 3)

t = τxϕ(x), Γ⇒ ∆

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

More standard sequent rules:

To get more standard SC we apply Rule-maker lemma and obtain
left introduction rules for τ :

Γ⇒ ∆,Eb Γ⇒ ∆, ϕ(b) bRt, Γ⇒ ∆
(τ ⇒ 1)

t = τxϕ(x), Γ⇒ ∆

Et, Γ⇒ ∆
(τ ⇒ 2)

t = τxϕ(x), Γ⇒ ∆

Γ⇒ ∆, bRt ϕ(b), Γ⇒ ∆
(τ ⇒ 3)

t = τxϕ(x), Γ⇒ ∆

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

Simplification for CFOLI:

Note that if we transfer these rules to the setting of CFOLI we do
not need formulae of the form Et and the rule (τE2) is superfluous
as specific to negative free logic.
As a result we obtain the following rules:

ϕ(a), Γ⇒ ∆, aRt aRt, Γ⇒ ∆, ϕ(a)
(⇒ τ)

Γ⇒ ∆, t = τxϕ(x)

where a is not in Γ,∆, ϕ

Γ⇒ ∆, ϕ(b) bRt, Γ⇒ ∆
(τ ⇒ 1)

t = τxϕ(x), Γ⇒ ∆

Γ⇒ ∆, bRt ϕ(b), Γ⇒ ∆
(τ ⇒ 3)

t = τxϕ(x), Γ⇒ ∆

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

Simplification for CFOLI:

Note that if we transfer these rules to the setting of CFOLI we do
not need formulae of the form Et and the rule (τE2) is superfluous
as specific to negative free logic.
As a result we obtain the following rules:

ϕ(a), Γ⇒ ∆, aRt aRt, Γ⇒ ∆, ϕ(a)
(⇒ τ)

Γ⇒ ∆, t = τxϕ(x)

where a is not in Γ,∆, ϕ

Γ⇒ ∆, ϕ(b) bRt, Γ⇒ ∆
(τ ⇒ 1)

t = τxϕ(x), Γ⇒ ∆

Γ⇒ ∆, bRt ϕ(b), Γ⇒ ∆
(τ ⇒ 3)

t = τxϕ(x), Γ⇒ ∆

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

Simplification for CFOLI:

Note that if we transfer these rules to the setting of CFOLI we do
not need formulae of the form Et and the rule (τE2) is superfluous
as specific to negative free logic.

As a result we obtain the following rules:

ϕ(a), Γ⇒ ∆, aRt aRt, Γ⇒ ∆, ϕ(a)
(⇒ τ)

Γ⇒ ∆, t = τxϕ(x)

where a is not in Γ,∆, ϕ

Γ⇒ ∆, ϕ(b) bRt, Γ⇒ ∆
(τ ⇒ 1)

t = τxϕ(x), Γ⇒ ∆

Γ⇒ ∆, bRt ϕ(b), Γ⇒ ∆
(τ ⇒ 3)

t = τxϕ(x), Γ⇒ ∆

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

Simplification for CFOLI:

Note that if we transfer these rules to the setting of CFOLI we do
not need formulae of the form Et and the rule (τE2) is superfluous
as specific to negative free logic.
As a result we obtain the following rules:

ϕ(a), Γ⇒ ∆, aRt aRt, Γ⇒ ∆, ϕ(a)
(⇒ τ)

Γ⇒ ∆, t = τxϕ(x)

where a is not in Γ,∆, ϕ

Γ⇒ ∆, ϕ(b) bRt, Γ⇒ ∆
(τ ⇒ 1)

t = τxϕ(x), Γ⇒ ∆

Γ⇒ ∆, bRt ϕ(b), Γ⇒ ∆
(τ ⇒ 3)

t = τxϕ(x), Γ⇒ ∆

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

The strength of Tennant’s rules:

In general what we obtain with these rules is equivalent to the
following principle:

∀y(y = τxϕ(x)↔ ∀x(ϕ(x)↔ xRy)

which is derivable already in the setting of NFFOLI.

On the ground of CFOLI it is equivalent to:

t = τxϕ(x)↔ ∀x(ϕ(x)↔ xRt).

for which we demonstrate syntactically the equivalence with the
stated rules.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

The strength of Tennant’s rules:

In general what we obtain with these rules is equivalent to the
following principle:

∀y(y = τxϕ(x)↔ ∀x(ϕ(x)↔ xRy)

which is derivable already in the setting of NFFOLI.

On the ground of CFOLI it is equivalent to:

t = τxϕ(x)↔ ∀x(ϕ(x)↔ xRt).

for which we demonstrate syntactically the equivalence with the
stated rules.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

The strength of Tennant’s rules:

In general what we obtain with these rules is equivalent to the
following principle:

∀y(y = τxϕ(x)↔ ∀x(ϕ(x)↔ xRy)

which is derivable already in the setting of NFFOLI.

On the ground of CFOLI it is equivalent to:

t = τxϕ(x)↔ ∀x(ϕ(x)↔ xRt).

for which we demonstrate syntactically the equivalence with the
stated rules.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

The strength of Tennant’s rules:

In general what we obtain with these rules is equivalent to the
following principle:

∀y(y = τxϕ(x)↔ ∀x(ϕ(x)↔ xRy)

which is derivable already in the setting of NFFOLI.

On the ground of CFOLI it is equivalent to:

t = τxϕ(x)↔ ∀x(ϕ(x)↔ xRt).

for which we demonstrate syntactically the equivalence with the
stated rules.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

The strength of Tennant’s rules:

In general what we obtain with these rules is equivalent to the
following principle:

∀y(y = τxϕ(x)↔ ∀x(ϕ(x)↔ xRy)

which is derivable already in the setting of NFFOLI.

On the ground of CFOLI it is equivalent to:

t = τxϕ(x)↔ ∀x(ϕ(x)↔ xRt).

for which we demonstrate syntactically the equivalence with the
stated rules.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

The strength of Tennant’s rules:

In general what we obtain with these rules is equivalent to the
following principle:

∀y(y = τxϕ(x)↔ ∀x(ϕ(x)↔ xRy)

which is derivable already in the setting of NFFOLI.

On the ground of CFOLI it is equivalent to:

t = τxϕ(x)↔ ∀x(ϕ(x)↔ xRt).

for which we demonstrate syntactically the equivalence with the
stated rules.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

The strength of Tennant’s rules:

In one direction we have:

ϕ[x/a]⇒ ϕ[x/a] aRt ⇒ aRt
(τ ⇒)

t = τxϕ(x), ϕ[x/a]⇒ aRt

aRt ⇒ aRt ϕ[x/a]⇒ ϕ[x/a]

t = τxϕ(x), aRt ⇒ ϕ[x/a]
(⇒↔)

t = τxϕ(x)⇒ ϕ[x/a]↔ aRt
(⇒ ∀)

t = τxϕ(x)⇒ ∀x(ϕ(x)↔ xRt)

In the second direction:

aRt ⇒ aRt ϕ[x/a]⇒ ϕ[x/a]
(↔⇒)

ϕ[x/a]↔ aRt, aRt ⇒ ϕ[x/a]
(∀ ⇒)

∀x(ϕ(x)↔ xRt), aRt ⇒ ϕ[x/a]

ϕ[x/a]⇒ ϕ[x/a] aRt ⇒ aRt

ϕ[x/a]↔ aRt, ϕ[x/a]⇒ aRt

∀x(ϕ(x)↔ xRt), ϕ[x/a]⇒ aRt
(⇒ τ)

∀x(ϕ(x)↔ xRt)⇒ t = τxϕ(x)

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

The strength of Tennant’s rules:

In one direction we have:

ϕ[x/a]⇒ ϕ[x/a] aRt ⇒ aRt
(τ ⇒)

t = τxϕ(x), ϕ[x/a]⇒ aRt

aRt ⇒ aRt ϕ[x/a]⇒ ϕ[x/a]

t = τxϕ(x), aRt ⇒ ϕ[x/a]
(⇒↔)

t = τxϕ(x)⇒ ϕ[x/a]↔ aRt
(⇒ ∀)

t = τxϕ(x)⇒ ∀x(ϕ(x)↔ xRt)

In the second direction:

aRt ⇒ aRt ϕ[x/a]⇒ ϕ[x/a]
(↔⇒)

ϕ[x/a]↔ aRt, aRt ⇒ ϕ[x/a]
(∀ ⇒)

∀x(ϕ(x)↔ xRt), aRt ⇒ ϕ[x/a]

ϕ[x/a]⇒ ϕ[x/a] aRt ⇒ aRt

ϕ[x/a]↔ aRt, ϕ[x/a]⇒ aRt

∀x(ϕ(x)↔ xRt), ϕ[x/a]⇒ aRt
(⇒ τ)

∀x(ϕ(x)↔ xRt)⇒ t = τxϕ(x)

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

The strength of Tennant’s rules:

In one direction we have:

ϕ[x/a]⇒ ϕ[x/a] aRt ⇒ aRt
(τ ⇒)

t = τxϕ(x), ϕ[x/a]⇒ aRt

aRt ⇒ aRt ϕ[x/a]⇒ ϕ[x/a]

t = τxϕ(x), aRt ⇒ ϕ[x/a]
(⇒↔)

t = τxϕ(x)⇒ ϕ[x/a]↔ aRt
(⇒ ∀)

t = τxϕ(x)⇒ ∀x(ϕ(x)↔ xRt)

In the second direction:

aRt ⇒ aRt ϕ[x/a]⇒ ϕ[x/a]
(↔⇒)

ϕ[x/a]↔ aRt, aRt ⇒ ϕ[x/a]
(∀ ⇒)

∀x(ϕ(x)↔ xRt), aRt ⇒ ϕ[x/a]

ϕ[x/a]⇒ ϕ[x/a] aRt ⇒ aRt

ϕ[x/a]↔ aRt, ϕ[x/a]⇒ aRt

∀x(ϕ(x)↔ xRt), ϕ[x/a]⇒ aRt
(⇒ τ)

∀x(ϕ(x)↔ xRt)⇒ t = τxϕ(x)

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

The strength of Tennant’s rules:

In one direction we have:

ϕ[x/a]⇒ ϕ[x/a] aRt ⇒ aRt
(τ ⇒)

t = τxϕ(x), ϕ[x/a]⇒ aRt

aRt ⇒ aRt ϕ[x/a]⇒ ϕ[x/a]

t = τxϕ(x), aRt ⇒ ϕ[x/a]
(⇒↔)

t = τxϕ(x)⇒ ϕ[x/a]↔ aRt
(⇒ ∀)

t = τxϕ(x)⇒ ∀x(ϕ(x)↔ xRt)

In the second direction:

aRt ⇒ aRt ϕ[x/a]⇒ ϕ[x/a]
(↔⇒)

ϕ[x/a]↔ aRt, aRt ⇒ ϕ[x/a]
(∀ ⇒)

∀x(ϕ(x)↔ xRt), aRt ⇒ ϕ[x/a]

ϕ[x/a]⇒ ϕ[x/a] aRt ⇒ aRt

ϕ[x/a]↔ aRt, ϕ[x/a]⇒ aRt

∀x(ϕ(x)↔ xRt), ϕ[x/a]⇒ aRt
(⇒ τ)

∀x(ϕ(x)↔ xRt)⇒ t = τxϕ(x)

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

The strength of Tennant’s rules:

Derivability of the specific rules is straightforward. Notice that
from the principle as an additional axiom we obtain:
(a) t = τxϕ(x)⇒ ∀x(ϕ(x)↔ xRt) and
(b) ∀x(ϕ(x)↔ xRt)⇒ t = τxϕ(x).

From the premisses of any variant of (τ ⇒) by W we deduce:

Γ⇒ ∆, bRt, ϕ[x/b] bRt, ϕ[x/b], Γ⇒ ∆
(↔⇒)

ϕ[x/b]↔ bRt, Γ⇒ ∆
(∀ ⇒)

∀x(ϕ(x)↔ xRt), Γ⇒ ∆

which, by cut with (a) yields the conclusion of (τ ⇒). In a similar
way we deduce Γ⇒ ∆,∀x(ϕ(x)↔ xRt) from premisses of (⇒ τ),
and by cut with (b) we obtain the conclusion of this rule.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

The strength of Tennant’s rules:

Derivability of the specific rules is straightforward. Notice that
from the principle as an additional axiom we obtain:
(a) t = τxϕ(x)⇒ ∀x(ϕ(x)↔ xRt) and
(b) ∀x(ϕ(x)↔ xRt)⇒ t = τxϕ(x).

From the premisses of any variant of (τ ⇒) by W we deduce:

Γ⇒ ∆, bRt, ϕ[x/b] bRt, ϕ[x/b], Γ⇒ ∆
(↔⇒)

ϕ[x/b]↔ bRt, Γ⇒ ∆
(∀ ⇒)

∀x(ϕ(x)↔ xRt), Γ⇒ ∆

which, by cut with (a) yields the conclusion of (τ ⇒). In a similar
way we deduce Γ⇒ ∆,∀x(ϕ(x)↔ xRt) from premisses of (⇒ τ),
and by cut with (b) we obtain the conclusion of this rule.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

The strength of Tennant’s rules:

Derivability of the specific rules is straightforward. Notice that
from the principle as an additional axiom we obtain:
(a) t = τxϕ(x)⇒ ∀x(ϕ(x)↔ xRt) and
(b) ∀x(ϕ(x)↔ xRt)⇒ t = τxϕ(x).

From the premisses of any variant of (τ ⇒) by W we deduce:

Γ⇒ ∆, bRt, ϕ[x/b] bRt, ϕ[x/b], Γ⇒ ∆
(↔⇒)

ϕ[x/b]↔ bRt, Γ⇒ ∆
(∀ ⇒)

∀x(ϕ(x)↔ xRt), Γ⇒ ∆

which, by cut with (a) yields the conclusion of (τ ⇒). In a similar
way we deduce Γ⇒ ∆,∀x(ϕ(x)↔ xRt) from premisses of (⇒ τ),
and by cut with (b) we obtain the conclusion of this rule.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

The strength of Tennant’s rules:

Derivability of the specific rules is straightforward. Notice that
from the principle as an additional axiom we obtain:
(a) t = τxϕ(x)⇒ ∀x(ϕ(x)↔ xRt) and
(b) ∀x(ϕ(x)↔ xRt)⇒ t = τxϕ(x).

From the premisses of any variant of (τ ⇒) by W we deduce:

Γ⇒ ∆, bRt, ϕ[x/b] bRt, ϕ[x/b], Γ⇒ ∆
(↔⇒)

ϕ[x/b]↔ bRt, Γ⇒ ∆
(∀ ⇒)

∀x(ϕ(x)↔ xRt), Γ⇒ ∆

which, by cut with (a) yields the conclusion of (τ ⇒). In a similar
way we deduce Γ⇒ ∆,∀x(ϕ(x)↔ xRt) from premisses of (⇒ τ),
and by cut with (b) we obtain the conclusion of this rule.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

The strength of Tennant’s rules:

Derivability of the specific rules is straightforward. Notice that
from the principle as an additional axiom we obtain:
(a) t = τxϕ(x)⇒ ∀x(ϕ(x)↔ xRt) and
(b) ∀x(ϕ(x)↔ xRt)⇒ t = τxϕ(x).

From the premisses of any variant of (τ ⇒) by W we deduce:

Γ⇒ ∆, bRt, ϕ[x/b] bRt, ϕ[x/b], Γ⇒ ∆
(↔⇒)

ϕ[x/b]↔ bRt, Γ⇒ ∆
(∀ ⇒)

∀x(ϕ(x)↔ xRt), Γ⇒ ∆

which, by cut with (a) yields the conclusion of (τ ⇒). In a similar
way we deduce Γ⇒ ∆,∀x(ϕ(x)↔ xRt) from premisses of (⇒ τ),
and by cut with (b) we obtain the conclusion of this rule.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

The strength of Tennant’s rules:

One should note that this theory is much stronger than the first
one; both EXT and AV are provable (in fact even in the setting of
NFFOLI by means of the weaker rules).

aRτxϕ(x)⇒ aRτxϕ(x) ϕ[x/a], ϕ[x/a]↔ ψ[x/a]⇒ ψ[x/a]
(τ ⇒)

τxϕ(x) = τxϕ(x), ϕ[x/a]↔ ψ[x/a], aRτxϕ(x)⇒ ψ[x/a]
(=⇒)

ϕ[x/a]↔ ψ[x/a], aRτxϕ(x)⇒ ψ[x/a]
(∀ ⇒)

∀x(ϕ(x)↔ ψ(x)), aRτxϕ(x)⇒ ψ[x/a] D
(⇒ τ)

∀x(ϕ(x)↔ ψ(x))⇒ τxϕ(x) = τxψ(x)

where the second leaf is directly provable and D is an analogous
proof of ∀x(ϕ(x)↔ ψ(x)), ψ[x/a]⇒ aRτxϕ(x).

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

The strength of Tennant’s rules:

One should note that this theory is much stronger than the first
one; both EXT and AV are provable (in fact even in the setting of
NFFOLI by means of the weaker rules).

aRτxϕ(x)⇒ aRτxϕ(x) ϕ[x/a], ϕ[x/a]↔ ψ[x/a]⇒ ψ[x/a]
(τ ⇒)

τxϕ(x) = τxϕ(x), ϕ[x/a]↔ ψ[x/a], aRτxϕ(x)⇒ ψ[x/a]
(=⇒)

ϕ[x/a]↔ ψ[x/a], aRτxϕ(x)⇒ ψ[x/a]
(∀ ⇒)

∀x(ϕ(x)↔ ψ(x)), aRτxϕ(x)⇒ ψ[x/a] D
(⇒ τ)

∀x(ϕ(x)↔ ψ(x))⇒ τxϕ(x) = τxψ(x)

where the second leaf is directly provable and D is an analogous
proof of ∀x(ϕ(x)↔ ψ(x)), ψ[x/a]⇒ aRτxϕ(x).

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

The strength of Tennant’s rules:

One should note that this theory is much stronger than the first
one; both EXT and AV are provable (in fact even in the setting of
NFFOLI by means of the weaker rules).

aRτxϕ(x)⇒ aRτxϕ(x) ϕ[x/a], ϕ[x/a]↔ ψ[x/a]⇒ ψ[x/a]
(τ ⇒)

τxϕ(x) = τxϕ(x), ϕ[x/a]↔ ψ[x/a], aRτxϕ(x)⇒ ψ[x/a]
(=⇒)

ϕ[x/a]↔ ψ[x/a], aRτxϕ(x)⇒ ψ[x/a]
(∀ ⇒)

∀x(ϕ(x)↔ ψ(x)), aRτxϕ(x)⇒ ψ[x/a] D
(⇒ τ)

∀x(ϕ(x)↔ ψ(x))⇒ τxϕ(x) = τxψ(x)

where the second leaf is directly provable and D is an analogous
proof of ∀x(ϕ(x)↔ ψ(x)), ψ[x/a]⇒ aRτxϕ(x).

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

The strength of Tennant’s rules:

One should note that this theory is much stronger than the first
one; both EXT and AV are provable (in fact even in the setting of
NFFOLI by means of the weaker rules).

aRτxϕ(x)⇒ aRτxϕ(x) ϕ[x/a], ϕ[x/a]↔ ψ[x/a]⇒ ψ[x/a]
(τ ⇒)

τxϕ(x) = τxϕ(x), ϕ[x/a]↔ ψ[x/a], aRτxϕ(x)⇒ ψ[x/a]
(=⇒)

ϕ[x/a]↔ ψ[x/a], aRτxϕ(x)⇒ ψ[x/a]
(∀ ⇒)

∀x(ϕ(x)↔ ψ(x)), aRτxϕ(x)⇒ ψ[x/a] D
(⇒ τ)

∀x(ϕ(x)↔ ψ(x))⇒ τxϕ(x) = τxψ(x)

where the second leaf is directly provable and D is an analogous
proof of ∀x(ϕ(x)↔ ψ(x)), ψ[x/a]⇒ aRτxϕ(x).

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

aRτxϕ(x)⇒ aRτxϕ(x) ϕ[x/a]⇒ ϕ[y/a]
(τ ⇒)

τxϕ(x) = τxϕ(x), aRτxϕ(x)⇒ ϕ[y/a]
(=⇒)

aRτxϕ(x)⇒ ϕ[y/a]

ϕ[y/a]⇒ ϕ[x/a] aRτxϕ(x)⇒ aRτxϕ(x)

τxϕ(x) = τxϕ(x), ϕ[y/a]⇒ aRτxϕ(x)

ϕ[y/a]⇒ aRτxϕ(x)
(⇒ τ)

⇒ τxϕ(x) = τyϕ(y)

Note that ϕ[x/a] and ϕ[y/a] are identical.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

aRτxϕ(x)⇒ aRτxϕ(x) ϕ[x/a]⇒ ϕ[y/a]
(τ ⇒)

τxϕ(x) = τxϕ(x), aRτxϕ(x)⇒ ϕ[y/a]
(=⇒)

aRτxϕ(x)⇒ ϕ[y/a]

ϕ[y/a]⇒ ϕ[x/a] aRτxϕ(x)⇒ aRτxϕ(x)

τxϕ(x) = τxϕ(x), ϕ[y/a]⇒ aRτxϕ(x)

ϕ[y/a]⇒ aRτxϕ(x)
(⇒ τ)

⇒ τxϕ(x) = τyϕ(y)

Note that ϕ[x/a] and ϕ[y/a] are identical.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

The strength of Tennant’s rules:

One may even prove the converse or EXT:

ϕ[x/a]⇒ ϕ[x/a] aRτxϕ(x)⇒ aRτxϕ(x)
(τ ⇒)

τxϕ(x) = τxϕ(x), ϕ[x/a]⇒ aRτxϕ(x)
(=⇒)

ϕ[x/a]⇒ aRτxϕ(x) ψ[x/a]⇒ ψ[x/a]
(τ ⇒)

τxϕ(x) = τxψ(x), ϕ[x/a]⇒ ψ[x/a] D

τxϕ(x) = τxψ(x)⇒ ϕ[x/a]↔ ψ[x/a]
(⇒ ∀)

τxϕ(x) = τxψ(x)⇒ ∀x(ϕ(x)↔ ψ(x))

where D is a similar proof of τxϕ(x) = τxψ(x), ψ[x/a]⇒ ϕ[x/a].

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

The strength of Tennant’s rules:

One may even prove the converse or EXT:

ϕ[x/a]⇒ ϕ[x/a] aRτxϕ(x)⇒ aRτxϕ(x)
(τ ⇒)

τxϕ(x) = τxϕ(x), ϕ[x/a]⇒ aRτxϕ(x)
(=⇒)

ϕ[x/a]⇒ aRτxϕ(x) ψ[x/a]⇒ ψ[x/a]
(τ ⇒)

τxϕ(x) = τxψ(x), ϕ[x/a]⇒ ψ[x/a] D

τxϕ(x) = τxψ(x)⇒ ϕ[x/a]↔ ψ[x/a]
(⇒ ∀)

τxϕ(x) = τxψ(x)⇒ ∀x(ϕ(x)↔ ψ(x))

where D is a similar proof of τxϕ(x) = τxψ(x), ψ[x/a]⇒ ϕ[x/a].

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

The strength of Tennant’s rules:

One may even prove the converse or EXT:

ϕ[x/a]⇒ ϕ[x/a] aRτxϕ(x)⇒ aRτxϕ(x)
(τ ⇒)

τxϕ(x) = τxϕ(x), ϕ[x/a]⇒ aRτxϕ(x)
(=⇒)

ϕ[x/a]⇒ aRτxϕ(x) ψ[x/a]⇒ ψ[x/a]
(τ ⇒)

τxϕ(x) = τxψ(x), ϕ[x/a]⇒ ψ[x/a] D

τxϕ(x) = τxψ(x)⇒ ϕ[x/a]↔ ψ[x/a]
(⇒ ∀)

τxϕ(x) = τxψ(x)⇒ ∀x(ϕ(x)↔ ψ(x))

where D is a similar proof of τxϕ(x) = τxψ(x), ψ[x/a]⇒ ϕ[x/a].

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

Isn’t it too strong?

To realize how strong is this principle on the ground of CFOLI
notice that when t is instantiated with τxϕ(x) we obtain:

τxϕ(x) = τxϕ(x)↔ ∀x(ϕ(x)↔ xRτxϕ(x)).

which by (unrestricted) reflexivity of = yields:

∀x(ϕ(x)↔ xRτxϕ(x)).

For several term-forming operators, at least on the ground of
CFOLI, it is too strong.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

Isn’t it too strong?

To realize how strong is this principle on the ground of CFOLI
notice that when t is instantiated with τxϕ(x) we obtain:

τxϕ(x) = τxϕ(x)↔ ∀x(ϕ(x)↔ xRτxϕ(x)).

which by (unrestricted) reflexivity of = yields:

∀x(ϕ(x)↔ xRτxϕ(x)).

For several term-forming operators, at least on the ground of
CFOLI, it is too strong.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

Isn’t it too strong?

To realize how strong is this principle on the ground of CFOLI
notice that when t is instantiated with τxϕ(x) we obtain:

τxϕ(x) = τxϕ(x)↔ ∀x(ϕ(x)↔ xRτxϕ(x)).

which by (unrestricted) reflexivity of = yields:

∀x(ϕ(x)↔ xRτxϕ(x)).

For several term-forming operators, at least on the ground of
CFOLI, it is too strong.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

Isn’t it too strong?

To realize how strong is this principle on the ground of CFOLI
notice that when t is instantiated with τxϕ(x) we obtain:

τxϕ(x) = τxϕ(x)↔ ∀x(ϕ(x)↔ xRτxϕ(x)).

which by (unrestricted) reflexivity of = yields:

∀x(ϕ(x)↔ xRτxϕ(x)).

For several term-forming operators, at least on the ground of
CFOLI, it is too strong.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

Isn’t it too strong?

To realize how strong is this principle on the ground of CFOLI
notice that when t is instantiated with τxϕ(x) we obtain:

τxϕ(x) = τxϕ(x)↔ ∀x(ϕ(x)↔ xRτxϕ(x)).

which by (unrestricted) reflexivity of = yields:

∀x(ϕ(x)↔ xRτxϕ(x)).

For several term-forming operators, at least on the ground of
CFOLI, it is too strong.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

Isn’t it too strong?

For example of we instantiate this principle with iota-operator
(where R is = ) we run into contradiction:
1. ıx(Ax ∧ ¬Ax) = ıx(Ax ∧ ¬Ax)→ ∀x(Ax ∧ ¬Ax ↔ x =
ıx(Ax ∧ ¬Ax))
2. ıx(Ax ∧ ¬Ax) = ıx(Ax ∧ ¬Ax)
3. ∀x(Ax ∧ ¬Ax ↔ x = ıx(Ax ∧ ¬Ax)) 1, 2
4. A(ıx(Ax ∧ ¬Ax)) ∧ ¬A(ıx(Ax ∧ ¬Ax))↔ ıx(Ax ∧ ¬Ax) =
ıx(Ax ∧ ¬Ax)) 3
5. A(ıx(Ax ∧ ¬Ax)) ∧ ¬A(ıx(Ax ∧ ¬Ax)) 4, 2
Similarly in the case of abstract operator (where R is ∈) we obtain
just unrestricted axiom of comprehension which obviously leads to
Russell’s paradox.
However, even on the basis of CFOLI one may introduce several
restrictions which can prevent us against troubles. We will
illustrate this with abstract operator.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

Isn’t it too strong?

For example of we instantiate this principle with iota-operator
(where R is = ) we run into contradiction:
1. ıx(Ax ∧ ¬Ax) = ıx(Ax ∧ ¬Ax)→ ∀x(Ax ∧ ¬Ax ↔ x =
ıx(Ax ∧ ¬Ax))
2. ıx(Ax ∧ ¬Ax) = ıx(Ax ∧ ¬Ax)
3. ∀x(Ax ∧ ¬Ax ↔ x = ıx(Ax ∧ ¬Ax)) 1, 2
4. A(ıx(Ax ∧ ¬Ax)) ∧ ¬A(ıx(Ax ∧ ¬Ax))↔ ıx(Ax ∧ ¬Ax) =
ıx(Ax ∧ ¬Ax)) 3
5. A(ıx(Ax ∧ ¬Ax)) ∧ ¬A(ıx(Ax ∧ ¬Ax)) 4, 2
Similarly in the case of abstract operator (where R is ∈) we obtain
just unrestricted axiom of comprehension which obviously leads to
Russell’s paradox.
However, even on the basis of CFOLI one may introduce several
restrictions which can prevent us against troubles. We will
illustrate this with abstract operator.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

Isn’t it too strong?

For example of we instantiate this principle with iota-operator
(where R is = ) we run into contradiction:

1. ıx(Ax ∧ ¬Ax) = ıx(Ax ∧ ¬Ax)→ ∀x(Ax ∧ ¬Ax ↔ x =
ıx(Ax ∧ ¬Ax))
2. ıx(Ax ∧ ¬Ax) = ıx(Ax ∧ ¬Ax)
3. ∀x(Ax ∧ ¬Ax ↔ x = ıx(Ax ∧ ¬Ax)) 1, 2
4. A(ıx(Ax ∧ ¬Ax)) ∧ ¬A(ıx(Ax ∧ ¬Ax))↔ ıx(Ax ∧ ¬Ax) =
ıx(Ax ∧ ¬Ax)) 3
5. A(ıx(Ax ∧ ¬Ax)) ∧ ¬A(ıx(Ax ∧ ¬Ax)) 4, 2
Similarly in the case of abstract operator (where R is ∈) we obtain
just unrestricted axiom of comprehension which obviously leads to
Russell’s paradox.
However, even on the basis of CFOLI one may introduce several
restrictions which can prevent us against troubles. We will
illustrate this with abstract operator.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

Isn’t it too strong?

For example of we instantiate this principle with iota-operator
(where R is = ) we run into contradiction:
1. ıx(Ax ∧ ¬Ax) = ıx(Ax ∧ ¬Ax)→ ∀x(Ax ∧ ¬Ax ↔ x =
ıx(Ax ∧ ¬Ax))
2. ıx(Ax ∧ ¬Ax) = ıx(Ax ∧ ¬Ax)
3. ∀x(Ax ∧ ¬Ax ↔ x = ıx(Ax ∧ ¬Ax)) 1, 2
4. A(ıx(Ax ∧ ¬Ax)) ∧ ¬A(ıx(Ax ∧ ¬Ax))↔ ıx(Ax ∧ ¬Ax) =
ıx(Ax ∧ ¬Ax)) 3
5. A(ıx(Ax ∧ ¬Ax)) ∧ ¬A(ıx(Ax ∧ ¬Ax)) 4, 2

Similarly in the case of abstract operator (where R is ∈) we obtain
just unrestricted axiom of comprehension which obviously leads to
Russell’s paradox.
However, even on the basis of CFOLI one may introduce several
restrictions which can prevent us against troubles. We will
illustrate this with abstract operator.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

Isn’t it too strong?

For example of we instantiate this principle with iota-operator
(where R is = ) we run into contradiction:
1. ıx(Ax ∧ ¬Ax) = ıx(Ax ∧ ¬Ax)→ ∀x(Ax ∧ ¬Ax ↔ x =
ıx(Ax ∧ ¬Ax))
2. ıx(Ax ∧ ¬Ax) = ıx(Ax ∧ ¬Ax)
3. ∀x(Ax ∧ ¬Ax ↔ x = ıx(Ax ∧ ¬Ax)) 1, 2
4. A(ıx(Ax ∧ ¬Ax)) ∧ ¬A(ıx(Ax ∧ ¬Ax))↔ ıx(Ax ∧ ¬Ax) =
ıx(Ax ∧ ¬Ax)) 3
5. A(ıx(Ax ∧ ¬Ax)) ∧ ¬A(ıx(Ax ∧ ¬Ax)) 4, 2
Similarly in the case of abstract operator (where R is ∈) we obtain
just unrestricted axiom of comprehension which obviously leads to
Russell’s paradox.

However, even on the basis of CFOLI one may introduce several
restrictions which can prevent us against troubles. We will
illustrate this with abstract operator.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Tennant’s approach:

Isn’t it too strong?

For example of we instantiate this principle with iota-operator
(where R is = ) we run into contradiction:
1. ıx(Ax ∧ ¬Ax) = ıx(Ax ∧ ¬Ax)→ ∀x(Ax ∧ ¬Ax ↔ x =
ıx(Ax ∧ ¬Ax))
2. ıx(Ax ∧ ¬Ax) = ıx(Ax ∧ ¬Ax)
3. ∀x(Ax ∧ ¬Ax ↔ x = ıx(Ax ∧ ¬Ax)) 1, 2
4. A(ıx(Ax ∧ ¬Ax)) ∧ ¬A(ıx(Ax ∧ ¬Ax))↔ ıx(Ax ∧ ¬Ax) =
ıx(Ax ∧ ¬Ax)) 3
5. A(ıx(Ax ∧ ¬Ax)) ∧ ¬A(ıx(Ax ∧ ¬Ax)) 4, 2
Similarly in the case of abstract operator (where R is ∈) we obtain
just unrestricted axiom of comprehension which obviously leads to
Russell’s paradox.
However, even on the basis of CFOLI one may introduce several
restrictions which can prevent us against troubles. We will
illustrate this with abstract operator.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

Quine’s NF

Language with ∈ primitive.

= defined: t = t ′ := ∀z(z ∈ t ↔ z ∈ t ′)

Two axioms:

Abs ∀x(x ∈ {y : ϕ(y)} ↔ ϕ(y/x)), ϕ stratified.
Ext ∀xy(x = y → (ϕ(x)↔ ϕ(y)))

Alternatively = primitive, with suitable axioms/rules;

and instead of Ext (which is provable) we need:

ExtAx ∀xy(∀z(z ∈ x ↔ z ∈ y)→ x = y)

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

Quine’s NF

Language with ∈ primitive.

= defined: t = t ′ := ∀z(z ∈ t ↔ z ∈ t ′)

Two axioms:

Abs ∀x(x ∈ {y : ϕ(y)} ↔ ϕ(y/x)), ϕ stratified.
Ext ∀xy(x = y → (ϕ(x)↔ ϕ(y)))

Alternatively = primitive, with suitable axioms/rules;

and instead of Ext (which is provable) we need:

ExtAx ∀xy(∀z(z ∈ x ↔ z ∈ y)→ x = y)

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

Quine’s NF

Language with ∈ primitive.

= defined: t = t ′ := ∀z(z ∈ t ↔ z ∈ t ′)

Two axioms:

Abs ∀x(x ∈ {y : ϕ(y)} ↔ ϕ(y/x)), ϕ stratified.
Ext ∀xy(x = y → (ϕ(x)↔ ϕ(y)))

Alternatively = primitive, with suitable axioms/rules;

and instead of Ext (which is provable) we need:

ExtAx ∀xy(∀z(z ∈ x ↔ z ∈ y)→ x = y)

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

Quine’s NF

Language with ∈ primitive.

= defined: t = t ′ := ∀z(z ∈ t ↔ z ∈ t ′)

Two axioms:

Abs ∀x(x ∈ {y : ϕ(y)} ↔ ϕ(y/x)), ϕ stratified.
Ext ∀xy(x = y → (ϕ(x)↔ ϕ(y)))

Alternatively = primitive, with suitable axioms/rules;

and instead of Ext (which is provable) we need:

ExtAx ∀xy(∀z(z ∈ x ↔ z ∈ y)→ x = y)

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

Quine’s NF

Language with ∈ primitive.

= defined: t = t ′ := ∀z(z ∈ t ↔ z ∈ t ′)

Two axioms:

Abs ∀x(x ∈ {y : ϕ(y)} ↔ ϕ(y/x)), ϕ stratified.
Ext ∀xy(x = y → (ϕ(x)↔ ϕ(y)))

Alternatively = primitive, with suitable axioms/rules;

and instead of Ext (which is provable) we need:

ExtAx ∀xy(∀z(z ∈ x ↔ z ∈ y)→ x = y)

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

Quine’s NF

Language with ∈ primitive.

= defined: t = t ′ := ∀z(z ∈ t ↔ z ∈ t ′)

Two axioms:

Abs ∀x(x ∈ {y : ϕ(y)} ↔ ϕ(y/x)), ϕ stratified.
Ext ∀xy(x = y → (ϕ(x)↔ ϕ(y)))

Alternatively = primitive, with suitable axioms/rules;

and instead of Ext (which is provable) we need:

ExtAx ∀xy(∀z(z ∈ x ↔ z ∈ y)→ x = y)

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

Quine’s NF

Language with ∈ primitive.

= defined: t = t ′ := ∀z(z ∈ t ↔ z ∈ t ′)

Two axioms:

Abs ∀x(x ∈ {y : ϕ(y)} ↔ ϕ(y/x)), ϕ stratified.
Ext ∀xy(x = y → (ϕ(x)↔ ϕ(y)))

Alternatively = primitive, with suitable axioms/rules;

and instead of Ext (which is provable) we need:

ExtAx ∀xy(∀z(z ∈ x ↔ z ∈ y)→ x = y)

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

Quine’s NF

Language with ∈ primitive.

= defined: t = t ′ := ∀z(z ∈ t ↔ z ∈ t ′)

Two axioms:

Abs ∀x(x ∈ {y : ϕ(y)} ↔ ϕ(y/x)), ϕ stratified.
Ext ∀xy(x = y → (ϕ(x)↔ ϕ(y)))

Alternatively = primitive, with suitable axioms/rules;

and instead of Ext (which is provable) we need:

ExtAx ∀xy(∀z(z ∈ x ↔ z ∈ y)→ x = y)

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

Can we apply Tennant’s approach to formalisation of Quine’s NF?

Tennant is using = primitive and works with NFFOLI.
This means that if we use Tennant’s-style rules in the context of
CFOLI we need simplified rules for set builders (for GCFOLI):

ϕ(a), Γ⇒ ∆, a ∈ t a ∈ t, Γ⇒ ∆, ϕ(a)
(⇒:)

Γ⇒ ∆, t = {x : ϕ(x)}

where a is not in Γ,∆, ϕ and ϕ is stratified.

Γ⇒ ∆, ϕ(b) b ∈ t, Γ⇒ ∆
(:⇒)

t = {x : ϕ(x)}, Γ⇒ ∆

Γ⇒ ∆, b ∈ t ϕ(b), Γ⇒ ∆
(:⇒)

t = {x : ϕ(x)}, Γ⇒ ∆

where t is any term and ϕ is stratified.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

Can we apply Tennant’s approach to formalisation of Quine’s NF?

Tennant is using = primitive and works with NFFOLI.
This means that if we use Tennant’s-style rules in the context of
CFOLI we need simplified rules for set builders (for GCFOLI):

ϕ(a), Γ⇒ ∆, a ∈ t a ∈ t, Γ⇒ ∆, ϕ(a)
(⇒:)

Γ⇒ ∆, t = {x : ϕ(x)}

where a is not in Γ,∆, ϕ and ϕ is stratified.

Γ⇒ ∆, ϕ(b) b ∈ t, Γ⇒ ∆
(:⇒)

t = {x : ϕ(x)}, Γ⇒ ∆

Γ⇒ ∆, b ∈ t ϕ(b), Γ⇒ ∆
(:⇒)

t = {x : ϕ(x)}, Γ⇒ ∆

where t is any term and ϕ is stratified.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

Can we apply Tennant’s approach to formalisation of Quine’s NF?

Tennant is using = primitive and works with NFFOLI.

This means that if we use Tennant’s-style rules in the context of
CFOLI we need simplified rules for set builders (for GCFOLI):

ϕ(a), Γ⇒ ∆, a ∈ t a ∈ t, Γ⇒ ∆, ϕ(a)
(⇒:)

Γ⇒ ∆, t = {x : ϕ(x)}

where a is not in Γ,∆, ϕ and ϕ is stratified.

Γ⇒ ∆, ϕ(b) b ∈ t, Γ⇒ ∆
(:⇒)

t = {x : ϕ(x)}, Γ⇒ ∆

Γ⇒ ∆, b ∈ t ϕ(b), Γ⇒ ∆
(:⇒)

t = {x : ϕ(x)}, Γ⇒ ∆

where t is any term and ϕ is stratified.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

Can we apply Tennant’s approach to formalisation of Quine’s NF?

Tennant is using = primitive and works with NFFOLI.
This means that if we use Tennant’s-style rules in the context of
CFOLI we need simplified rules for set builders (for GCFOLI):

ϕ(a), Γ⇒ ∆, a ∈ t a ∈ t, Γ⇒ ∆, ϕ(a)
(⇒:)

Γ⇒ ∆, t = {x : ϕ(x)}

where a is not in Γ,∆, ϕ and ϕ is stratified.

Γ⇒ ∆, ϕ(b) b ∈ t, Γ⇒ ∆
(:⇒)

t = {x : ϕ(x)}, Γ⇒ ∆

Γ⇒ ∆, b ∈ t ϕ(b), Γ⇒ ∆
(:⇒)

t = {x : ϕ(x)}, Γ⇒ ∆

where t is any term and ϕ is stratified.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

If you add these rules to GCFOLI (1 approach to identity) you
obtain (ExtAx) for free – it is provable:

a ∈ c ↔ a ∈ d, a ∈ c ⇒ a ∈ d
(∀ ⇒)

∀z(z ∈ c ↔ z ∈ d), a ∈ c ⇒ a ∈ d

a ∈ c ↔ a ∈ d, a ∈ d ⇒ a ∈ c

∀z(z ∈ c ↔ z ∈ d), a ∈ d ⇒ a ∈ c
(⇒:)

∀z(z ∈ c ↔ z ∈ d)⇒ c = {x : x ∈ d}
a ∈ d ⇒ a ∈ d

(⇒:)
⇒ d = {x : x ∈ d}

(LL)
∀z(z ∈ c ↔ z ∈ d)⇒ c = d

(⇒→)
⇒ ∀z(z ∈ c ↔ z ∈ d)→ c = d

(⇒ ∀)
⇒ ∀xy(∀z(z ∈ x ↔ z ∈ y)→ x = y)

Note that 2-premiss variant of LL was used to simplify a proof but
to avoid the problems with cut-reduction we have to use 3-premiss
version.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

If you add these rules to GCFOLI (1 approach to identity) you
obtain (ExtAx) for free – it is provable:

a ∈ c ↔ a ∈ d, a ∈ c ⇒ a ∈ d
(∀ ⇒)

∀z(z ∈ c ↔ z ∈ d), a ∈ c ⇒ a ∈ d

a ∈ c ↔ a ∈ d, a ∈ d ⇒ a ∈ c

∀z(z ∈ c ↔ z ∈ d), a ∈ d ⇒ a ∈ c
(⇒:)

∀z(z ∈ c ↔ z ∈ d)⇒ c = {x : x ∈ d}
a ∈ d ⇒ a ∈ d

(⇒:)
⇒ d = {x : x ∈ d}

(LL)
∀z(z ∈ c ↔ z ∈ d)⇒ c = d

(⇒→)
⇒ ∀z(z ∈ c ↔ z ∈ d)→ c = d

(⇒ ∀)
⇒ ∀xy(∀z(z ∈ x ↔ z ∈ y)→ x = y)

Note that 2-premiss variant of LL was used to simplify a proof but
to avoid the problems with cut-reduction we have to use 3-premiss
version.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

If you add these rules to GCFOLI (1 approach to identity) you
obtain (ExtAx) for free – it is provable:

a ∈ c ↔ a ∈ d, a ∈ c ⇒ a ∈ d
(∀ ⇒)

∀z(z ∈ c ↔ z ∈ d), a ∈ c ⇒ a ∈ d

a ∈ c ↔ a ∈ d, a ∈ d ⇒ a ∈ c

∀z(z ∈ c ↔ z ∈ d), a ∈ d ⇒ a ∈ c
(⇒:)

∀z(z ∈ c ↔ z ∈ d)⇒ c = {x : x ∈ d}
a ∈ d ⇒ a ∈ d

(⇒:)
⇒ d = {x : x ∈ d}

(LL)
∀z(z ∈ c ↔ z ∈ d)⇒ c = d

(⇒→)
⇒ ∀z(z ∈ c ↔ z ∈ d)→ c = d

(⇒ ∀)
⇒ ∀xy(∀z(z ∈ x ↔ z ∈ y)→ x = y)

Note that 2-premiss variant of LL was used to simplify a proof but
to avoid the problems with cut-reduction we have to use 3-premiss
version.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

Rules of abstraction (with stratified ϕ):

ϕ(t), Γ⇒ ∆
(Abs ⇒)

t ∈ {x : ϕ(x)}, Γ⇒ ∆

Γ⇒ ∆, ϕ(t)
(⇒ Abs)

Γ⇒ ∆, t ∈ {x : ϕ(x)}

are derivable by his rules. as well as (Ext) and (AV ).

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

Rules of abstraction (with stratified ϕ):

ϕ(t), Γ⇒ ∆
(Abs ⇒)

t ∈ {x : ϕ(x)}, Γ⇒ ∆

Γ⇒ ∆, ϕ(t)
(⇒ Abs)

Γ⇒ ∆, t ∈ {x : ϕ(x)}

are derivable by his rules. as well as (Ext) and (AV ).

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

Rules of abstraction (with stratified ϕ):

ϕ(t), Γ⇒ ∆
(Abs ⇒)

t ∈ {x : ϕ(x)}, Γ⇒ ∆

Γ⇒ ∆, ϕ(t)
(⇒ Abs)

Γ⇒ ∆, t ∈ {x : ϕ(x)}

are derivable by his rules. as well as (Ext) and (AV ).

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

How to formalize = to obtain cut-free system for NF?

Γ⇒ ∆, ϕ(t) Γ⇒ ∆, t = t ′
(⇒ LL)

Γ⇒ ∆, ϕ(t ′)

for ϕ atomic but not identity.
and

Γ⇒ ∆, t = t ′ Γ⇒ ∆, t = t ′′ t ′ = t ′′, Γ⇒ ∆
(⇒=)

Γ⇒ ∆

Possible reductions in the application of (⇒=):
at least two of t, t ′, t ′′ are complex.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

How to formalize = to obtain cut-free system for NF?

Γ⇒ ∆, ϕ(t) Γ⇒ ∆, t = t ′
(⇒ LL)

Γ⇒ ∆, ϕ(t ′)

for ϕ atomic but not identity.
and

Γ⇒ ∆, t = t ′ Γ⇒ ∆, t = t ′′ t ′ = t ′′, Γ⇒ ∆
(⇒=)

Γ⇒ ∆

Possible reductions in the application of (⇒=):
at least two of t, t ′, t ′′ are complex.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

How to formalize = to obtain cut-free system for NF?

Γ⇒ ∆, ϕ(t) Γ⇒ ∆, t = t ′
(⇒ LL)

Γ⇒ ∆, ϕ(t ′)

for ϕ atomic but not identity.
and

Γ⇒ ∆, t = t ′ Γ⇒ ∆, t = t ′′ t ′ = t ′′, Γ⇒ ∆
(⇒=)

Γ⇒ ∆

Possible reductions in the application of (⇒=):
at least two of t, t ′, t ′′ are complex.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

How to formalize = to obtain cut-free system for NF?

Γ⇒ ∆, ϕ(t) Γ⇒ ∆, t = t ′
(⇒ LL)

Γ⇒ ∆, ϕ(t ′)

for ϕ atomic but not identity.

and

Γ⇒ ∆, t = t ′ Γ⇒ ∆, t = t ′′ t ′ = t ′′, Γ⇒ ∆
(⇒=)

Γ⇒ ∆

Possible reductions in the application of (⇒=):
at least two of t, t ′, t ′′ are complex.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

How to formalize = to obtain cut-free system for NF?

Γ⇒ ∆, ϕ(t) Γ⇒ ∆, t = t ′
(⇒ LL)

Γ⇒ ∆, ϕ(t ′)

for ϕ atomic but not identity.
and

Γ⇒ ∆, t = t ′ Γ⇒ ∆, t = t ′′ t ′ = t ′′, Γ⇒ ∆
(⇒=)

Γ⇒ ∆

Possible reductions in the application of (⇒=):
at least two of t, t ′, t ′′ are complex.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

How to formalize = to obtain cut-free system for NF?

Γ⇒ ∆, ϕ(t) Γ⇒ ∆, t = t ′
(⇒ LL)

Γ⇒ ∆, ϕ(t ′)

for ϕ atomic but not identity.
and

Γ⇒ ∆, t = t ′ Γ⇒ ∆, t = t ′′ t ′ = t ′′, Γ⇒ ∆
(⇒=)

Γ⇒ ∆

Possible reductions in the application of (⇒=):
at least two of t, t ′, t ′′ are complex.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

Possible reductions to applications of (⇒=):

Consider the cases with at most one term t complex:

1 a = b, a = c ` b = c

2 t = b, t = c ` b = c

3 a = t, a = c ` t = c

4 a = b, a = t ` b = t

the first rules may be modified to cover case 1 and 2:

Γ⇒ ∆, ϕ(t) Γ⇒ ∆, t = t ′
(⇒ LL)

Γ⇒ ∆, ϕ(t ′)

for ϕ(t) atomic or atomic identity of the form b = c .

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

Possible reductions to applications of (⇒=):

Consider the cases with at most one term t complex:

1 a = b, a = c ` b = c

2 t = b, t = c ` b = c

3 a = t, a = c ` t = c

4 a = b, a = t ` b = t

the first rules may be modified to cover case 1 and 2:

Γ⇒ ∆, ϕ(t) Γ⇒ ∆, t = t ′
(⇒ LL)

Γ⇒ ∆, ϕ(t ′)

for ϕ(t) atomic or atomic identity of the form b = c .

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

Possible reductions to applications of (⇒=):

Consider the cases with at most one term t complex:

1 a = b, a = c ` b = c

2 t = b, t = c ` b = c

3 a = t, a = c ` t = c

4 a = b, a = t ` b = t

the first rules may be modified to cover case 1 and 2:

Γ⇒ ∆, ϕ(t) Γ⇒ ∆, t = t ′
(⇒ LL)

Γ⇒ ∆, ϕ(t ′)

for ϕ(t) atomic or atomic identity of the form b = c .

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

Possible reductions to applications of (⇒=):

Consider the cases with at most one term t complex:

1 a = b, a = c ` b = c

2 t = b, t = c ` b = c

3 a = t, a = c ` t = c

4 a = b, a = t ` b = t

the first rules may be modified to cover case 1 and 2:

Γ⇒ ∆, ϕ(t) Γ⇒ ∆, t = t ′
(⇒ LL)

Γ⇒ ∆, ϕ(t ′)

for ϕ(t) atomic or atomic identity of the form b = c .

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

Possible reductions to applications of (⇒=):

Consider the cases with at most one term t complex:

1 a = b, a = c ` b = c

2 t = b, t = c ` b = c

3 a = t, a = c ` t = c

4 a = b, a = t ` b = t

the first rules may be modified to cover case 1 and 2:

Γ⇒ ∆, ϕ(t) Γ⇒ ∆, t = t ′
(⇒ LL)

Γ⇒ ∆, ϕ(t ′)

for ϕ(t) atomic or atomic identity of the form b = c .

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

Possible reductions to applications of (⇒=):

Consider the cases with at most one term t complex:

1 a = b, a = c ` b = c

2 t = b, t = c ` b = c

3 a = t, a = c ` t = c

4 a = b, a = t ` b = t

For cases 3 and 4 we add rules:

Γ⇒ ∆, a = t t = c , Γ⇒ ∆

a = c , Γ⇒ ∆

Γ⇒ ∆, a = t b = t, Γ⇒ ∆

a = b, Γ⇒ ∆

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

Possible reductions to applications of (⇒=):

Consider the cases with at most one term t complex:

1 a = b, a = c ` b = c

2 t = b, t = c ` b = c

3 a = t, a = c ` t = c

4 a = b, a = t ` b = t

For cases 3 and 4 we add rules:

Γ⇒ ∆, a = t t = c , Γ⇒ ∆

a = c , Γ⇒ ∆

Γ⇒ ∆, a = t b = t, Γ⇒ ∆

a = b, Γ⇒ ∆

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

Possible reductions to applications of (⇒=):

Consider the cases with at most one term t complex:

1 a = b, a = c ` b = c

2 t = b, t = c ` b = c

3 a = t, a = c ` t = c

4 a = b, a = t ` b = t

For cases 3 and 4 we add rules:

Γ⇒ ∆, a = t t = c , Γ⇒ ∆

a = c , Γ⇒ ∆

Γ⇒ ∆, a = t b = t, Γ⇒ ∆

a = b, Γ⇒ ∆

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Application to set-builders

Possible reductions to applications of (⇒=):

Consider the cases with at most one term t complex:

1 a = b, a = c ` b = c

2 t = b, t = c ` b = c

3 a = t, a = c ` t = c

4 a = b, a = t ` b = t

For cases 3 and 4 we add rules:

Γ⇒ ∆, a = t t = c , Γ⇒ ∆

a = c , Γ⇒ ∆

Γ⇒ ∆, a = t b = t, Γ⇒ ∆

a = b, Γ⇒ ∆

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

It may be defined in at least 3 equivalent ways:

1 ∃1xϕ↔ ∃x∀y(ϕ[x/y ]↔ y = x)

2 ∃1xϕ↔ ∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x))

3 ∃1xϕ↔ ∃xϕ ∧ ∀xy(ϕ ∧ ϕ[y/x ]→ y = x)

We can transform them into sequents:

∃1xϕ⇒ ∃x∀y(ϕ[x/y ]↔ y = x)
∃x∀y(ϕ[x/y ]↔ y = x)⇒ ∃1xϕ

∃1xϕ⇒ ∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x))
∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x))⇒ ∃1xϕ

∃1xϕ⇒ ∃xϕ
∃1xϕ⇒ ∀xy(ϕ ∧ ϕ[y/x ]→ y = x)
∃xϕ,∀xy(ϕ ∧ ϕ[y/x ]→ y = x)⇒ ∃1xϕ

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

It may be defined in at least 3 equivalent ways:

1 ∃1xϕ↔ ∃x∀y(ϕ[x/y ]↔ y = x)

2 ∃1xϕ↔ ∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x))

3 ∃1xϕ↔ ∃xϕ ∧ ∀xy(ϕ ∧ ϕ[y/x ]→ y = x)

We can transform them into sequents:

∃1xϕ⇒ ∃x∀y(ϕ[x/y ]↔ y = x)
∃x∀y(ϕ[x/y ]↔ y = x)⇒ ∃1xϕ

∃1xϕ⇒ ∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x))
∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x))⇒ ∃1xϕ

∃1xϕ⇒ ∃xϕ
∃1xϕ⇒ ∀xy(ϕ ∧ ϕ[y/x ]→ y = x)
∃xϕ,∀xy(ϕ ∧ ϕ[y/x ]→ y = x)⇒ ∃1xϕ

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

It may be defined in at least 3 equivalent ways:

1 ∃1xϕ↔ ∃x∀y(ϕ[x/y ]↔ y = x)

2 ∃1xϕ↔ ∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x))

3 ∃1xϕ↔ ∃xϕ ∧ ∀xy(ϕ ∧ ϕ[y/x ]→ y = x)

We can transform them into sequents:

∃1xϕ⇒ ∃x∀y(ϕ[x/y ]↔ y = x)
∃x∀y(ϕ[x/y ]↔ y = x)⇒ ∃1xϕ

∃1xϕ⇒ ∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x))
∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x))⇒ ∃1xϕ

∃1xϕ⇒ ∃xϕ
∃1xϕ⇒ ∀xy(ϕ ∧ ϕ[y/x ]→ y = x)
∃xϕ,∀xy(ϕ ∧ ϕ[y/x ]→ y = x)⇒ ∃1xϕ

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

It may be defined in at least 3 equivalent ways:

1 ∃1xϕ↔ ∃x∀y(ϕ[x/y ]↔ y = x)

2 ∃1xϕ↔ ∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x))

3 ∃1xϕ↔ ∃xϕ ∧ ∀xy(ϕ ∧ ϕ[y/x ]→ y = x)

We can transform them into sequents:

∃1xϕ⇒ ∃x∀y(ϕ[x/y ]↔ y = x)
∃x∀y(ϕ[x/y ]↔ y = x)⇒ ∃1xϕ

∃1xϕ⇒ ∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x))
∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x))⇒ ∃1xϕ

∃1xϕ⇒ ∃xϕ
∃1xϕ⇒ ∀xy(ϕ ∧ ϕ[y/x ]→ y = x)
∃xϕ,∀xy(ϕ ∧ ϕ[y/x ]→ y = x)⇒ ∃1xϕ

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

It may be defined in at least 3 equivalent ways:

1 ∃1xϕ↔ ∃x∀y(ϕ[x/y ]↔ y = x)

2 ∃1xϕ↔ ∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x))

3 ∃1xϕ↔ ∃xϕ ∧ ∀xy(ϕ ∧ ϕ[y/x ]→ y = x)

We can transform them into sequents:

∃1xϕ⇒ ∃x∀y(ϕ[x/y ]↔ y = x)
∃x∀y(ϕ[x/y ]↔ y = x)⇒ ∃1xϕ

∃1xϕ⇒ ∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x))
∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x))⇒ ∃1xϕ

∃1xϕ⇒ ∃xϕ
∃1xϕ⇒ ∀xy(ϕ ∧ ϕ[y/x ]→ y = x)
∃xϕ,∀xy(ϕ ∧ ϕ[y/x ]→ y = x)⇒ ∃1xϕ

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

It may be defined in at least 3 equivalent ways:

1 ∃1xϕ↔ ∃x∀y(ϕ[x/y ]↔ y = x)

2 ∃1xϕ↔ ∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x))

3 ∃1xϕ↔ ∃xϕ ∧ ∀xy(ϕ ∧ ϕ[y/x ]→ y = x)

We can transform them into sequents:

∃1xϕ⇒ ∃x∀y(ϕ[x/y ]↔ y = x)
∃x∀y(ϕ[x/y ]↔ y = x)⇒ ∃1xϕ

∃1xϕ⇒ ∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x))
∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x))⇒ ∃1xϕ

∃1xϕ⇒ ∃xϕ
∃1xϕ⇒ ∀xy(ϕ ∧ ϕ[y/x ]→ y = x)
∃xϕ,∀xy(ϕ ∧ ϕ[y/x ]→ y = x)⇒ ∃1xϕ

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

It may be defined in at least 3 equivalent ways:

1 ∃1xϕ↔ ∃x∀y(ϕ[x/y ]↔ y = x)

2 ∃1xϕ↔ ∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x))

3 ∃1xϕ↔ ∃xϕ ∧ ∀xy(ϕ ∧ ϕ[y/x ]→ y = x)

We can transform them into sequents:

∃1xϕ⇒ ∃x∀y(ϕ[x/y ]↔ y = x)
∃x∀y(ϕ[x/y ]↔ y = x)⇒ ∃1xϕ

∃1xϕ⇒ ∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x))
∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x))⇒ ∃1xϕ

∃1xϕ⇒ ∃xϕ
∃1xϕ⇒ ∀xy(ϕ ∧ ϕ[y/x ]→ y = x)
∃xϕ,∀xy(ϕ ∧ ϕ[y/x ]→ y = x)⇒ ∃1xϕ

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

Using Rule-maker theorem (Indrzejczak [2013]):

For any sequent Γ⇒ ∆ with Γ = {ϕ1, ..., ϕk} and
∆ = {ψ1, ..., ψn}, k ≥ 0, n ≥ 0 there is 2k+n − 1 equivalent rules
captured by the general schema:

Π1,⇒ Σ1, ϕ1, ..., Πi ⇒ Σi , ϕi ψ1,Πi+1 ⇒ Σi+1, ..., ψj ,Πi+j ⇒ Σi+j

Γ−i ,Π1, ...,Πi ,Πi+1, ...,Πi+j ⇒ Σ1, ...,Σi ,Σi+1, ...,Σi+j∆
−j

where Γ−i = Γ− {ϕ1, ..., ϕi} and ∆−j = ∆− {ψ1, ..., ψj} for
0 ≤ i ≤ k , 0 ≤ j ≤ n.

We can replace any sequent with different interderivable (by
structural rules only) rules.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

Using Rule-maker theorem (Indrzejczak [2013]):

For any sequent Γ⇒ ∆ with Γ = {ϕ1, ..., ϕk} and
∆ = {ψ1, ..., ψn}, k ≥ 0, n ≥ 0 there is 2k+n − 1 equivalent rules
captured by the general schema:

Π1,⇒ Σ1, ϕ1, ..., Πi ⇒ Σi , ϕi ψ1,Πi+1 ⇒ Σi+1, ..., ψj ,Πi+j ⇒ Σi+j

Γ−i ,Π1, ...,Πi ,Πi+1, ...,Πi+j ⇒ Σ1, ...,Σi ,Σi+1, ...,Σi+j∆
−j

where Γ−i = Γ− {ϕ1, ..., ϕi} and ∆−j = ∆− {ψ1, ..., ψj} for
0 ≤ i ≤ k , 0 ≤ j ≤ n.

We can replace any sequent with different interderivable (by
structural rules only) rules.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

Using Rule-maker theorem (Indrzejczak [2013]):

For any sequent Γ⇒ ∆ with Γ = {ϕ1, ..., ϕk} and
∆ = {ψ1, ..., ψn}, k ≥ 0, n ≥ 0 there is 2k+n − 1 equivalent rules
captured by the general schema:

Π1,⇒ Σ1, ϕ1, ..., Πi ⇒ Σi , ϕi ψ1,Πi+1 ⇒ Σi+1, ..., ψj ,Πi+j ⇒ Σi+j

Γ−i ,Π1, ...,Πi ,Πi+1, ...,Πi+j ⇒ Σ1, ...,Σi ,Σi+1, ...,Σi+j∆
−j

where Γ−i = Γ− {ϕ1, ..., ϕi} and ∆−j = ∆− {ψ1, ..., ψj} for
0 ≤ i ≤ k , 0 ≤ j ≤ n.

We can replace any sequent with different interderivable (by
structural rules only) rules.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

Using Rule-maker theorem (Indrzejczak [2013]):

For any sequent Γ⇒ ∆ with Γ = {ϕ1, ..., ϕk} and
∆ = {ψ1, ..., ψn}, k ≥ 0, n ≥ 0 there is 2k+n − 1 equivalent rules
captured by the general schema:

Π1,⇒ Σ1, ϕ1, ..., Πi ⇒ Σi , ϕi ψ1,Πi+1 ⇒ Σi+1, ..., ψj ,Πi+j ⇒ Σi+j

Γ−i ,Π1, ...,Πi ,Πi+1, ...,Πi+j ⇒ Σ1, ...,Σi ,Σi+1, ...,Σi+j∆
−j

where Γ−i = Γ− {ϕ1, ..., ϕi} and ∆−j = ∆− {ψ1, ..., ψj} for
0 ≤ i ≤ k , 0 ≤ j ≤ n.

We can replace any sequent with different interderivable (by
structural rules only) rules.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

Using Rule-maker theorem (Indrzejczak [2013]):

For any sequent Γ⇒ ∆ with Γ = {ϕ1, ..., ϕk} and
∆ = {ψ1, ..., ψn}, k ≥ 0, n ≥ 0 there is 2k+n − 1 equivalent rules
captured by the general schema:

Π1,⇒ Σ1, ϕ1, ..., Πi ⇒ Σi , ϕi ψ1,Πi+1 ⇒ Σi+1, ..., ψj ,Πi+j ⇒ Σi+j

Γ−i ,Π1, ...,Πi ,Πi+1, ...,Πi+j ⇒ Σ1, ...,Σi ,Σi+1, ...,Σi+j∆
−j

where Γ−i = Γ− {ϕ1, ..., ϕi} and ∆−j = ∆− {ψ1, ..., ψj} for
0 ≤ i ≤ k , 0 ≤ j ≤ n.

We can replace any sequent with different interderivable (by
structural rules only) rules.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

For example from: ∃x∀y(ϕ[x/y ]↔ y = x)⇒ ∃1xϕ

we can obtain two rules:

Γ⇒ ∆, ∃x∀y(ϕ[x/y ]↔ y = x)

Γ⇒ ∆,∃1xϕ

and

∃1xϕ, Γ⇒ ∆

∃x∀y(ϕ[x/y ]↔ y = x), Γ⇒ ∆

The first may be used as the basis for the introduction rule but still
bad (no subformula-property, no separation).

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

For example from: ∃x∀y(ϕ[x/y ]↔ y = x)⇒ ∃1xϕ

we can obtain two rules:

Γ⇒ ∆, ∃x∀y(ϕ[x/y ]↔ y = x)

Γ⇒ ∆,∃1xϕ

and

∃1xϕ, Γ⇒ ∆

∃x∀y(ϕ[x/y ]↔ y = x), Γ⇒ ∆

The first may be used as the basis for the introduction rule but still
bad (no subformula-property, no separation).

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

For example from: ∃x∀y(ϕ[x/y ]↔ y = x)⇒ ∃1xϕ

we can obtain two rules:

Γ⇒ ∆, ∃x∀y(ϕ[x/y ]↔ y = x)

Γ⇒ ∆,∃1xϕ

and

∃1xϕ, Γ⇒ ∆

∃x∀y(ϕ[x/y ]↔ y = x), Γ⇒ ∆

The first may be used as the basis for the introduction rule but still
bad (no subformula-property, no separation).

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

For example from: ∃x∀y(ϕ[x/y ]↔ y = x)⇒ ∃1xϕ

we can obtain two rules:

Γ⇒ ∆, ∃x∀y(ϕ[x/y ]↔ y = x)

Γ⇒ ∆, ∃1xϕ

and

∃1xϕ, Γ⇒ ∆

∃x∀y(ϕ[x/y ]↔ y = x), Γ⇒ ∆

The first may be used as the basis for the introduction rule but still
bad (no subformula-property, no separation).

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

For example from: ∃x∀y(ϕ[x/y ]↔ y = x)⇒ ∃1xϕ

we can obtain two rules:

Γ⇒ ∆, ∃x∀y(ϕ[x/y ]↔ y = x)

Γ⇒ ∆, ∃1xϕ

and

∃1xϕ, Γ⇒ ∆

∃x∀y(ϕ[x/y ]↔ y = x), Γ⇒ ∆

The first may be used as the basis for the introduction rule but still
bad (no subformula-property, no separation).

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

We continue with decomposition of side-formula
∃x∀y(ϕ[x/y ]↔ y = x) obtaining:

ϕ(a), Γ⇒ ∆, a = b a = b, Γ⇒ ∆, ϕ(a)

Γ⇒ ∆,∃1xϕ

where a is not in Γ,∆, ϕ

One may test that it works by proving the corresponding sequent:

ϕ(b)↔ b = a, ϕ(b)⇒ b = a
(∀ ⇒)

∀y(ϕ(y)↔ y = a), ϕ(b)⇒ b = a

ϕ(b)↔ b = a, b = a⇒ ϕ(b)

∀y(ϕ(y)↔ y = a), b = a⇒ ϕ(b)
(⇒ ∃1) ∀y(ϕ(y)↔ y = a)⇒ ∃1xϕ

(∃ ⇒)
∃x∀y(ϕ(y)↔ y = x)⇒ ∃1xϕ

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

We continue with decomposition of side-formula
∃x∀y(ϕ[x/y ]↔ y = x) obtaining:

ϕ(a), Γ⇒ ∆, a = b a = b, Γ⇒ ∆, ϕ(a)

Γ⇒ ∆,∃1xϕ

where a is not in Γ,∆, ϕ

One may test that it works by proving the corresponding sequent:

ϕ(b)↔ b = a, ϕ(b)⇒ b = a
(∀ ⇒)

∀y(ϕ(y)↔ y = a), ϕ(b)⇒ b = a

ϕ(b)↔ b = a, b = a⇒ ϕ(b)

∀y(ϕ(y)↔ y = a), b = a⇒ ϕ(b)
(⇒ ∃1) ∀y(ϕ(y)↔ y = a)⇒ ∃1xϕ

(∃ ⇒)
∃x∀y(ϕ(y)↔ y = x)⇒ ∃1xϕ

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

We continue with decomposition of side-formula
∃x∀y(ϕ[x/y ]↔ y = x) obtaining:

ϕ(a), Γ⇒ ∆, a = b a = b, Γ⇒ ∆, ϕ(a)

Γ⇒ ∆,∃1xϕ

where a is not in Γ,∆, ϕ

One may test that it works by proving the corresponding sequent:

ϕ(b)↔ b = a, ϕ(b)⇒ b = a
(∀ ⇒)

∀y(ϕ(y)↔ y = a), ϕ(b)⇒ b = a

ϕ(b)↔ b = a, b = a⇒ ϕ(b)

∀y(ϕ(y)↔ y = a), b = a⇒ ϕ(b)
(⇒ ∃1) ∀y(ϕ(y)↔ y = a)⇒ ∃1xϕ

(∃ ⇒)
∃x∀y(ϕ(y)↔ y = x)⇒ ∃1xϕ

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

We continue with decomposition of side-formula
∃x∀y(ϕ[x/y ]↔ y = x) obtaining:

ϕ(a), Γ⇒ ∆, a = b a = b, Γ⇒ ∆, ϕ(a)

Γ⇒ ∆, ∃1xϕ

where a is not in Γ,∆, ϕ

One may test that it works by proving the corresponding sequent:

ϕ(b)↔ b = a, ϕ(b)⇒ b = a
(∀ ⇒)

∀y(ϕ(y)↔ y = a), ϕ(b)⇒ b = a

ϕ(b)↔ b = a, b = a⇒ ϕ(b)

∀y(ϕ(y)↔ y = a), b = a⇒ ϕ(b)
(⇒ ∃1) ∀y(ϕ(y)↔ y = a)⇒ ∃1xϕ

(∃ ⇒)
∃x∀y(ϕ(y)↔ y = x)⇒ ∃1xϕ

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

We continue with decomposition of side-formula
∃x∀y(ϕ[x/y ]↔ y = x) obtaining:

ϕ(a), Γ⇒ ∆, a = b a = b, Γ⇒ ∆, ϕ(a)

Γ⇒ ∆, ∃1xϕ

where a is not in Γ,∆, ϕ

One may test that it works by proving the corresponding sequent:

ϕ(b)↔ b = a, ϕ(b)⇒ b = a
(∀ ⇒)

∀y(ϕ(y)↔ y = a), ϕ(b)⇒ b = a

ϕ(b)↔ b = a, b = a⇒ ϕ(b)

∀y(ϕ(y)↔ y = a), b = a⇒ ϕ(b)
(⇒ ∃1) ∀y(ϕ(y)↔ y = a)⇒ ∃1xϕ

(∃ ⇒)
∃x∀y(ϕ(y)↔ y = x)⇒ ∃1xϕ

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

However, when we try the same with:
∃1xϕ⇒ ∃x∀y(ϕ[x/y ]↔ y = x)

we obtain:

Γ⇒ ∆, ϕ(b), b = a ϕ(b), b = a, Γ⇒ ∆, ϕ(a)

∃1xϕ, Γ⇒ ∆

where a is not in Γ,∆, ϕ

and this rule does not allow us to prove
∃1xϕ⇒ ∃x∀y(ϕ[x/y ]↔ y = x).

The reason is that existentially and universally quantified variables
occur in the same scope. So the method of decomposition does
not yield the required result which allows us to prove definitional
equivalences universally.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

However, when we try the same with:
∃1xϕ⇒ ∃x∀y(ϕ[x/y ]↔ y = x)

we obtain:

Γ⇒ ∆, ϕ(b), b = a ϕ(b), b = a, Γ⇒ ∆, ϕ(a)

∃1xϕ, Γ⇒ ∆

where a is not in Γ,∆, ϕ

and this rule does not allow us to prove
∃1xϕ⇒ ∃x∀y(ϕ[x/y ]↔ y = x).

The reason is that existentially and universally quantified variables
occur in the same scope. So the method of decomposition does
not yield the required result which allows us to prove definitional
equivalences universally.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

However, when we try the same with:
∃1xϕ⇒ ∃x∀y(ϕ[x/y ]↔ y = x)

we obtain:

Γ⇒ ∆, ϕ(b), b = a ϕ(b), b = a, Γ⇒ ∆, ϕ(a)

∃1xϕ, Γ⇒ ∆

where a is not in Γ,∆, ϕ

and this rule does not allow us to prove
∃1xϕ⇒ ∃x∀y(ϕ[x/y ]↔ y = x).

The reason is that existentially and universally quantified variables
occur in the same scope. So the method of decomposition does
not yield the required result which allows us to prove definitional
equivalences universally.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

However, when we try the same with:
∃1xϕ⇒ ∃x∀y(ϕ[x/y ]↔ y = x)

we obtain:

Γ⇒ ∆, ϕ(b), b = a ϕ(b), b = a, Γ⇒ ∆, ϕ(a)

∃1xϕ, Γ⇒ ∆

where a is not in Γ,∆, ϕ

and this rule does not allow us to prove
∃1xϕ⇒ ∃x∀y(ϕ[x/y ]↔ y = x).

The reason is that existentially and universally quantified variables
occur in the same scope. So the method of decomposition does
not yield the required result which allows us to prove definitional
equivalences universally.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

However, when we try the same with:
∃1xϕ⇒ ∃x∀y(ϕ[x/y ]↔ y = x)

we obtain:

Γ⇒ ∆, ϕ(b), b = a ϕ(b), b = a, Γ⇒ ∆, ϕ(a)

∃1xϕ, Γ⇒ ∆

where a is not in Γ,∆, ϕ

and this rule does not allow us to prove
∃1xϕ⇒ ∃x∀y(ϕ[x/y ]↔ y = x).

The reason is that existentially and universally quantified variables
occur in the same scope. So the method of decomposition does
not yield the required result which allows us to prove definitional
equivalences universally.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

However, when we try the same with:
∃1xϕ⇒ ∃x∀y(ϕ[x/y ]↔ y = x)

we obtain:

Γ⇒ ∆, ϕ(b), b = a ϕ(b), b = a, Γ⇒ ∆, ϕ(a)

∃1xϕ, Γ⇒ ∆

where a is not in Γ,∆, ϕ

and this rule does not allow us to prove
∃1xϕ⇒ ∃x∀y(ϕ[x/y ]↔ y = x).

The reason is that existentially and universally quantified variables
occur in the same scope. So the method of decomposition does
not yield the required result which allows us to prove definitional
equivalences universally.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

The same situation holds for:
∃1xϕ⇒ ∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x)) and
∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x))⇒ ∃1xϕ

they lead to the rules:

(∃1 ⇒)
ϕ[x/a], Γ⇒ ∆, ϕ[x/b] b = a, ϕ[x/a], Γ⇒ ∆,

∃1xϕ, Γ⇒ ∆

(⇒ ∃1)
Γ⇒ ∆, ϕ[x/b] ϕ[x/a], Γ⇒ ∆, a = b

Γ⇒ ∆,∃1xϕ

The second rule works but when we try to prove the first sequent
by means of the first rule a derivation breaks.

In general: to obtain a decent rule the quantifiers in decomposed
formulae should have separate scopes.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

The same situation holds for:
∃1xϕ⇒ ∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x)) and
∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x))⇒ ∃1xϕ

they lead to the rules:

(∃1 ⇒)
ϕ[x/a], Γ⇒ ∆, ϕ[x/b] b = a, ϕ[x/a], Γ⇒ ∆,

∃1xϕ, Γ⇒ ∆

(⇒ ∃1)
Γ⇒ ∆, ϕ[x/b] ϕ[x/a], Γ⇒ ∆, a = b

Γ⇒ ∆,∃1xϕ

The second rule works but when we try to prove the first sequent
by means of the first rule a derivation breaks.

In general: to obtain a decent rule the quantifiers in decomposed
formulae should have separate scopes.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

The same situation holds for:
∃1xϕ⇒ ∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x)) and
∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x))⇒ ∃1xϕ

they lead to the rules:

(∃1 ⇒)
ϕ[x/a], Γ⇒ ∆, ϕ[x/b] b = a, ϕ[x/a], Γ⇒ ∆,

∃1xϕ, Γ⇒ ∆

(⇒ ∃1)
Γ⇒ ∆, ϕ[x/b] ϕ[x/a], Γ⇒ ∆, a = b

Γ⇒ ∆,∃1xϕ

The second rule works but when we try to prove the first sequent
by means of the first rule a derivation breaks.

In general: to obtain a decent rule the quantifiers in decomposed
formulae should have separate scopes.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

The same situation holds for:
∃1xϕ⇒ ∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x)) and
∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x))⇒ ∃1xϕ

they lead to the rules:

(∃1 ⇒)
ϕ[x/a], Γ⇒ ∆, ϕ[x/b] b = a, ϕ[x/a], Γ⇒ ∆,

∃1xϕ, Γ⇒ ∆

(⇒ ∃1)
Γ⇒ ∆, ϕ[x/b] ϕ[x/a], Γ⇒ ∆, a = b

Γ⇒ ∆,∃1xϕ

The second rule works but when we try to prove the first sequent
by means of the first rule a derivation breaks.

In general: to obtain a decent rule the quantifiers in decomposed
formulae should have separate scopes.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

The same situation holds for:
∃1xϕ⇒ ∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x)) and
∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x))⇒ ∃1xϕ

they lead to the rules:

(∃1 ⇒)
ϕ[x/a], Γ⇒ ∆, ϕ[x/b] b = a, ϕ[x/a], Γ⇒ ∆,

∃1xϕ, Γ⇒ ∆

(⇒ ∃1)
Γ⇒ ∆, ϕ[x/b] ϕ[x/a], Γ⇒ ∆, a = b

Γ⇒ ∆,∃1xϕ

The second rule works but when we try to prove the first sequent
by means of the first rule a derivation breaks.

In general: to obtain a decent rule the quantifiers in decomposed
formulae should have separate scopes.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

The same situation holds for:
∃1xϕ⇒ ∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x)) and
∃x(ϕ ∧ ∀y(ϕ[x/y ]→ y = x))⇒ ∃1xϕ

they lead to the rules:

(∃1 ⇒)
ϕ[x/a], Γ⇒ ∆, ϕ[x/b] b = a, ϕ[x/a], Γ⇒ ∆,

∃1xϕ, Γ⇒ ∆

(⇒ ∃1)
Γ⇒ ∆, ϕ[x/b] ϕ[x/a], Γ⇒ ∆, a = b

Γ⇒ ∆,∃1xϕ

The second rule works but when we try to prove the first sequent
by means of the first rule a derivation breaks.

In general: to obtain a decent rule the quantifiers in decomposed
formulae should have separate scopes.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

On the basis of:
∃1xϕ⇒ ∃xϕ
∃1xϕ⇒ ∀xy(ϕ ∧ ϕ[x/y ]→ x = y)
∃xϕ,∀xy(ϕ ∧ ϕ[x/y ]→ x = y)⇒ ∃1xϕ

We obtain the following three rules:

ϕ(a), Γ⇒ ∆

∃1xϕ, Γ⇒ ∆

Γ⇒ ∆, ϕ(b) Γ⇒ ∆, ϕ(c) b = c , Γ⇒ ∆

∃1xϕ, Γ⇒ ∆

Γ⇒ ∆, ϕ(b) ϕ(a), ϕ(a′), Γ⇒ ∆, a = a′

Γ⇒ ∆,∃1xϕ

where a, a′ is not in Γ,∆, ϕ

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

On the basis of:
∃1xϕ⇒ ∃xϕ
∃1xϕ⇒ ∀xy(ϕ ∧ ϕ[x/y ]→ x = y)
∃xϕ,∀xy(ϕ ∧ ϕ[x/y ]→ x = y)⇒ ∃1xϕ

We obtain the following three rules:

ϕ(a), Γ⇒ ∆

∃1xϕ, Γ⇒ ∆

Γ⇒ ∆, ϕ(b) Γ⇒ ∆, ϕ(c) b = c , Γ⇒ ∆

∃1xϕ, Γ⇒ ∆

Γ⇒ ∆, ϕ(b) ϕ(a), ϕ(a′), Γ⇒ ∆, a = a′

Γ⇒ ∆,∃1xϕ

where a, a′ is not in Γ,∆, ϕ

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

On the basis of:
∃1xϕ⇒ ∃xϕ
∃1xϕ⇒ ∀xy(ϕ ∧ ϕ[x/y ]→ x = y)
∃xϕ,∀xy(ϕ ∧ ϕ[x/y ]→ x = y)⇒ ∃1xϕ

We obtain the following three rules:

ϕ(a), Γ⇒ ∆

∃1xϕ, Γ⇒ ∆

Γ⇒ ∆, ϕ(b) Γ⇒ ∆, ϕ(c) b = c , Γ⇒ ∆

∃1xϕ, Γ⇒ ∆

Γ⇒ ∆, ϕ(b) ϕ(a), ϕ(a′), Γ⇒ ∆, a = a′

Γ⇒ ∆,∃1xϕ

where a, a′ is not in Γ,∆, ϕ

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

On the basis of:
∃1xϕ⇒ ∃xϕ
∃1xϕ⇒ ∀xy(ϕ ∧ ϕ[x/y ]→ x = y)
∃xϕ,∀xy(ϕ ∧ ϕ[x/y ]→ x = y)⇒ ∃1xϕ

We obtain the following three rules:

ϕ(a), Γ⇒ ∆

∃1xϕ, Γ⇒ ∆

Γ⇒ ∆, ϕ(b) Γ⇒ ∆, ϕ(c) b = c , Γ⇒ ∆

∃1xϕ, Γ⇒ ∆

Γ⇒ ∆, ϕ(b) ϕ(a), ϕ(a′), Γ⇒ ∆, a = a′

Γ⇒ ∆, ∃1xϕ

where a, a′ is not in Γ,∆, ϕ

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

Of course, instead of 2- or 3-premise rules we can obtain rules with
reduced branching-factor by RG-theorem, e.g:

Γ⇒ ∆, ϕ(b) Γ⇒ ∆, ϕ(c) b = c , Γ⇒ ∆

∃1xϕ, Γ⇒ ∆

may be replaced with:

Γ⇒ ∆, ϕ(c) b = c , Γ⇒ ∆

ϕ(b),∃1xϕ, Γ⇒ ∆

or

b = c , Γ⇒ ∆

ϕ(b), ϕ(c),∃1xϕ, Γ⇒ ∆

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

Of course, instead of 2- or 3-premise rules we can obtain rules with
reduced branching-factor by RG-theorem, e.g:

Γ⇒ ∆, ϕ(b) Γ⇒ ∆, ϕ(c) b = c , Γ⇒ ∆

∃1xϕ, Γ⇒ ∆

may be replaced with:

Γ⇒ ∆, ϕ(c) b = c , Γ⇒ ∆

ϕ(b),∃1xϕ, Γ⇒ ∆

or

b = c , Γ⇒ ∆

ϕ(b), ϕ(c),∃1xϕ, Γ⇒ ∆

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

Of course, instead of 2- or 3-premise rules we can obtain rules with
reduced branching-factor by RG-theorem, e.g:

Γ⇒ ∆, ϕ(b) Γ⇒ ∆, ϕ(c) b = c , Γ⇒ ∆

∃1xϕ, Γ⇒ ∆

may be replaced with:

Γ⇒ ∆, ϕ(c) b = c , Γ⇒ ∆

ϕ(b),∃1xϕ, Γ⇒ ∆

or

b = c , Γ⇒ ∆

ϕ(b), ϕ(c),∃1xϕ, Γ⇒ ∆

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

Of course, instead of 2- or 3-premise rules we can obtain rules with
reduced branching-factor by RG-theorem, e.g:

Γ⇒ ∆, ϕ(b) Γ⇒ ∆, ϕ(c) b = c , Γ⇒ ∆

∃1xϕ, Γ⇒ ∆

may be replaced with:

Γ⇒ ∆, ϕ(c) b = c , Γ⇒ ∆

ϕ(b),∃1xϕ, Γ⇒ ∆

or

b = c , Γ⇒ ∆

ϕ(b), ϕ(c),∃1xϕ, Γ⇒ ∆

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

Of course, instead of 2- or 3-premise rules we can obtain rules with
reduced branching-factor by RG-theorem, e.g:

Γ⇒ ∆, ϕ(b) Γ⇒ ∆, ϕ(c) b = c , Γ⇒ ∆

∃1xϕ, Γ⇒ ∆

may be replaced with:

Γ⇒ ∆, ϕ(c) b = c , Γ⇒ ∆

ϕ(b),∃1xϕ, Γ⇒ ∆

or

b = c , Γ⇒ ∆

ϕ(b), ϕ(c),∃1xϕ, Γ⇒ ∆

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

Γ⇒ ∆, ϕ(b) ϕ(a), ϕ(a′), Γ⇒ ∆, a = a′

Γ⇒ ∆, ∃1xϕ

may be replaced with:

ϕ(a), ϕ(a′), Γ⇒ ∆, a = a′

ϕ(b), Γ⇒ ∆,∃1xϕ

or even:

ϕ(a), ϕ(b), Γ⇒ ∆, a = b

ϕ(b), Γ⇒ ∆,∃1xϕ

Warning: but such simplifications usually lead to failure of the cut
elimination theorem.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

Γ⇒ ∆, ϕ(b) ϕ(a), ϕ(a′), Γ⇒ ∆, a = a′

Γ⇒ ∆, ∃1xϕ

may be replaced with:

ϕ(a), ϕ(a′), Γ⇒ ∆, a = a′

ϕ(b), Γ⇒ ∆,∃1xϕ

or even:

ϕ(a), ϕ(b), Γ⇒ ∆, a = b

ϕ(b), Γ⇒ ∆,∃1xϕ

Warning: but such simplifications usually lead to failure of the cut
elimination theorem.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

Γ⇒ ∆, ϕ(b) ϕ(a), ϕ(a′), Γ⇒ ∆, a = a′

Γ⇒ ∆, ∃1xϕ

may be replaced with:

ϕ(a), ϕ(a′), Γ⇒ ∆, a = a′

ϕ(b), Γ⇒ ∆,∃1xϕ

or even:

ϕ(a), ϕ(b), Γ⇒ ∆, a = b

ϕ(b), Γ⇒ ∆,∃1xϕ

Warning: but such simplifications usually lead to failure of the cut
elimination theorem.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

Γ⇒ ∆, ϕ(b) ϕ(a), ϕ(a′), Γ⇒ ∆, a = a′

Γ⇒ ∆, ∃1xϕ

may be replaced with:

ϕ(a), ϕ(a′), Γ⇒ ∆, a = a′

ϕ(b), Γ⇒ ∆, ∃1xϕ

or even:

ϕ(a), ϕ(b), Γ⇒ ∆, a = b

ϕ(b), Γ⇒ ∆,∃1xϕ

Warning: but such simplifications usually lead to failure of the cut
elimination theorem.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

Γ⇒ ∆, ϕ(b) ϕ(a), ϕ(a′), Γ⇒ ∆, a = a′

Γ⇒ ∆, ∃1xϕ

may be replaced with:

ϕ(a), ϕ(a′), Γ⇒ ∆, a = a′

ϕ(b), Γ⇒ ∆, ∃1xϕ

or even:

ϕ(a), ϕ(b), Γ⇒ ∆, a = b

ϕ(b), Γ⇒ ∆, ∃1xϕ

Warning: but such simplifications usually lead to failure of the cut
elimination theorem.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Methodological interlude

How do we build the rules - the case of ∃1:

Γ⇒ ∆, ϕ(b) ϕ(a), ϕ(a′), Γ⇒ ∆, a = a′

Γ⇒ ∆, ∃1xϕ

may be replaced with:

ϕ(a), ϕ(a′), Γ⇒ ∆, a = a′

ϕ(b), Γ⇒ ∆, ∃1xϕ

or even:

ϕ(a), ϕ(b), Γ⇒ ∆, a = b

ϕ(b), Γ⇒ ∆, ∃1xϕ

Warning: but such simplifications usually lead to failure of the cut
elimination theorem.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2



Funded by the European Union (ERC, ExtenDD, project number:
101054714). Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the
European Union or the European Research Council. Neither the
European Union nor the granting authority can be held responsible
for them.

Andrzej Indrzejczak Towards a general proof theory of term-forming operators 2


