Towards a general proof theory of term-forming operators 2

Andrzej Indrzejczak
Department of Logic, University of Lodz
ExtenDD Seminar, Łódź, April 18, 2023

Brief Recall:

Brief Recall:

Term-forming operators (variable-binding term operators) examples:

Brief Recall:

Term-forming operators (variable-binding term operators) examples:

- iota-operator (Peano): $\imath x \varphi$ - the (only) x such that φ;

Brief Recall:

Term-forming operators (variable-binding term operators) examples:

- iota-operator (Peano): $\imath x \varphi$ - the (only) x such that φ;
- epsilon-operator (Hilbert): $\epsilon x \varphi-\mathrm{a}(\mathrm{n}) \times$ such that φ;

Brief Recall:

Term-forming operators (variable-binding term operators) examples:

- iota-operator (Peano): $\imath x \varphi$ - the (only) x such that φ;
- epsilon-operator (Hilbert): $\epsilon x \varphi-\mathrm{a}(\mathrm{n}) x$ such that φ;
- abstraction-operator: $\{x: \varphi\}$ - the set of (all) x satisfying φ;

Brief Recall:

Term-forming operators (variable-binding term operators) examples:

- iota-operator (Peano): $\imath x \varphi$ - the (only) x such that φ;
- epsilon-operator (Hilbert): $\epsilon x \varphi-\mathrm{a}(\mathrm{n}) x$ such that φ;
- abstraction-operator: $\{x: \varphi\}$ - the set of (all) x satisfying φ;
- counting-operator (Frege): $\sharp x \varphi$ - the number of x such that φ;

Brief Recall:

Term-forming operators (variable-binding term operators) examples:

- iota-operator (Peano): $\imath x \varphi$ - the (only) x such that φ;
- epsilon-operator (Hilbert): $\epsilon x \varphi-\mathrm{a}(\mathrm{n}) x$ such that φ;
- abstraction-operator: $\{x: \varphi\}$ - the set of (all) x satisfying φ;
- counting-operator (Frege): $\sharp x \varphi$ - the number of x such that φ;
- lambda-operator (Church): $\lambda x \varphi$ - the property of being φ.

Brief Recall:

Term-forming operators (variable-binding term operators) examples:

- iota-operator (Peano): $\imath x \varphi$ - the (only) x such that φ;
- epsilon-operator (Hilbert): $\epsilon x \varphi-\mathrm{a}(\mathrm{n}) x$ such that φ;
- abstraction-operator: $\{x: \varphi\}$ - the set of (all) x satisfying φ;
- counting-operator (Frege): $\sharp x \varphi$ - the number of x such that φ;
- lambda-operator (Church): $\lambda x \varphi$ - the property of being φ.

There are two attempts to develop a general theory:

Brief Recall:

Term-forming operators (variable-binding term operators) examples:

- iota-operator (Peano): $\imath x \varphi$ - the (only) x such that φ;
- epsilon-operator (Hilbert): $\epsilon x \varphi-\mathrm{a}(\mathrm{n}) x$ such that φ;
- abstraction-operator: $\{x: \varphi\}$ - the set of (all) x satisfying φ;
- counting-operator (Frege): $\sharp x \varphi$ - the number of x such that φ;
- lambda-operator (Church): $\lambda x \varphi$ - the property of being φ.

There are two attempts to develop a general theory:
(1) A theory independently proposed by Scott, by Hatcher, Corcoran and Herring, and by Da Costa.

Brief Recall:

Term-forming operators (variable-binding term operators) examples:

- iota-operator (Peano): $\imath x \varphi$ - the (only) x such that φ;
- epsilon-operator (Hilbert): $\epsilon x \varphi-\mathrm{a}(\mathrm{n}) x$ such that φ;
- abstraction-operator: $\{x: \varphi\}$ - the set of (all) x satisfying φ;
- counting-operator (Frege): $\sharp x \varphi$ - the number of x such that φ;
- lambda-operator (Church): $\lambda x \varphi$ - the property of being φ.

There are two attempts to develop a general theory:
(1) A theory independently proposed by Scott, by Hatcher, Corcoran and Herring, and by Da Costa.
(2) An approach developed by Neil Tennant.

Brief Recall:

Brief Recall:

The first theory (Scott, Hatcher, Corcoran and Herring, Da Costa)

Brief Recall:

The first theory (Scott, Hatcher, Corcoran and Herring, Da Costa)

It is based on two general principles added to PFFOLI (positive free first-order logic with identity) [Scott] or to CFOLI (classical FOLI) [the remaining authors].

Brief Recall:

The first theory (Scott, Hatcher, Corcoran and Herring, Da Costa)

It is based on two general principles added to PFFOLI (positive free first-order logic with identity) [Scott] or to CFOLI (classical FOLI) [the remaining authors].

EXT: $\forall x(\varphi(x) \leftrightarrow \psi(x)) \rightarrow \tau x \varphi(x)=\tau x \psi(x)$
$\mathrm{AV}: \tau x \varphi(x)=\tau y \varphi(y)$

Brief Recall:

The first theory (Scott, Hatcher, Corcoran and Herring, Da Costa)

It is based on two general principles added to PFFOLI (positive free first-order logic with identity) [Scott] or to CFOLI (classical FOLI) [the remaining authors].

EXT: $\forall x(\varphi(x) \leftrightarrow \psi(x)) \rightarrow \tau x \varphi(x)=\tau x \psi(x)$
$\mathrm{AV}: \tau x \varphi(x)=\tau y \varphi(y)$
The formalisation GT1: to GC add:

$$
\begin{gathered}
(E x t) \frac{\varphi(a), \Gamma \Rightarrow \Delta, \psi(a) \quad \psi(a), \Gamma \Rightarrow \Delta, \varphi(a)}{\Gamma \Rightarrow \Delta, \tau x \varphi(x)=\tau x \psi(x)} \\
(A V) \frac{\tau x \varphi(x)=\tau y \varphi(y), \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}
\end{gathered}
$$

Brief Recall:

Brief Recall:

The second theory (Tennant)

Brief Recall:

The second theory (Tennant)

Developed in the setting of NFFOLI (negative free FOLI) where quantifier rules are weaker and the identity is not (unconditionally) reflexive.

Brief Recall:

The second theory (Tennant)

Developed in the setting of NFFOLI (negative free FOLI) where quantifier rules are weaker and the identity is not (unconditionally) reflexive.
If we add existence predicate E, which is usually defined as
$E t:=\exists x(x=t)$, then the following hold for FFOLI:
$\forall x \varphi \wedge E t \rightarrow \varphi[x / t]$
$\varphi[x / t] \wedge E t \rightarrow \exists x \varphi$

Brief Recall:

The second theory (Tennant)

Developed in the setting of NFFOLI (negative free FOLI) where quantifier rules are weaker and the identity is not (unconditionally) reflexive.
If we add existence predicate E, which is usually defined as
$E t:=\exists x(x=t)$, then the following hold for FFOLI:
$\forall x \varphi \wedge E t \rightarrow \varphi[x / t]$
$\varphi[x / t] \wedge E t \rightarrow \exists x \varphi$
Moreover, in NFFOLI additionally atomic formulae with nondenoting terms are false which implies that:
$E t \rightarrow t=t$

Brief Recall:

The second theory (Tennant)

Developed in the setting of NFFOLI (negative free FOLI) where quantifier rules are weaker and the identity is not (unconditionally) reflexive.
If we add existence predicate E, which is usually defined as
$E t:=\exists x(x=t)$, then the following hold for FFOLI:
$\forall x \varphi \wedge E t \rightarrow \varphi[x / t]$
$\varphi[x / t] \wedge E t \rightarrow \exists x \varphi$
Moreover, in NFFOLI additionally atomic formulae with nondenoting terms are false which implies that:
$E t \rightarrow t=t$ and also:
$\varphi(t) \rightarrow E t$
for any atomic formula φ.

Brief Recall:

Brief Recall:

The second theory (Tennant)

Brief Recall:

The second theory (Tennant)

Based on the following ND rules:
τ I If $\varphi(a), E a \vdash a R t$ and $a R t \vdash \varphi(a)$ and $E t$, then $t=\tau x \varphi(x)$;
$\tau E 1$ If $t=\tau x \varphi(x)$ and $\varphi(b)$ and $E b$, then $b R t$
$\tau E 2$ If $t=\tau x \varphi(x)$, then $E t$
$\tau E 3$ If $t=\tau x \varphi(x)$ and $b R t$, then $\varphi(b)$
where a is an eigenvariable, and R is the specific relation involved in the characterisation of τ; e.g. $=$ for ι, \in for set builder.

Tennant's approach:

Tennant's approach:

The corresponding sequent rules:

Tennant's approach:

The corresponding sequent rules:

$$
(\Rightarrow \tau) \frac{\Gamma \Rightarrow \Delta, E t \quad E a, \varphi(a), \Gamma \Rightarrow \Delta, a R t \quad a R t, \Gamma \Rightarrow \Delta, \varphi(a)}{\Gamma \Rightarrow \Delta, t=\tau \times \varphi(x)}
$$

where a is not in Γ, Δ, φ

$$
\begin{gathered}
(\Rightarrow \tau E 1) \frac{\Gamma \Rightarrow \Delta, E b \quad \Gamma \Rightarrow \Delta, \varphi(b) \quad \Gamma \Rightarrow \Delta, t=\tau \times \varphi(x)}{\Gamma \Rightarrow \Delta, b R t} \\
(\Rightarrow \tau E 2) \frac{\Gamma \Rightarrow \Delta, t=\tau \times \varphi(x)}{\Gamma \Rightarrow \Delta, E t} \\
(\Rightarrow \tau E 3) \frac{\Gamma \Rightarrow \Delta, b R t \quad \Gamma \Rightarrow \Delta, t=\tau \times \varphi(x)}{\Gamma \Rightarrow \Delta, \varphi(b)}
\end{gathered}
$$

Tennant's approach:

More standard sequent rules:

Tennant's approach:

More standard sequent rules:

To get more standard SC we apply Rule-maker lemma and obtain left introduction rules for τ :

$$
\begin{gathered}
(\tau \Rightarrow 1) \Gamma \Rightarrow \Delta, E b \quad \Gamma \Rightarrow \Delta, \varphi(b) \quad b R t, \Gamma \Rightarrow \Delta \\
t=\tau \times \varphi(x), \Gamma \Rightarrow \Delta \\
(\tau \Rightarrow 2) \frac{E t, \Gamma \Rightarrow \Delta}{t=\tau \times \varphi(x), \Gamma \Rightarrow \Delta} \\
(\tau \Rightarrow 3) \frac{\Gamma \Rightarrow \Delta, b R t \quad \varphi(b), \Gamma \Rightarrow \Delta}{t=\tau \times \varphi(x), \Gamma \Rightarrow \Delta}
\end{gathered}
$$

Tennant's approach:

Tennant's approach:

Simplification for CFOLI:

Tennant's approach:

Simplification for CFOLI:

Note that if we transfer these rules to the setting of CFOLI we do not need formulae of the form $E t$ and the rule ($\tau E 2$) is superfluous as specific to negative free logic.

Tennant's approach:

Simplification for CFOLI:

Note that if we transfer these rules to the setting of CFOLI we do not need formulae of the form $E t$ and the rule ($\tau E 2$) is superfluous as specific to negative free logic.
As a result we obtain the following rules:

$$
(\Rightarrow \tau) \frac{\varphi(a), \Gamma \Rightarrow \Delta, a R t \quad a R t, \Gamma \Rightarrow \Delta, \varphi(a)}{\Gamma \Rightarrow \Delta, t=\tau \times \varphi(x)}
$$

where a is not in Γ, Δ, φ

$$
\begin{aligned}
& (\tau \Rightarrow 1) \frac{\Gamma \Rightarrow \Delta, \varphi(b) \quad b R t, \Gamma \Rightarrow \Delta}{t=\tau \times \varphi(x), \Gamma \Rightarrow \Delta} \\
& (\tau \Rightarrow 3) \frac{\Gamma \Rightarrow \Delta, b R t \quad \varphi(b), \Gamma \Rightarrow \Delta}{t=\tau \times \varphi(x), \Gamma \Rightarrow \Delta}
\end{aligned}
$$

Tennant's approach:

The strength of Tennant's rules:

Tennant's approach:

The strength of Tennant's rules:
In general what we obtain with these rules is equivalent to the following principle:
$\forall y(y=\tau x \varphi(x) \leftrightarrow \forall x(\varphi(x) \leftrightarrow x R y)$

Tennant's approach:

The strength of Tennant's rules:

In general what we obtain with these rules is equivalent to the following principle:
$\forall y(y=\tau x \varphi(x) \leftrightarrow \forall x(\varphi(x) \leftrightarrow x R y)$
which is derivable already in the setting of NFFOLI.

Tennant's approach:

The strength of Tennant's rules:

In general what we obtain with these rules is equivalent to the following principle:
$\forall y(y=\tau x \varphi(x) \leftrightarrow \forall x(\varphi(x) \leftrightarrow x R y)$
which is derivable already in the setting of NFFOLI.
On the ground of CFOLI it is equivalent to:
$t=\tau x \varphi(x) \leftrightarrow \forall x(\varphi(x) \leftrightarrow x R t)$.

Tennant's approach:

The strength of Tennant's rules:

In general what we obtain with these rules is equivalent to the following principle:
$\forall y(y=\tau x \varphi(x) \leftrightarrow \forall x(\varphi(x) \leftrightarrow x R y)$
which is derivable already in the setting of NFFOLI.
On the ground of CFOLI it is equivalent to:
$t=\tau x \varphi(x) \leftrightarrow \forall x(\varphi(x) \leftrightarrow x R t)$.
for which we demonstrate syntactically the equivalence with the stated rules.

Tennant's approach:

The strength of Tennant's rules:

Tennant's approach:

The strength of Tennant's rules:
In one direction we have:

$$
\begin{array}{r}
(\tau \Rightarrow) \frac{\varphi[x / a] \Rightarrow \varphi[x / a] \quad a R t \Rightarrow a R t}{(\Rightarrow \leftrightarrow)} \frac{a R t \Rightarrow a R t \quad \varphi[x / a] \Rightarrow \varphi[x / a]}{t=\tau \times \varphi(x), \varphi[x / a] \Rightarrow a R t} \quad \frac{a R t}{t=\tau \times \varphi(x), a R t \Rightarrow \varphi[x / a]} \\
(\Rightarrow \forall) \frac{t=\tau \times \varphi(x) \Rightarrow \varphi[x / a] \leftrightarrow a R t}{t=\tau \times \varphi(x) \Rightarrow \forall x(\varphi(x) \leftrightarrow x R t)}
\end{array}
$$

Tennant's approach:

The strength of Tennant's rules:

In one direction we have:

In the second direction:

$$
\begin{aligned}
& (\leftrightarrow \Rightarrow) \frac{a R t \Rightarrow a R t \quad \varphi[x / a] \Rightarrow \varphi[x / a]}{(\forall \Rightarrow)} \frac{\varphi[x / a] \leftrightarrow a R t, a R t \Rightarrow \varphi[x / a]}{\forall x(\varphi(x) \leftrightarrow x R t), a R t \Rightarrow \varphi[x / a]}
\end{aligned}
$$

Tennant's approach:

Tennant's approach:

The strength of Tennant's rules:

Tennant's approach:

The strength of Tennant's rules:

Derivability of the specific rules is straightforward. Notice that from the principle as an additional axiom we obtain:
(a) $t=\tau x \varphi(x) \Rightarrow \forall x(\varphi(x) \leftrightarrow x R t) \quad$ and
(b) $\forall x(\varphi(x) \leftrightarrow x R t) \Rightarrow t=\tau x \varphi(x)$.

Tennant's approach:

The strength of Tennant's rules:

Derivability of the specific rules is straightforward. Notice that from the principle as an additional axiom we obtain:
(a) $t=\tau x \varphi(x) \Rightarrow \forall x(\varphi(x) \leftrightarrow x R t) \quad$ and
(b) $\forall x(\varphi(x) \leftrightarrow x R t) \Rightarrow t=\tau x \varphi(x)$.

From the premisses of any variant of $(\tau \Rightarrow)$ by W we deduce:

$$
(\leftrightarrow \Rightarrow) \frac{\Gamma \Rightarrow \Delta, b R t, \varphi[x / b] \quad b R t, \varphi[x / b], \Gamma \Rightarrow \Delta}{(\forall \Rightarrow) \frac{\varphi[x / b] \leftrightarrow b R t, \Gamma \Rightarrow \Delta}{\forall x(\varphi(x) \leftrightarrow x R t), \Gamma \Rightarrow \Delta}}
$$

Tennant's approach:

The strength of Tennant's rules:

Derivability of the specific rules is straightforward. Notice that from the principle as an additional axiom we obtain:
(a) $t=\tau x \varphi(x) \Rightarrow \forall x(\varphi(x) \leftrightarrow x R t) \quad$ and
(b) $\forall x(\varphi(x) \leftrightarrow x R t) \Rightarrow t=\tau x \varphi(x)$.

From the premisses of any variant of $(\tau \Rightarrow)$ by W we deduce:

$$
(\leftrightarrow \Rightarrow) \frac{\Gamma \Rightarrow \Delta, b R t, \varphi[x / b] \quad b R t, \varphi[x / b], \Gamma \Rightarrow \Delta}{(\forall \Rightarrow) \frac{\varphi[x / b] \leftrightarrow b R t, \Gamma \Rightarrow \Delta}{\forall x(\varphi(x) \leftrightarrow x R t), \Gamma \Rightarrow \Delta}}
$$

which, by cut with (a) yields the conclusion of $(\tau \Rightarrow)$. In a similar way we deduce $\Gamma \Rightarrow \Delta, \forall x(\varphi(x) \leftrightarrow x R t)$ from premisses of $(\Rightarrow \tau)$, and by cut with (b) we obtain the conclusion of this rule.

Tennant's approach:

The strength of Tennant's rules:

Tennant's approach:

The strength of Tennant's rules:
One should note that this theory is much stronger than the first one; both EXT and AV are provable (in fact even in the setting of NFFOLI by means of the weaker rules).

Tennant's approach:

The strength of Tennant's rules:

One should note that this theory is much stronger than the first one; both EXT and AV are provable (in fact even in the setting of NFFOLI by means of the weaker rules).

$$
\begin{aligned}
&(\tau \Rightarrow) \frac{a R \tau x \varphi(x) \Rightarrow a R \tau x \varphi(x) \quad \varphi[x / a], \varphi[x / a] \leftrightarrow \psi[x / a] \Rightarrow \psi[x / a]}{\tau x \varphi(x)=\tau x \varphi(x), \varphi[x / a] \leftrightarrow \psi[x / a], a R \tau x \varphi(x) \Rightarrow \psi[x / a]} \\
&(=\Rightarrow) \frac{D}{(\forall \Rightarrow) \frac{\varphi[x / a] \leftrightarrow \psi[x / a], a R \tau x \varphi(x) \Rightarrow \psi[x / a]}{\forall x(\varphi(x) \leftrightarrow \psi(x)), a R \tau x \varphi(x) \Rightarrow \psi[x / a]}} \\
&(\Rightarrow \tau) \frac{D x(\varphi(x) \leftrightarrow \psi(x)) \Rightarrow \tau \times \varphi(x)=\tau \times \psi(x)}{}
\end{aligned}
$$

where the second leaf is directly provable and D is an analogous proof of $\forall x(\varphi(x) \leftrightarrow \psi(x)), \psi[x / a] \Rightarrow a R \tau x \varphi(x)$.

Tennant's approach:

Tennant's approach:

$$
\begin{aligned}
&(\tau \Rightarrow) \\
&(=\Rightarrow) \frac{a R \tau x \varphi(x) \Rightarrow a R \tau x \varphi(x) \quad \varphi[x / a] \Rightarrow \varphi[y / a]}{\tau \times \varphi(x)=\tau \times \varphi(x), a R \tau \times \varphi(x) \Rightarrow \varphi[y / a]} \\
&(\Rightarrow \tau) \xrightarrow{a R \tau \times \varphi(x) \Rightarrow \varphi[y / a]}
\end{aligned}
$$

Note that $\varphi[x / a]$ and $\varphi[y / a]$ are identical.

Tennant's approach:

The strength of Tennant's rules:

Tennant's approach:

The strength of Tennant's rules:

One may even prove the converse or EXT:

$$
\begin{aligned}
& \begin{aligned}
&(\tau \Rightarrow) \frac{\varphi[x / a] \Rightarrow \varphi[x / a] \quad a R \tau x \varphi(x) \Rightarrow a R \tau x \varphi(x)}{\tau \times \varphi(x)=\tau \times \varphi(x), \varphi[x / a] \Rightarrow a R \tau x \varphi(x)} \\
&(=\Rightarrow) \frac{\psi[x / a] \Rightarrow a R \tau x \varphi(x)}{\tau x \varphi(x)=\tau \times \psi(x), \varphi[x / a] \Rightarrow \psi[x / a] \Rightarrow \psi[x / a]}
\end{aligned} \\
& (\Rightarrow \forall) \frac{\tau x \varphi(x)=\tau x \psi(x) \Rightarrow \varphi[x / a] \leftrightarrow \psi[x / a]}{\tau x \varphi(x)=\tau x \psi(x) \Rightarrow \forall x(\varphi(x) \leftrightarrow \psi(x))}
\end{aligned}
$$

where D is a similar proof of $\tau x \varphi(x)=\tau x \psi(x), \psi[x / a] \Rightarrow \varphi[x / a]$.

Tennant's approach:

Tennant's approach:

Isn't it too strong?

Tennant's approach:

Isn't it too strong?

To realize how strong is this principle on the ground of CFOLI notice that when t is instantiated with $\tau x \varphi(x)$ we obtain:
$\tau x \varphi(x)=\tau x \varphi(x) \leftrightarrow \forall x(\varphi(x) \leftrightarrow x R \tau x \varphi(x))$.

Tennant's approach:

Isn't it too strong?

To realize how strong is this principle on the ground of CFOLI notice that when t is instantiated with $\tau x \varphi(x)$ we obtain:
$\tau x \varphi(x)=\tau x \varphi(x) \leftrightarrow \forall x(\varphi(x) \leftrightarrow x R \tau x \varphi(x))$.
which by (unrestricted) reflexivity of $=$ yields:
$\forall x(\varphi(x) \leftrightarrow x R \tau x \varphi(x))$.

Tennant's approach:

Isn't it too strong?

To realize how strong is this principle on the ground of CFOLI notice that when t is instantiated with $\tau x \varphi(x)$ we obtain:
$\tau x \varphi(x)=\tau x \varphi(x) \leftrightarrow \forall x(\varphi(x) \leftrightarrow x R \tau x \varphi(x))$.
which by (unrestricted) reflexivity of $=$ yields:
$\forall x(\varphi(x) \leftrightarrow x R \tau x \varphi(x))$.
For several term-forming operators, at least on the ground of CFOLI, it is too strong.

Tennant's approach:

Tennant's approach:

Isn't it too strong?

Tennant's approach:

Isn't it too strong?

For example of we instantiate this principle with iota-operator (where R is $=$) we run into contradiction:

Tennant's approach:

Isn't it too strong?

For example of we instantiate this principle with iota-operator (where R is $=$) we run into contradiction:

1. $\imath x(A x \wedge \neg A x)=\imath x(A x \wedge \neg A x) \rightarrow \forall x(A x \wedge \neg A x \leftrightarrow x=$ $\imath x(A x \wedge \neg A x))$
2. $\imath x(A x \wedge \neg A x)=\imath x(A x \wedge \neg A x)$
3. $\forall x(A x \wedge \neg A x \leftrightarrow x=\imath x(A x \wedge \neg A x)) 1,2$
4. $A(\imath x(A x \wedge \neg A x)) \wedge \neg A(\imath x(A x \wedge \neg A x)) \leftrightarrow \imath x(A x \wedge \neg A x)=$ $\imath x(A x \wedge \neg A x)) 3$
5. $A(\imath x(A x \wedge \neg A x)) \wedge \neg A(\imath x(A x \wedge \neg A x)) 4,2$

Tennant's approach:

Isn't it too strong?

For example of we instantiate this principle with iota-operator (where R is $=$) we run into contradiction:

1. $\imath x(A x \wedge \neg A x)=\imath x(A x \wedge \neg A x) \rightarrow \forall x(A x \wedge \neg A x \leftrightarrow x=$ $\imath x(A x \wedge \neg A x))$
2. $\imath x(A x \wedge \neg A x)=\imath x(A x \wedge \neg A x)$
3. $\forall x(A x \wedge \neg A x \leftrightarrow x=\imath x(A x \wedge \neg A x)) 1,2$
4. $A(\imath x(A x \wedge \neg A x)) \wedge \neg A(\imath x(A x \wedge \neg A x)) \leftrightarrow \imath x(A x \wedge \neg A x)=$ $\imath x(A x \wedge \neg A x)) 3$
5. $A(\imath x(A x \wedge \neg A x)) \wedge \neg A(\imath x(A x \wedge \neg A x)) 4,2$

Similarly in the case of abstract operator (where R is \in) we obtain just unrestricted axiom of comprehension which obviously leads to Russell's paradox.

Tennant's approach:

Isn't it too strong?

For example of we instantiate this principle with iota-operator (where R is $=$) we run into contradiction:

1. $\imath x(A x \wedge \neg A x)=\imath x(A x \wedge \neg A x) \rightarrow \forall x(A x \wedge \neg A x \leftrightarrow x=$ $\imath x(A x \wedge \neg A x))$
2. $\imath x(A x \wedge \neg A x)=\imath x(A x \wedge \neg A x)$
3. $\forall x(A x \wedge \neg A x \leftrightarrow x=\imath x(A x \wedge \neg A x)) 1,2$
4. $A(\imath x(A x \wedge \neg A x)) \wedge \neg A(\imath x(A x \wedge \neg A x)) \leftrightarrow \imath x(A x \wedge \neg A x)=$ $\imath x(A x \wedge \neg A x)) 3$
5. $A(\imath x(A x \wedge \neg A x)) \wedge \neg A(\imath x(A x \wedge \neg A x)) 4,2$

Similarly in the case of abstract operator (where R is \in) we obtain just unrestricted axiom of comprehension which obviously leads to Russell's paradox.
However, even on the basis of CFOLI one may introduce several restrictions which can prevent us against troubles. We will illustrate this with abstract operator.

Application to set-builders

Application to set-builders

Quine's NF

Application to set-builders

Quine's NF

Language with \in primitive.

Application to set-builders

Quine's NF

Language with \in primitive.
$=$ defined: $t=t^{\prime}:=\forall z\left(z \in t \leftrightarrow z \in t^{\prime}\right)$

Application to set-builders

Quine's NF

Language with \in primitive.
$=$ defined: $t=t^{\prime}:=\forall z\left(z \in t \leftrightarrow z \in t^{\prime}\right)$
Two axioms:
Abs $\forall x(x \in\{y: \varphi(y)\} \leftrightarrow \varphi(y / x)), \varphi$ stratified.
Ext $\forall x y(x=y \rightarrow(\varphi(x) \leftrightarrow \varphi(y)))$

Application to set-builders

Quine's NF

Language with \in primitive.
$=$ defined: $t=t^{\prime}:=\forall z\left(z \in t \leftrightarrow z \in t^{\prime}\right)$
Two axioms:
Abs $\forall x(x \in\{y: \varphi(y)\} \leftrightarrow \varphi(y / x)), \varphi$ stratified.
Ext $\forall x y(x=y \rightarrow(\varphi(x) \leftrightarrow \varphi(y)))$
Alternatively $=$ primitive, with suitable axioms/rules;

Application to set-builders

Quine's NF

Language with \in primitive.
$=$ defined: $t=t^{\prime}:=\forall z\left(z \in t \leftrightarrow z \in t^{\prime}\right)$
Two axioms:
Abs $\forall x(x \in\{y: \varphi(y)\} \leftrightarrow \varphi(y / x)), \varphi$ stratified.
Ext $\forall x y(x=y \rightarrow(\varphi(x) \leftrightarrow \varphi(y)))$
Alternatively $=$ primitive, with suitable axioms/rules; and instead of Ext (which is provable) we need:

Application to set-builders

Quine's NF

Language with \in primitive.
$=$ defined: $t=t^{\prime}:=\forall z\left(z \in t \leftrightarrow z \in t^{\prime}\right)$
Two axioms:
Abs $\forall x(x \in\{y: \varphi(y)\} \leftrightarrow \varphi(y / x)), \varphi$ stratified.
Ext $\forall x y(x=y \rightarrow(\varphi(x) \leftrightarrow \varphi(y)))$
Alternatively $=$ primitive, with suitable axioms/rules; and instead of Ext (which is provable) we need:
$E x t A x \forall x y(\forall z(z \in x \leftrightarrow z \in y) \rightarrow x=y)$

Application to set-builders

Application to set-builders

Can we apply Tennant's approach to formalisation of Quine's NF?

Application to set-builders

Can we apply Tennant's approach to formalisation of Quine's NF?
Tennant is using $=$ primitive and works with NFFOLI.

Application to set-builders

Can we apply Tennant's approach to formalisation of Quine's NF?
Tennant is using $=$ primitive and works with NFFOLI.
This means that if we use Tennant's-style rules in the context of CFOLI we need simplified rules for set builders (for GCFOLI):

$$
(\Rightarrow:) \frac{\varphi(a), \Gamma \Rightarrow \Delta, a \in t \quad a \in t, \Gamma \Rightarrow \Delta, \varphi(a)}{\Gamma \Rightarrow \Delta, t=\{x: \varphi(x)\}}
$$

where a is not in Γ, Δ, φ and φ is stratified.

$$
\begin{aligned}
& (: \Rightarrow) \frac{\Gamma \Rightarrow \Delta, \varphi(b) \quad b \in t, \Gamma \Rightarrow \Delta}{t=\{x: \varphi(x)\}, \Gamma \Rightarrow \Delta} \\
& (: \Rightarrow) \frac{\Gamma \Rightarrow \Delta, b \in t \quad \varphi(b), \Gamma \Rightarrow \Delta}{t=\{x: \varphi(x)\}, \Gamma \Rightarrow \Delta}
\end{aligned}
$$

where t is any term and φ is stratified.

Application to set-builders

Application to set-builders

If you add these rules to GCFOLI (1 approach to identity) you obtain (ExtAx) for free - it is provable:

Application to set-builders

If you add these rules to GCFOLI (1 approach to identity) you obtain (ExtAx) for free - it is provable:

Note that 2-premiss variant of LL was used to simplify a proof but to avoid the problems with cut-reduction we have to use 3-premiss version.

Application to set-builders

Application to set-builders

Rules of abstraction (with stratified φ):

$$
\begin{aligned}
& (A b s \Rightarrow) \frac{\varphi(t), \Gamma \Rightarrow \Delta}{t \in\{x: \varphi(x)\}, \Gamma \Rightarrow \Delta} \\
& (\Rightarrow A b s) \frac{\Gamma \Rightarrow \Delta, \varphi(t)}{\Gamma \Rightarrow \Delta, t \in\{x: \varphi(x)\}}
\end{aligned}
$$

Application to set-builders

Rules of abstraction (with stratified φ):

$$
\begin{aligned}
& (A b s \Rightarrow) \frac{\varphi(t), \Gamma \Rightarrow \Delta}{t \in\{x: \varphi(x)\}, \Gamma \Rightarrow \Delta} \\
& (\Rightarrow A b s) \frac{\Gamma \Rightarrow \Delta, \varphi(t)}{\Gamma \Rightarrow \Delta, t \in\{x: \varphi(x)\}}
\end{aligned}
$$

are derivable by his rules. as well as $(E x t)$ and $(A V)$.

Application to set-builders

Application to set-builders

How to formalize $=$ to obtain cut-free system for NF?

Application to set-builders

How to formalize $=$ to obtain cut-free system for NF?

$$
(\Rightarrow L L) \frac{\Gamma \Rightarrow \Delta, \varphi(t) \quad \Gamma \Rightarrow \Delta, t=t^{\prime}}{\Gamma \Rightarrow \Delta, \varphi\left(t^{\prime}\right)}
$$

Application to set-builders

How to formalize $=$ to obtain cut-free system for NF?

$$
(\Rightarrow L L) \frac{\Gamma \Rightarrow \Delta, \varphi(t) \quad \Gamma \Rightarrow \Delta, t=t^{\prime}}{\Gamma \Rightarrow \Delta, \varphi\left(t^{\prime}\right)}
$$

for φ atomic but not identity.

Application to set-builders

How to formalize $=$ to obtain cut-free system for NF?

$$
(\Rightarrow L L) \frac{\Gamma \Rightarrow \Delta, \varphi(t) \quad \Gamma \Rightarrow \Delta, t=t^{\prime}}{\Gamma \Rightarrow \Delta, \varphi\left(t^{\prime}\right)}
$$

for φ atomic but not identity. and

$$
(\Rightarrow=) \frac{\Gamma \Rightarrow \Delta, t=t^{\prime} \quad \Gamma \Rightarrow \Delta, t=t^{\prime \prime} \quad t^{\prime}=t^{\prime \prime}, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}
$$

Application to set-builders

How to formalize $=$ to obtain cut-free system for NF?

$$
(\Rightarrow L L) \frac{\Gamma \Rightarrow \Delta, \varphi(t) \quad \Gamma \Rightarrow \Delta, t=t^{\prime}}{\Gamma \Rightarrow \Delta, \varphi\left(t^{\prime}\right)}
$$

for φ atomic but not identity. and

$$
(\Rightarrow=) \frac{\Gamma \Rightarrow \Delta, t=t^{\prime} \quad \Gamma \Rightarrow \Delta, t=t^{\prime \prime} \quad t^{\prime}=t^{\prime \prime}, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}
$$

Possible reductions in the application of $(\Rightarrow=)$: at least two of $t, t^{\prime}, t^{\prime \prime}$ are complex.

Application to set-builders

Application to set-builders

Possible reductions to applications of $(\Rightarrow=)$:

Application to set-builders

Possible reductions to applications of ($\Rightarrow==$):
Consider the cases with at most one term t complex:
(1) $a=b, a=c \vdash b=c$
(2) $t=b, t=c \vdash b=c$
(3) $a=t, a=c \vdash t=c$
(4) $a=b, a=t \vdash b=t$

Application to set-builders

Possible reductions to applications of ($\Rightarrow=$):

Consider the cases with at most one term t complex:
(1) $a=b, a=c \vdash b=c$
(2) $t=b, t=c \vdash b=c$
(3) $a=t, a=c \vdash t=c$
(9) $a=b, a=t \vdash b=t$
the first rules may be modified to cover case 1 and 2 :

$$
(\Rightarrow L L) \frac{\Gamma \Rightarrow \Delta, \varphi(t) \quad \Gamma \Rightarrow \Delta, t=t^{\prime}}{\Gamma \Rightarrow \Delta, \varphi\left(t^{\prime}\right)}
$$

Application to set-builders

Possible reductions to applications of ($\Rightarrow=$):

Consider the cases with at most one term t complex:
(1) $a=b, a=c \vdash b=c$
(2) $t=b, t=c \vdash b=c$
(3) $a=t, a=c \vdash t=c$
(9) $a=b, a=t \vdash b=t$
the first rules may be modified to cover case 1 and 2 :

$$
(\Rightarrow L L) \frac{\Gamma \Rightarrow \Delta, \varphi(t) \quad \Gamma \Rightarrow \Delta, t=t^{\prime}}{\Gamma \Rightarrow \Delta, \varphi\left(t^{\prime}\right)}
$$

for $\varphi(t)$ atomic or atomic identity of the form $b=c$.

Application to set-builders

Application to set-builders

Possible reductions to applications of $(\Rightarrow=)$:

Application to set-builders

Possible reductions to applications of ($\Rightarrow=$):
Consider the cases with at most one term t complex:
(1) $a=b, a=c \vdash b=c$
(2) $t=b, t=c \vdash b=c$
(3) $a=t, a=c \vdash t=c$
(9) $a=b, a=t \vdash b=t$

Application to set-builders

Possible reductions to applications of ($\Rightarrow=$):
Consider the cases with at most one term t complex:
(1) $a=b, a=c \vdash b=c$
(2) $t=b, t=c \vdash b=c$
(3) $a=t, a=c \vdash t=c$
(1) $a=b, a=t \vdash b=t$

For cases 3 and 4 we add rules:

$$
\begin{gathered}
\Gamma \Rightarrow \Delta, a=t \quad t=c, \Gamma \Rightarrow \Delta \\
\hline a=c, \Gamma \Rightarrow \Delta \\
\frac{\Gamma \Rightarrow \Delta, a=t \quad b=t, \Gamma \Rightarrow \Delta}{a=b, \Gamma \Rightarrow \Delta}
\end{gathered}
$$

Methodological interlude

Methodological interlude

How do we build the rules - the case of \exists_{1} :

Methodological interlude

How do we build the rules - the case of \exists_{1} :
It may be defined in at least 3 equivalent ways:
(1) $\exists_{1} x \varphi \leftrightarrow \exists x \forall y(\varphi[x / y] \leftrightarrow y=x)$
(2) $\exists_{1} x \varphi \leftrightarrow \exists x(\varphi \wedge \forall y(\varphi[x / y] \rightarrow y=x))$
(3) $\exists_{1} x \varphi \leftrightarrow \exists x \varphi \wedge \forall x y(\varphi \wedge \varphi[y / x] \rightarrow y=x)$

Methodological interlude

How do we build the rules - the case of \exists_{1} :
It may be defined in at least 3 equivalent ways:
(1) $\exists_{1} x \varphi \leftrightarrow \exists x \forall y(\varphi[x / y] \leftrightarrow y=x)$
(2) $\exists_{1} x \varphi \leftrightarrow \exists x(\varphi \wedge \forall y(\varphi[x / y] \rightarrow y=x))$
(3) $\exists_{1} x \varphi \leftrightarrow \exists x \varphi \wedge \forall x y(\varphi \wedge \varphi[y / x] \rightarrow y=x)$

We can transform them into sequents:

Methodological interlude

How do we build the rules - the case of \exists_{1} :

It may be defined in at least 3 equivalent ways:
(1) $\exists_{1} x \varphi \leftrightarrow \exists x \forall y(\varphi[x / y] \leftrightarrow y=x)$
(2) $\exists_{1} x \varphi \leftrightarrow \exists x(\varphi \wedge \forall y(\varphi[x / y] \rightarrow y=x))$
(3) $\exists_{1} x \varphi \leftrightarrow \exists x \varphi \wedge \forall x y(\varphi \wedge \varphi[y / x] \rightarrow y=x)$

We can transform them into sequents:
$\exists_{1} x \varphi \Rightarrow \exists x \forall y(\varphi[x / y] \leftrightarrow y=x)$
$\exists x \forall y(\varphi[x / y] \leftrightarrow y=x) \Rightarrow \exists_{1} x \varphi$

Methodological interlude

How do we build the rules - the case of \exists_{1} :

It may be defined in at least 3 equivalent ways:
(1) $\exists_{1} x \varphi \leftrightarrow \exists x \forall y(\varphi[x / y] \leftrightarrow y=x)$
(2) $\exists_{1} x \varphi \leftrightarrow \exists x(\varphi \wedge \forall y(\varphi[x / y] \rightarrow y=x))$
(3) $\exists_{1} x \varphi \leftrightarrow \exists x \varphi \wedge \forall x y(\varphi \wedge \varphi[y / x] \rightarrow y=x)$

We can transform them into sequents:
$\exists_{1} x \varphi \Rightarrow \exists x \forall y(\varphi[x / y] \leftrightarrow y=x)$
$\exists x \forall y(\varphi[x / y] \leftrightarrow y=x) \Rightarrow \exists_{1} x \varphi$
$\exists_{1} x \varphi \Rightarrow \exists x(\varphi \wedge \forall y(\varphi[x / y] \rightarrow y=x))$
$\exists x(\varphi \wedge \forall y(\varphi[x / y] \rightarrow y=x)) \Rightarrow \exists_{1} x \varphi$

Methodological interlude

How do we build the rules - the case of \exists_{1} :

It may be defined in at least 3 equivalent ways:
(1) $\exists_{1} x \varphi \leftrightarrow \exists x \forall y(\varphi[x / y] \leftrightarrow y=x)$
(2) $\exists_{1} x \varphi \leftrightarrow \exists x(\varphi \wedge \forall y(\varphi[x / y] \rightarrow y=x))$
(3) $\exists_{1} x \varphi \leftrightarrow \exists x \varphi \wedge \forall x y(\varphi \wedge \varphi[y / x] \rightarrow y=x)$

We can transform them into sequents:
$\exists_{1} x \varphi \Rightarrow \exists x \forall y(\varphi[x / y] \leftrightarrow y=x)$
$\exists x \forall y(\varphi[x / y] \leftrightarrow y=x) \Rightarrow \exists_{1} x \varphi$
$\exists_{1} x \varphi \Rightarrow \exists x(\varphi \wedge \forall y(\varphi[x / y] \rightarrow y=x))$
$\exists x(\varphi \wedge \forall y(\varphi[x / y] \rightarrow y=x)) \Rightarrow \exists_{1} x \varphi$
$\exists_{1} x \varphi \Rightarrow \exists x \varphi$
$\exists_{1} x \varphi \Rightarrow \forall x y(\varphi \wedge \varphi[y / x] \rightarrow y=x)$
$\exists x \varphi, \forall x y(\varphi \wedge \varphi[y / x] \rightarrow y=x) \Rightarrow \exists_{1} x \varphi$

Methodological interlude

Methodological interlude

How do we build the rules - the case of \exists_{1} :

Methodological interlude

How do we build the rules - the case of \exists_{1} :
Using Rule-maker theorem (Indrzejczak [2013]):

Methodological interlude

How do we build the rules - the case of \exists_{1} :
Using Rule-maker theorem (Indrzejczak [2013]):
For any sequent $\Gamma \Rightarrow \Delta$ with $\Gamma=\left\{\varphi_{1}, \ldots, \varphi_{k}\right\}$ and
$\Delta=\left\{\psi_{1}, \ldots, \psi_{n}\right\}, k \geq 0, n \geq 0$ there is $2^{k+n}-1$ equivalent rules
captured by the general schema:

$$
\frac{\Pi_{1}, \Rightarrow \Sigma_{1}, \varphi_{1}, \ldots, \Pi_{i} \Rightarrow \Sigma_{i}, \varphi_{i} \quad \psi_{1}, \Pi_{i+1} \Rightarrow \Sigma_{i+1}, \ldots, \psi_{j}, \Pi_{i+j} \Rightarrow \Sigma_{i+j}}{\Gamma^{-i}, \Pi_{1}, \ldots, \Pi_{i}, \Pi_{i+1}, \ldots, \Pi_{i+j} \Rightarrow \Sigma_{1}, \ldots, \Sigma_{i}, \Sigma_{i+1}, \ldots, \Sigma_{i+j} \Delta^{-j}}
$$

where $\Gamma^{-i}=\Gamma-\left\{\varphi_{1}, \ldots, \varphi_{i}\right\}$ and $\Delta^{-j}=\Delta-\left\{\psi_{1}, \ldots, \psi_{j}\right\}$ for $0 \leq i \leq k, 0 \leq j \leq n$.

Methodological interlude

How do we build the rules - the case of \exists_{1} :
Using Rule-maker theorem (Indrzejczak [2013]):
For any sequent $\Gamma \Rightarrow \Delta$ with $\Gamma=\left\{\varphi_{1}, \ldots, \varphi_{k}\right\}$ and
$\Delta=\left\{\psi_{1}, \ldots, \psi_{n}\right\}, k \geq 0, n \geq 0$ there is $2^{k+n}-1$ equivalent rules
captured by the general schema:

$$
\frac{\Pi_{1}, \Rightarrow \Sigma_{1}, \varphi_{1}, \ldots, \Pi_{i} \Rightarrow \Sigma_{i}, \varphi_{i} \quad \psi_{1}, \Pi_{i+1} \Rightarrow \Sigma_{i+1}, \ldots, \psi_{j}, \Pi_{i+j} \Rightarrow \Sigma_{i+j}}{\Gamma^{-i}, \Pi_{1}, \ldots, \Pi_{i}, \Pi_{i+1}, \ldots, \Pi_{i+j} \Rightarrow \Sigma_{1}, \ldots, \Sigma_{i}, \Sigma_{i+1}, \ldots, \Sigma_{i+j} \Delta^{-j}}
$$

where $\Gamma^{-i}=\Gamma-\left\{\varphi_{1}, \ldots, \varphi_{i}\right\}$ and $\Delta^{-j}=\Delta-\left\{\psi_{1}, \ldots, \psi_{j}\right\}$ for $0 \leq i \leq k, 0 \leq j \leq n$.

We can replace any sequent with different interderivable (by structural rules only) rules.

Methodological interlude

Methodological interlude

How do we build the rules - the case of \exists_{1} :

Methodological interlude

How do we build the rules - the case of \exists_{1} :
For example from: $\exists x \forall y(\varphi[x / y] \leftrightarrow y=x) \Rightarrow \exists_{1} x \varphi$

Methodological interlude

How do we build the rules - the case of \exists_{1} :
For example from: $\exists x \forall y(\varphi[x / y] \leftrightarrow y=x) \Rightarrow \exists_{1} x \varphi$
we can obtain two rules:

$$
\frac{\Gamma \Rightarrow \Delta, \exists x \forall y(\varphi[x / y] \leftrightarrow y=x)}{\Gamma \Rightarrow \Delta, \exists_{1} x \varphi}
$$

and

$$
\frac{\exists_{1} x \varphi, \Gamma \Rightarrow \Delta}{\exists x \forall y(\varphi[x / y] \leftrightarrow y=x), \Gamma \Rightarrow \Delta}
$$

Methodological interlude

How do we build the rules - the case of \exists_{1} :
For example from: $\exists x \forall y(\varphi[x / y] \leftrightarrow y=x) \Rightarrow \exists_{1} x \varphi$
we can obtain two rules:

$$
\frac{\Gamma \Rightarrow \Delta, \exists x \forall y(\varphi[x / y] \leftrightarrow y=x)}{\Gamma \Rightarrow \Delta, \exists_{1} x \varphi}
$$

and

$$
\frac{\exists_{1} x \varphi, \Gamma \Rightarrow \Delta}{\exists x \forall y(\varphi[x / y] \leftrightarrow y=x), \Gamma \Rightarrow \Delta}
$$

The first may be used as the basis for the introduction rule but still bad (no subformula-property, no separation).

Methodological interlude

Methodological interlude

How do we build the rules - the case of \exists_{1} :

Methodological interlude

How do we build the rules - the case of \exists_{1} :
We continue with decomposition of side-formula $\exists x \forall y(\varphi[x / y] \leftrightarrow y=x)$ obtaining:

Methodological interlude

How do we build the rules - the case of \exists_{1} :
We continue with decomposition of side-formula $\exists x \forall y(\varphi[x / y] \leftrightarrow y=x)$ obtaining:

$$
\frac{\varphi(a), \Gamma \Rightarrow \Delta, a=b \quad a=b, \Gamma \Rightarrow \Delta, \varphi(a)}{\Gamma \Rightarrow \Delta, \exists_{1} \times \varphi}
$$

where a is not in Γ, Δ, φ

Methodological interlude

How do we build the rules - the case of \exists_{1} :
We continue with decomposition of side-formula $\exists x \forall y(\varphi[x / y] \leftrightarrow y=x)$ obtaining:

$$
\frac{\varphi(a), \Gamma \Rightarrow \Delta, a=b \quad a=b, \Gamma \Rightarrow \Delta, \varphi(a)}{\Gamma \Rightarrow \Delta, \exists_{1} \times \varphi}
$$

where a is not in Γ, Δ, φ
One may test that it works by proving the corresponding sequent:

$$
(\forall \Rightarrow) \frac{\varphi(b) \leftrightarrow b=a, \varphi(b) \Rightarrow b=a}{\forall y(\varphi(y) \leftrightarrow y=a), \varphi(b) \Rightarrow b=a} \quad \frac{\varphi(b) \leftrightarrow b=a, b=a \Rightarrow \varphi(b)}{\forall y(\varphi(y) \leftrightarrow y=a), b=a \Rightarrow \varphi(b)}
$$

Methodological interlude

Methodological interlude

How do we build the rules - the case of \exists_{1} :

Methodological interlude

How do we build the rules - the case of \exists_{1} :
However, when we try the same with:
$\exists_{1} x \varphi \Rightarrow \exists x \forall y(\varphi[x / y] \leftrightarrow y=x)$

Methodological interlude

How do we build the rules - the case of \exists_{1} :
However, when we try the same with:
$\exists_{1} x \varphi \Rightarrow \exists x \forall y(\varphi[x / y] \leftrightarrow y=x)$
we obtain:

$$
\frac{\Gamma \Rightarrow \Delta, \varphi(b), b=a \quad \varphi(b), b=a, \Gamma \Rightarrow \Delta, \varphi(a)}{\exists_{1} \times \varphi, \Gamma \Rightarrow \Delta}
$$

where a is not in Γ, Δ, φ

Methodological interlude

How do we build the rules - the case of \exists_{1} :
However, when we try the same with:
$\exists_{1} x \varphi \Rightarrow \exists x \forall y(\varphi[x / y] \leftrightarrow y=x)$
we obtain:

$$
\frac{\Gamma \Rightarrow \Delta, \varphi(b), b=a \quad \varphi(b), b=a, \Gamma \Rightarrow \Delta, \varphi(a)}{\exists_{1} \times \varphi, \Gamma \Rightarrow \Delta}
$$

where a is not in Γ, Δ, φ
and this rule does not allow us to prove $\exists_{1} x \varphi \Rightarrow \exists x \forall y(\varphi[x / y] \leftrightarrow y=x)$.

Methodological interlude

How do we build the rules - the case of \exists_{1} :

However, when we try the same with:
$\exists_{1} x \varphi \Rightarrow \exists x \forall y(\varphi[x / y] \leftrightarrow y=x)$
we obtain:

$$
\frac{\Gamma \Rightarrow \Delta, \varphi(b), b=a \quad \varphi(b), b=a, \Gamma \Rightarrow \Delta, \varphi(a)}{\exists_{1} \times \varphi, \Gamma \Rightarrow \Delta}
$$

where a is not in Γ, Δ, φ
and this rule does not allow us to prove
$\exists_{1} x \varphi \Rightarrow \exists x \forall y(\varphi[x / y] \leftrightarrow y=x)$.
The reason is that existentially and universally quantified variables occur in the same scope. So the method of decomposition does not yield the required result which allows us to prove definitional equivalences universally.

Methodological interlude

Methodological interlude

How do we build the rules - the case of \exists_{1} :

Methodological interlude

How do we build the rules - the case of \exists_{1} :
The same situation holds for:
$\exists_{1} x \varphi \Rightarrow \exists x(\varphi \wedge \forall y(\varphi[x / y] \rightarrow y=x))$ and
$\exists x(\varphi \wedge \forall y(\varphi[x / y] \rightarrow y=x)) \Rightarrow \exists_{1} x \varphi$

Methodological interlude

How do we build the rules - the case of \exists_{1} :
The same situation holds for:
$\exists_{1} x \varphi \Rightarrow \exists x(\varphi \wedge \forall y(\varphi[x / y] \rightarrow y=x))$ and
$\exists x(\varphi \wedge \forall y(\varphi[x / y] \rightarrow y=x)) \Rightarrow \exists_{1} x \varphi$
they lead to the rules:

$$
\begin{aligned}
& \left(\exists_{1} \Rightarrow\right) \quad \frac{\varphi[x / a], \Gamma \Rightarrow \Delta, \varphi[x / b] \quad b=a, \varphi[x / a], \Gamma \Rightarrow \Delta,}{\exists_{1} x \varphi, \Gamma \Rightarrow \Delta} \\
& \left(\Rightarrow \exists_{1}\right) \frac{\Gamma \Rightarrow \Delta, \varphi[x / b] \quad \varphi[x / a], \Gamma \Rightarrow \Delta, a=b}{\Gamma \Rightarrow \Delta, \exists_{1} \times \varphi}
\end{aligned}
$$

Methodological interlude

How do we build the rules - the case of \exists_{1} :
The same situation holds for:
$\exists_{1} x \varphi \Rightarrow \exists x(\varphi \wedge \forall y(\varphi[x / y] \rightarrow y=x))$ and
$\exists x(\varphi \wedge \forall y(\varphi[x / y] \rightarrow y=x)) \Rightarrow \exists_{1} x \varphi$
they lead to the rules:

$$
\begin{aligned}
& \left(\exists_{1} \Rightarrow\right) \frac{\varphi[x / a], \Gamma \Rightarrow \Delta, \varphi[x / b] \quad b=a, \varphi[x / a], \Gamma \Rightarrow \Delta,}{\exists_{1} x \varphi, \Gamma \Rightarrow \Delta} \\
& \left(\Rightarrow \exists_{1}\right) \frac{\Gamma \Rightarrow \Delta, \varphi[x / b] \quad \varphi[x / a], \Gamma \Rightarrow \Delta, a=b}{\Gamma \Rightarrow \Delta, \exists_{1} x \varphi}
\end{aligned}
$$

The second rule works but when we try to prove the first sequent by means of the first rule a derivation breaks.

Methodological interlude

How do we build the rules - the case of \exists_{1} :

The same situation holds for:
$\exists_{1} x \varphi \Rightarrow \exists x(\varphi \wedge \forall y(\varphi[x / y] \rightarrow y=x))$ and
$\exists x(\varphi \wedge \forall y(\varphi[x / y] \rightarrow y=x)) \Rightarrow \exists_{1} x \varphi$
they lead to the rules:

$$
\begin{aligned}
& \left(\exists_{1} \Rightarrow\right) \frac{\varphi[x / a], \Gamma \Rightarrow \Delta, \varphi[x / b] \quad b=a, \varphi[x / a], \Gamma \Rightarrow \Delta,}{\exists_{1} x \varphi, \Gamma \Rightarrow \Delta} \\
& \left(\Rightarrow \exists_{1}\right) \frac{\Gamma \Rightarrow \Delta, \varphi[x / b] \quad \varphi[x / a], \Gamma \Rightarrow \Delta, a=b}{\Gamma \Rightarrow \Delta, \exists_{1} x \varphi}
\end{aligned}
$$

The second rule works but when we try to prove the first sequent by means of the first rule a derivation breaks.

In general: to obtain a decent rule the quantifiers in decomposed formulae should have separate scopes.

Methodological interlude

Methodological interlude

How do we build the rules - the case of \exists_{1} :

Methodological interlude

How do we build the rules - the case of \exists_{1} :
On the basis of:
$\exists_{1} x \varphi \Rightarrow \exists x \varphi$
$\exists_{1} x \varphi \Rightarrow \forall x y(\varphi \wedge \varphi[x / y] \rightarrow x=y)$
$\exists x \varphi, \forall x y(\varphi \wedge \varphi[x / y] \rightarrow x=y) \Rightarrow \exists_{1} x \varphi$

Methodological interlude

How do we build the rules - the case of \exists_{1} :

On the basis of:
$\exists_{1} \times \varphi \Rightarrow \exists x \varphi$
$\exists_{1} x \varphi \Rightarrow \forall x y(\varphi \wedge \varphi[x / y] \rightarrow x=y)$
$\exists x \varphi, \forall x y(\varphi \wedge \varphi[x / y] \rightarrow x=y) \Rightarrow \exists_{1} x \varphi$
We obtain the following three rules:

$$
\begin{array}{cc}
& \frac{\varphi(a), \Gamma \Rightarrow \Delta}{} \begin{array}{l}
\exists_{1} \times \varphi, \Gamma \Rightarrow \Delta \\
\Gamma \Rightarrow \Delta, \varphi(b) \quad \Gamma \Rightarrow \Delta, \varphi(c) \quad b=c, \Gamma \Rightarrow \Delta \\
\hline
\end{array} \\
\hline & \exists_{1} \times \varphi, \Gamma \Rightarrow \Delta \\
\Gamma \Rightarrow \Delta, \varphi(b) \quad \varphi(a), \varphi\left(a^{\prime}\right), \Gamma \Rightarrow \Delta, a=a^{\prime} \\
\Gamma \Rightarrow \Delta, \exists_{1} \times \varphi
\end{array}
$$

where a, a^{\prime} is not in Γ, Δ, φ

Methodological interlude

Methodological interlude

How do we build the rules - the case of \exists_{1} :

Methodological interlude

How do we build the rules - the case of \exists_{1} :
Of course, instead of 2- or 3-premise rules we can obtain rules with reduced branching-factor by RG-theorem, e.g:

$$
\begin{array}{lll}
\Gamma \Rightarrow \Delta, \varphi(b) \quad & \Gamma \Rightarrow \Delta, \varphi(c) & b=c, \Gamma \Rightarrow \Delta \\
\hline & \exists_{1} \times \varphi, \Gamma \Rightarrow \Delta &
\end{array}
$$

Methodological interlude

How do we build the rules - the case of \exists_{1} :
Of course, instead of 2- or 3-premise rules we can obtain rules with reduced branching-factor by RG-theorem, e.g:

$$
\begin{array}{lll}
\Gamma \Rightarrow \Delta, \varphi(b) \quad & \Gamma \Rightarrow \Delta, \varphi(c) \quad b=c, \Gamma \Rightarrow \Delta \\
& \exists_{1} \times \varphi, \Gamma \Rightarrow \Delta
\end{array}
$$

may be replaced with:

$$
\frac{\Gamma \Rightarrow \Delta, \varphi(c) \quad b=c, \Gamma \Rightarrow \Delta}{\varphi(b), \exists_{1} \times \varphi, \Gamma \Rightarrow \Delta}
$$

Methodological interlude

How do we build the rules - the case of \exists_{1} :
Of course, instead of 2- or 3-premise rules we can obtain rules with reduced branching-factor by RG-theorem, e.g:

$$
\begin{array}{lll}
\Gamma \Rightarrow \Delta, \varphi(b) \quad & \Gamma \Rightarrow \Delta, \varphi(c) \quad b=c, \Gamma \Rightarrow \Delta \\
& \exists_{1} \times \varphi, \Gamma \Rightarrow \Delta
\end{array}
$$

may be replaced with:

$$
\frac{\Gamma \Rightarrow \Delta, \varphi(c) \quad b=c, \Gamma \Rightarrow \Delta}{\varphi(b), \exists_{1} \times \varphi, \Gamma \Rightarrow \Delta}
$$

or

$$
\frac{b=c, \Gamma \Rightarrow \Delta}{\varphi(b), \varphi(c), \exists_{1} \times \varphi, \Gamma \Rightarrow \Delta}
$$

Methodological interlude

Methodological interlude

How do we build the rules - the case of \exists_{1} :

Methodological interlude

How do we build the rules - the case of \exists_{1} :

$$
\frac{\Gamma \Rightarrow \Delta, \varphi(b) \quad \varphi(a), \varphi\left(a^{\prime}\right), \Gamma \Rightarrow \Delta, a=a^{\prime}}{\Gamma \Rightarrow \Delta, \exists_{1} \times \varphi}
$$

Methodological interlude

How do we build the rules - the case of \exists_{1} :

$$
\frac{\Gamma \Rightarrow \Delta, \varphi(b) \quad \varphi(a), \varphi\left(a^{\prime}\right), \Gamma \Rightarrow \Delta, a=a^{\prime}}{\Gamma \Rightarrow \Delta, \exists_{1} \times \varphi}
$$

may be replaced with:

$$
\frac{\varphi(a), \varphi\left(a^{\prime}\right), \Gamma \Rightarrow \Delta, a=a^{\prime}}{\varphi(b), \Gamma \Rightarrow \Delta, \exists_{1} \times \varphi}
$$

Methodological interlude

How do we build the rules - the case of \exists_{1} :

$$
\frac{\Gamma \Rightarrow \Delta, \varphi(b) \quad \varphi(a), \varphi\left(a^{\prime}\right), \Gamma \Rightarrow \Delta, a=a^{\prime}}{\Gamma \Rightarrow \Delta, \exists_{1} \times \varphi}
$$

may be replaced with:

$$
\frac{\varphi(a), \varphi\left(a^{\prime}\right), \Gamma \Rightarrow \Delta, a=a^{\prime}}{\varphi(b), \Gamma \Rightarrow \Delta, \exists_{1} \times \varphi}
$$

or even:

$$
\frac{\varphi(a), \varphi(b), \Gamma \Rightarrow \Delta, a=b}{\varphi(b), \Gamma \Rightarrow \Delta, \exists_{1} \times \varphi}
$$

Methodological interlude

How do we build the rules - the case of \exists_{1} :

$$
\frac{\Gamma \Rightarrow \Delta, \varphi(b) \quad \varphi(a), \varphi\left(a^{\prime}\right), \Gamma \Rightarrow \Delta, a=a^{\prime}}{\Gamma \Rightarrow \Delta, \exists_{1} \times \varphi}
$$

may be replaced with:

$$
\frac{\varphi(a), \varphi\left(a^{\prime}\right), \Gamma \Rightarrow \Delta, a=a^{\prime}}{\varphi(b), \Gamma \Rightarrow \Delta, \exists_{1} \times \varphi}
$$

or even:

$$
\frac{\varphi(a), \varphi(b), \Gamma \Rightarrow \Delta, a=b}{\varphi(b), \Gamma \Rightarrow \Delta, \exists_{1} \times \varphi}
$$

Warning: but such simplifications usually lead to failure of the cut elimination theorem.

Funded by the European Union (ERC, ExtenDD, project number: 101054714). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them.

