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Introduction

Definite descriptions (DDs) are term-forming expressions, e.g., ‘the x such that φ(x)’.

There is a lot of research on DDs in first-order languages, but the following lack good
understanding:

1. How adding DDs affects propositional modal languages?

2. How to express temporal DDs and reason about them?

We will address both of these topics.
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Plan

The presentation will be divided into two parts:

1. Hybrid Modal Operators for Definite Descriptions

2. Temporal References via Definite Descriptions
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1. Hybrid Modal Operators
for Definite Descriptions



Motivations

DDs, and referring expressions in general, provide a convenient way of identifying
objects in information and knowledge base management systems,
(Toman, Weddell)

▶ e.g., report answer to queries with DDs instead of obscure ids:
“Synchronicity” by “The Police” vs /guid/9202a8c04000641f8000000002f9e349

Thus, DDs are used in description logics, where they take the form

{ιC}

The extension of such an expression is the unique a satisfying concept C if it exists, or
∅ if there is no such a
(Artale, Mazzullo, Ozaki, Wolter).
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Motivations

Properties of DDs in specific description logics have been studied

▶ e.g., it was shown that nominals and universal roles can express DDs
(Artale, Mazzullo, Ozaki, Wolter).

However, the basic questions remain open:

▶ What is the complexity cost of adding DDs to a modal language?

▶ What new do DDs allow us to express in modal languages?
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Modal Operators for DDs

▶ We introduce operators @ιφ, for any formula φ.

▶ @ιφ1φ2 is to mean that ‘φ2 holds in the unique world in which φ1 holds’.

▶ For example @ιCKFBald is to mean that ‘the current king of France is bald’ .
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Our Results

Computational complexity (for satisfiability checking):
▶ ML(ι)-satisfiability is ExpTime-complete.
▶ ML(ι)-satisfiability is PSpace-complete if we allow for Boolean DDs only.

Relative expressiveness (existence of equivalence preserving translations):
▶ H(@) ≺ ML(ι) ≺ MLC (arbitrary frames)
▶ H(@) ≺L ML(ι) ≺L MLC (linear frames)
▶ H(@) ≺Z ML(ι) ≈Z MLC (integer frame)
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Syntax of ML(ι)

ML(ι)-formulas are generated as follows, where p ∈ PROP:

φ ::= p | ¬φ | φ1 ∨ φ2 | ♢φ | @ιφ1φ2,

(⊤, ⊥, ∨, →, □ are treated as the usual abbreviations)

We call @ιφ a definite description; we call it Boolean if so is φ.
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Semantics of ML(ι)
A model is a triple M = (W,R, V ) with:
▶ W ̸= ∅,
▶ R ⊆ W ×W ,
▶ V : PROP −→ P(W ).

Satisfaction of a formula in M and w ∈ W is defined recursively:

M, w |= p iff w ∈ V (p), for each p ∈ PROP
M, w |= ¬φ iff M, w ̸|= φ

M, w |= φ1 ∨ φ2 iff M, w |= φ1 or M, w |= φ2

M, w |= ♢φ iff there exists v ∈ W such that (w, v) ∈ R and M, v |= φ

M, w |= @ιφ1φ2 iff there exists a unique v ∈ W such that M, v |= φ1

and moreover M, v |= φ2
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Counting Logic MLC

MLC-formulas are generated by the following grammar, where n ∈ N:

φ ::= p | ¬φ | φ1 ∨ φ2 | ♢φ | ∃≥nφ,

▶ ∃≤nφ abbreviates ¬∃≥n+1φ

▶ ∃=nφ abbreviates ∃≥nφ ∧ ∃≤nφ

Additional condition:

M, w |= ∃≥nφ iff there are at least n worlds v ∈ W such that M, v |= φ
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Hybrid Logic H(@)

H(@)-formulas are generated by the grammar

φ ::= p | i | ¬φ | φ1 ∨ φ2 | ♢φ | @iφ2,

where i ∈ NOM are nominals.

Hybrid models M = (W,R, V ) have V : PROP ∪ NOM −→ P(W ) assigning
singletons to nominals.

Additional conditions:

M, w |= i iff w ∈ V (i), for each i ∈ NOM
M, w |= @iφ iff M, v |= φ, for the unique v such that v ∈ V (i)
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Similarities

Basic relations between ML(ι), MLC, and H(@):

▶ We can express @ιφ1φ2 as ∃=1φ1 ∧ ∃=1(φ1 ∧ φ2).

▶ We can simulate a nominal i with a propositional variable pi by writing @ιpi⊤.

▶ Then, we can express @iφ as @ιpiφ.
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Computational Complexity



Computational Complexity

Known results:
▶ H(@)-satisfiability is PSpace-complete

(Areces, Blackburn, Marx),
▶ MLC-satisfiability is ExpTime-complete with unary encoded numbers

(PhD of Tobies),
▶ MLC-satisfiability is NExpTime-complete with binary encoded numbers

(Zawidzki, Schmidt, Tishkovsky).

How does ML(ι) fit into this picture?

New results:
▶ ML(ι)-satisfiability is ExpTime-complete,
▶ ML(ι)-satisfiability with Boolean DDs is PSpace-complete.
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ML(ι)-satisfiability is ExpTime-complete

Proof.
For ExpTime-hardness reduce ML(A)-satisfiability:

1. Transform ML(A)-formula to NNF formula φ (it will mention ∧, □, E),
2. Let φ′ = ¬s ∧ @ιs⊤ ∧ @ι♢ss ∧ τ(φ),
3. Where τ translates ML(A)-formulas in NNF to ML(ι)-formulas:

τ(p) = p, τ(♢ψ) = ♢τ(ψ),
τ(¬p) = ¬p, τ(□ψ) = □τ(ψ),

τ(ψ ∨ χ) = τ(ψ) ∨ τ(χ), τ(Eψ) = @ιpψ(τ(ψ) ∧ ¬s),
τ(ψ ∧ χ) = τ(ψ) ∧ τ(χ), τ(Aψ) = @ι(s∨¬τ(ψ))⊤,

4. Show that φ and φ′ are equisatisfiable.

Corollary: Modal logic with ∃=1 is ExpTime-complete.
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Game

For a formula φ, define the following game:

In the first turn Eloise plays a set H of at most |ι(φ)| + 1 (for ι(φ) being the set of
formulas ψ such that @ιψ occurs in φ) Hintikka sets and R ⊆ H × H such that:

▶ φ ∈ H, for some H ∈ H,

▶ each ψ ∈ ι(φ) can occur in at most one H ∈ H,

▶ for all @ιψχ ∈ cl(φ) and H ∈ H we have @ιψχ ∈ H iff there is H ′ ∈ H such that
{ψ, χ} ⊆ H ′,

▶ and for all ♢ψ ∈ cl(φ), if R(H,H ′) and ψ ∈ H ′, then ♢ψ ∈ H.
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Game
Abelard selects H ∈ Current (initially Current = H) and a formula ♢φ′ ∈ H (modal
depth of chosen formula needs to decrease in each turn).

Eloise plays a Hintikka set H ′ such that
▶ φ′ ∈ H ′,
▶ if H ′ ∩ ι(φ) ̸= ∅, then H ′ ∈ H,
▶ for all @ιψχ ∈ cl(φ) we have @ιψχ ∈ H ′ iff there is H ′′ ∈ H such that

{ψ, χ} ⊆ H ′′,
▶ and for all ♢ψ ∈ cl(φ), if ψ ∈ H ′, then ♢ψ ∈ H.

If H ′ ∩ ι(φ) ̸= ∅, then Eloise wins.

Otherwise, it is Abelard’s turn with H ::= H ∪ {H ′} and Current ::= {H ′}.

If a player cannot make a move, they lose.
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ML(ι)-satisfiability with Boolean DDs is PSpace-complete.

Proof.
Let φ be an ML(ι)-formula φ with Boolean DDs.

1. φ is satisfiable iff Eloise has a winning strategy in the game,

2. Game depth is polynomial and so are representations of game states,

3. Hence, the existence of a winning strategy is in PSpace (as AP = PSpace, by
Chandra-Kozen-Stockmeyer Theorem).
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Expressive Power



Expressive Power

New results:

▶ H(@) ≺ ML(ι) ≺ MLC

▶ H(@) ≺L ML(ι) ≺L MLC

▶ H(@) ≺Z ML(ι) ≈Z MLC

where L stands for strict linear frames, and Z for the ordered set of integers (Z, <).
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Bisimulation form ML(ι)
Definition. A ι-bisimulation between M = (W,R, V ) and M′ = (W ′, R′, V ′) is any
total (i.e., serial and surjective) Z ⊆ W ×W ′ such that whenever (w,w′) ∈ Z:

Atom: w and w′ satisfy the same propositional variables,
Zig: if there is v ∈ W such that (w, v) ∈ R, then there is v′ ∈ W ′ such

(v, v′) ∈ Z and (w′, v′) ∈ R′,
Zag: if there is v′ ∈ W ′ such that (w′, v′) ∈ R′, then there is v ∈ W such

(v, v′) ∈ Z and (w, v) ∈ R,
Singular: Z(w) = {w′} if and only if Z−1(w′) = {w}.

Lemma (Bisimulation Invariance). If there is a ι-bisimulation between M and M′

which maps w to w′, then

M, w |= φ iff M′, w′ |= φ

for any ML(ι)-formula φ.
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ML(ι) ≺ MLC

Proof.
There is no ML(ι)-formula equivalent to MLC-formula ∃=2⊤.

Indeed, consider models M and M′ and a ι-bisimulation between them:

w1 w2 w′
1 w′

2 w′
3

M M′

Z
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ML(ι) ≺L MLC

Proof.
There is no ML(ι)-formula equivalent to MLC-formula ∃≥1p over linear frames.

· · ·
w−1

p

w0

p

w1

p
· · ·
v−1 v0 v1

· · · · · ·
w′

−1

p

w′
0 w′

1
· · ·
v′

−1 v′
0 v′

1
· · ·

N N ′

Z

1. N , v0 |= ∃≥1p, but N ′, v′
0 ̸|= ∃≥1p.

2. Z is a (standard) bisimulation, so v0 and v′
0 satisfy the same basic modal formulas.

3. Define ι-bisimulation ZN = {(wn, wm), (vn, vm) | n,m ∈ Z} between N and N .
4. So all wn and all vm satisfy the same ML(ι)-formulas in N (and in N ′).
5. So no DD is proper, and so, v0 and v′

0 satisfy the same ML(ι)-formulas.
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ML(ι) ≈Z MLC

Proof.
1. Let ψn = ψ ∧ ♢(ψ ∧ ♢(ψ ∧ . . . )), where ψ occurs n times.
2. Show that ∃≥nψ is equivalent to ♢ψn ∨ @ι(ψn∧¬♢ψn)⊤ over Z.
3. Indeed, ∃≥nψ holds at w if either

(1) there are w1 < · · · < wn, all larger than w, in which ψ holds or

(2) there exists the unique w′ such that ψ holds in w′ and in exactly n− 1 words
larger than w′.

(1) is expressed by ♢ψn and (2) by @ι(ψn∧¬♢ψn)⊤.
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Conclusions for Part 1

Complexity:
▶ ML(ι)-satisfiability is ExpTime-complete

(like MLC with unary encoded numbers),
▶ ML(ι)-satisfiability with Boolean DDs is PSpace-complete

(like H(@) and basic modal logic).

Expressiveness:
▶ H(@) ≺ ML(ι) ≺ MLC
▶ H(@) ≺L ML(ι) ≺L MLC
▶ H(@) ≺Z ML(ι) ≈Z MLC
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2. Temporal References
via Definite Descriptions



Motivations
Referring to particular points of time is essential for our everyday communication and
for knowledge representation systems, e.g., consider
▶ ‘the last time I read "On Denoting"’,
▶ ‘the time when the system was upgraded to version 2.0’.

Temporal reference can be:
1. definite, when we refer to a unique point of time

▶ e.g., in past simple tenses:
“I didn’t turn off the stove”

▶ corresponds to the article ‘the’
2. indefinite, otherwise

▶ e.g., in present perfect tenses:
“Have you ever eaten caviar before?”, “No. But I have eaten oysters”

▶ corresponds to the article ‘a’.

We will focus on type 1.
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Related Work

▶ Tense Logic: tense operators to express temporal relations between time points,
(Łoś, Prior, von Wright, etc.)

▶ FO(<): temporal logics are related to FO:
▶ FOMLO is TL(U,S) (Kamp)
▶ FO2(<) is unary-TL (Etessami, Vardi, Wilke)

▶ Hybrid Logics: use clock-variables (Prior) a.k.a. names (Gargov, Goranko) a.k.a.
nominals (Blackburn) to label points of a model

▶ First-order Logics: use term-forming operators, e.g., ι operator (Peano)

▶ Context of reference: time of utterance is a crucial component of the context,
model it with a two-dimensional logic (Kamp) or a special constant now (Prior)
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Contributions

1. Logic for expressing complex temporal references,

2. Sound and complete tableau system for the logic,

3. Complexity results for well-behaving fragments of the logic,
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FO(<, ι, now)

We obtain FO(<, ι,now) by extending first-order monadic logic of order FO(<) with:
▶ operator ι, for DDs
▶ constant now, for the time of utterance.

FO(<, ι,now) allows us to express complex temporal references, for example the term

‘the last time I met Mary’

ιx
(
MeetM (x) ∧ x < now ∧ ∀y

(
x < y < now → (¬MeetM (y)

))
.
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Syntax of FO(<, ι, now)
Vocabulary:
▶ set Σ of unary predicates P,Q,R, . . . ,
▶ set VAR of first-order variables x, y, z, . . . ,
▶ ¬, ∨, ∃,
▶ earlier-later relation <,
▶ definite description operator ι,
▶ constant now.

Terms s and formulas φ are defined simultaneously:
s ::= x | now | ιxφ(x)
φ ::= P (s) | s1 = s2 | s1 < s2 | ¬φ | φ1 ∨ φ2 | ∃xφ(x),

▶ φ(x) is a formula with a free variable x, where variables are bound by both
quantifiers and the ι-operator.

Przemysław Wałęga, Michał Zawidzki, Andrzej Indrzejczak (www.walega.pl)

www.walega.pl


Syntax of FO(<, ι, now)

‘I was studying “On Denoting” the last time I met Mary; therefore, I have not met her
since I was studying "On Denoting"’:

Study(sM ) → ∃x
(
x < now ∧ Study(x) ∧ ∀y(x < y < now → ¬MeetM (y))

)
,

where sM ::= ιx
(
MeetM (x) ∧ x < now ∧ ∀y

(
x < y < now → (¬MeetM (y)

))
.

FO2(<, ι,now) is the 2-variable fragment of FO(<, ι,now). It enables to express, e.g.,
‘I have not met John since I met Mary’

∃x
(
x < now ∧ MeetM (x) ∧ ∀y

(
x < y < now → ¬MeetJ (y)

))
.
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FO(<, ι, now) semantics
Model is a tuple M = (T , <, I, t0) where
▶ T is a set of of time points (strictly) linearly ordered by <,
▶ I : Σ −→ P(T )
▶ t0 ∈ T is the time of utterance.

M, v |= φ, for assignment v of constants, is defined as usual for φ with no ι-operators.

For ι-operators we adopt the Russellian semantics:
M, v |= P (ιxφ(x)) iff there exists a unique t ∈ T such that

M, v[x 7→ t] |= φ(x), and t ∈ I(P ) for this t
M, v |= s ≶ ιxφ(x) iff there exists a unique t ∈ T such that

M, v[x 7→ t] |= φ(x), and v(s) ≶ t for this t
M, v |= ιxφ(x) ≶ ιyψ(y) iff there exist unique t1, t2 ∈ T such that

M, v[x 7→ t1] |= φ(x) and M, v[y 7→ t2] |= ψ(y),
and moreover t1 ≶ t2 for these t1, t2
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FO(<, ι, now) semantics

Note that s1 = s2 is not equivalent to ¬(s1 < s2) ∧ ¬(s1 > s2),

e.g., if s1 or s2 is an improper DD, then s1 = s2 is not true, but the latter is true.

A formula is valid if it is satisfied in every model and every assignment, e.g.,

‘I was studying “On Denoting” the last time I met Mary; therefore, I have not met her
since I was studying "On Denoting"’:

Study(sM ) → ∃x
(
x < now ∧ Study(x) ∧ ∀y(x < y < now → ¬MeetM (y))

)
,
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Tableau System

A tableau-proof of φ is any closed tableau with ¬φ at the root.

We use the following convention:
▶ s, s1, s2 are terms,
▶ d, d1, d2 are DDs,
▶ x ∈ VAR,
▶ a, a1, a2 ∈ VAR are free and freshly introduced to the branch by a rule application,
▶ b, b1, b2, b3 ∈ VAR ∪ {now} are free and need to be present on a branch before

a rule application,
▶ φ[s1/s2] is φ with all occurrences of s1 substituted by s2,
▶ φ[s1//s2] is φ with some occurrences of s1 substituted by s2.
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Tableau System
Timeline rules:

(NE)∗
a = a

(tran)
b1 < b2, b2 < b3

b1 < b3
(irref)

b < b

⊥
(trich)

b1 < b2 | b1 = b2 | b2 < b1

Basic first-order rules:

(¬¬)
¬¬φ
φ

(∨)
φ ∨ ψ

φ | ψ
(¬∨)

¬(φ ∨ ψ)
¬φ
¬ψ

(∃)
∃xφ
φ[x/a]

(¬∃)
¬∃xφ

¬φ[x/b]

(sym)
s1 = s2

s2 = s1
(rep)

s1 = s2, φ(s1)
φ[s1//s2]

(clash)
φ,¬φ

⊥

Definite description rules:

(ιS1)
P (d)
a = d

(ιS2)
d < s

a = d
(ιS3)

s < d

a = d
(ιS4)

d1 = d2

a = d1

(ιE1)
b = ιxφ(x)
φ[x/b]

(ιE2)
b1 = ιxφ(x)

¬φ[x/b2] | b1 = b2
(¬ιE)

b ̸= ιxφ(x)
¬φ[x/b]

∣∣∣ a ̸= b
φ[x/a]

(cut)
b = d | b ̸= d

∗ (NE) can be applied only if there are no free variables or now on the branch and no other rules are applicable.
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Example of a Tableau-proof

We show a proof for ‘I was studying “On Denoting” the last time I met Mary;
therefore, I have not met her since I was studying "On Denoting"’:

¬
(

Study(sM ) → ∃x(x < now∧Study(x)∧∀y(x < y∧y < now → ¬MeetM(y)))
)

Study(sLastM )
¬∃x(x < now ∧ Study(x) ∧ ∀y(x < y ∧ y < now → ¬MeetM(y)))

a = sLastM

Study(a)

¬(a < now ∧ Study(a) ∧ ∀y(a < y ∧ y < now → ¬MeetM(y)))

MeetM(a) ∧ a < now ∧ ∀y(a < y ∧ y < now → ¬MeetM(y))

(¬→)

(ιS1)

(rep)

(¬∃)

(ιE1)
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Example of a Tableau-proof Cont.

MeetM(a) ∧ a < now ∧ ∀y(a < y ∧ y < now → ¬MeetM(y))

MeetM(a)
a < now

∀y(a < y ∧ y < now → ¬MeetM(y))

¬a < now ¬(Study(a) ∧ ∀y(a < y ∧ y < now → ¬MeetM(y)))

⊥

¬Study(a) ¬∀y(a < y ∧ y < now → ¬MeetM(y))

⊥ ¬(a < a′ ∧ a′ < now → ¬MeetM(a′))

a < a′ ∧ a′ < now → ¬MeetM(a′)

⊥

(∧)

(¬∧)

(clash) (¬∧)

(clash) (¬∀)

(∀)

(clash)
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Soundness

Calculus is sound if every FO(<, ι,now)-formula φ that has a tableau-proof is valid.

Theorem. Our calculus is sound.
Proof.

1. Show the Coincidence Lemma, i.e., M, v1 |= φ iff M, v2 |= φ, for any v1, v2
agreeing on free variables in φ.

2. Show the Substitution Lemma, i.e., M, v |= φ[x/a] iff M, v[x 7→ v(a)] |= φ, for x
and a free variables in φ.

3. Show that for each rule Φ
Ψ1 | . . . | Ψn

, if Φ is satsifiable, then so is some Ψi.
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Completeness
Calculus is complete if every FO(<, ι,now)-formula φ that is valid has a tableau-proof.

Theorem. Our calculus is complete.
Proof.

1. Let B be an open, expanded branch with root ¬φ; to show that ¬φ is satisfiable.
2. Let b1 ≈ b2 iff b1 = b2 is in B.
3. Construct M = (T , <, I, t0) and v : VAR −→ T such that:

T = {[b]≈ | b ∈ TERM}, < = {([b1]≈, [b2]≈) ∈ T × T | b1 < b2 ∈ B},
I(P ) = {[s]≈ ∈ T | P (s) ∈ B}, I(now) = t0,

t0 =
{

[now]≈ if now occurs on B,
[b0]≈ otherwise,

v(x) =
{

[x]≈ if x is free on B,
t0 otherwise,

4. Show by induction on the structure of ψ that ψ ∈ B implies M, v |= ψ.
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Complexity

Theorem. Satisfiability checking over N is:
▶ decidable, but not elementary recursive in FO(<, ι,now),
▶ NExpTime-complete in FO2(<, ι,now),
▶ NP-complete in FO2(<, ι,now) with bounded number of predicates.

Proof.
1. It suffices to show that each formula of FO(<, ι,now) (resp. FO2(<, ι,now)) can

be polynomially translated to an equisatisfiable formula of FO(<) (resp. FO(<)2).
2. Trick: x in ιxψ(x) is not free, so rewrite x with different variable, e.g.

τ(P (ιxψ(x))) = ∃z(P (z) ∧ ∀x(τ(ψ(x)) ↔ x = z))
τ(x ≶ ιyψ(y)) = ∃z(x ≶ z ∧ ∀x(τ(ψ(x)) ↔ x = z))
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Conclusions for Part 2

▶ FO(<, ι,now) is a dedicated language for complex temporal references thanks to
▶ exploiting ι for temporal reference
▶ capturing temporal context with now

▶ FO(<, ι,now) has a sound an complete tableau system,

▶ Reasoning in FO(<, ι,now) is decidable with NExpTime- and NP-complete
fragments.
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Future directions

▶ DDs in first-order temporal logics

▶ DDs in two-dimensional temporal logics

▶ DDs in description logics
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