## Definite Descriptions in Modal and Temporal Logics

Przemysław Wałęga, Michał Zawidzki, Andrzej Indrzejczak www.walega.pl | p.a.walega@gmail.com

## UNIVERSITY OF LODZ



June 20th 2023

## Introduction

Definite descriptions (DDs) are term-forming expressions, e.g., 'the $x$ such that $\varphi(x)$ '.

There is a lot of research on DDs in first-order languages, but the following lack good understanding:

1. How adding DDs affects propositional modal languages?
2. How to express temporal DDs and reason about them?

We will address both of these topics.

## Plan

The presentation will be divided into two parts:

1. Hybrid Modal Operators for Definite Descriptions
2. Temporal References via Definite Descriptions

# 1. Hybrid Modal Operators 

 for Definite Descriptions
## Motivations

DDs, and referring expressions in general, provide a convenient way of identifying objects in information and knowledge base management systems, (Toman, Weddell)

- e.g., report answer to queries with DDs instead of obscure ids:
"Synchronicity" by "The Police" vs /guid/9202a8c04000641f8000000002f9e349

Thus, DDs are used in description logics, where they take the form

$$
\{\iota C\}
$$

The extension of such an expression is the unique a satisfying concept $C$ if it exists, or $\emptyset$ if there is no such $a$ (Artale, Mazzullo, Ozaki, Wolter).

## Motivations

Properties of DDs in specific description logics have been studied

- e.g., it was shown that nominals and universal roles can express DDs (Artale, Mazzullo, Ozaki, Wolter).

However, the basic questions remain open:

- What is the complexity cost of adding DDs to a modal language?
- What new do DDs allow us to express in modal languages?


## Modal Operators for DDs

- We introduce operators $@_{\iota \varphi}$, for any formula $\varphi$.
- $@_{\iota \varphi_{1}} \varphi_{2}$ is to mean that ' $\varphi_{2}$ holds in the unique world in which $\varphi_{1}$ holds'.
- For example @ ${ }_{\iota C K F}$ Bald is to mean that 'the current king of France is bald'


## Our Results

Computational complexity (for satisfiability checking):

- $\mathcal{M} \mathcal{L}(\iota)$-satisfiability is ExpTime-complete.
- $\mathcal{M L}(\iota)$-satisfiability is PSpace-complete if we allow for Boolean DDs only.

Relative expressiveness (existence of equivalence preserving translations):

- $\mathcal{H}(@) \prec \mathcal{M L}(\iota) \prec \mathcal{M L C} \quad$ (arbitrary frames)
- $\mathcal{H}(@) \prec_{L} \mathcal{M L}(\iota) \prec_{L} \mathcal{M L C} \quad$ (linear frames)
- $\mathcal{H}(@) \prec_{\mathbb{Z}} \mathcal{M} \mathcal{L}(\iota) \approx_{\mathbb{Z}} \mathcal{M L C} \quad$ (integer frame)
$\mathcal{M} \mathcal{L}(\iota)$-formulas are generated as follows, where $p \in \operatorname{PROP}:$

$$
\varphi::=p|\neg \varphi| \varphi_{1} \vee \varphi_{2}|\diamond \varphi| @_{\iota \varphi_{1}} \varphi_{2},
$$

( $\top, \perp, \vee, \rightarrow, \square$ are treated as the usual abbreviations)

We call $@_{\iota \varphi}$ a definite description; we call it Boolean if so is $\varphi$.

## Semantics of $\mathcal{M} \mathcal{L}(\iota)$

A model is a triple $\mathcal{M}=(W, R, V)$ with:

- $W \neq \emptyset$,
- $R \subseteq W \times W$,
- $V: \mathrm{PROP} \longrightarrow \mathcal{P}(W)$.

Satisfaction of a formula in $\mathcal{M}$ and $w \in W$ is defined recursively:

$$
\begin{array}{lll}
\mathcal{M}, w \models p & \text { iff } \quad w \in V(p), \text { for each } p \in \mathrm{PROP} \\
\mathcal{M}, w \models \neg \varphi & \text { iff } \quad \mathcal{M}, w \not \models \varphi \\
\mathcal{M}, w \models \varphi_{1} \vee \varphi_{2} & \text { iff } \quad \mathcal{M}, w \models \varphi_{1} \text { or } \mathcal{M}, w \models \varphi_{2} \\
\mathcal{M}, w \models \diamond \varphi & \text { iff } \quad \text { there exists } v \in W \text { such that }(w, v) \in R \text { and } \mathcal{M}, v \models \varphi \\
\mathcal{M}, w \models @_{\iota \varphi_{1} \varphi_{2}} & \quad \text { iff } \quad \text { there exists a unique } v \in W \text { such that } \mathcal{M}, v \models \varphi_{1} \\
& & \quad \text { and moreover } \mathcal{M}, v \models \varphi_{2}
\end{array}
$$

## Counting Logic $\mathcal{M} \mathcal{L C}$

$\mathcal{M L C}$-formulas are generated by the following grammar, where $n \in \mathbb{N}$ :

$$
\varphi::=p|\neg \varphi| \varphi_{1} \vee \varphi_{2}|\diamond \varphi| \exists_{\geq n} \varphi,
$$

- $\exists_{\leq n} \varphi$ abbreviates $\neg \exists_{\geq n+1} \varphi$
- $\exists_{=n} \varphi$ abbreviates $\exists_{{ }_{n}} \varphi \wedge \exists_{\leq_{n}} \varphi$

Additional condition:
$\mathcal{M}, w \models \exists_{\geq n} \varphi \quad$ iff $\quad$ there are at least $n$ worlds $v \in W$ such that $\mathcal{M}, v \models \varphi$

Hybrid Logic $\mathcal{H}(@)$
$\mathcal{H}(@)$-formulas are generated by the grammar

$$
\varphi::=p|i| \neg \varphi\left|\varphi_{1} \vee \varphi_{2}\right| \diamond \varphi \mid @_{i} \varphi_{2}
$$

where $i \in$ NOM are nominals.

Hybrid models $\mathcal{M}=(W, R, V)$ have $V: \mathrm{PROP} \cup \mathrm{NOM} \longrightarrow \mathcal{P}(W)$ assigning singletons to nominals.

Additional conditions:

$$
\begin{array}{llll}
\mathcal{M}, w \models i & \text { iff } & & w \in V(i), \text { for each } i \in \operatorname{NOM} \\
\mathcal{M}, w \models @_{i} \varphi & \text { iff } & \mathcal{M}, v \models \varphi, \text { for the unique } v \text { such that } v \in V(i)
\end{array}
$$

## Similarities

Basic relations between $\mathcal{M} \mathcal{L}(\iota), \mathcal{M} \mathcal{L C}$, and $\mathcal{H}(@)$ :

- We can express $@_{\iota \varphi_{1}} \varphi_{2}$ as $\exists_{=1} \varphi_{1} \wedge \exists_{=1}\left(\varphi_{1} \wedge \varphi_{2}\right)$.
- We can simulate a nominal $i$ with a propositional variable $p_{i}$ by writing $@_{\iota p_{i}} \top$.
- Then, we can express $@_{i} \varphi$ as $@_{\iota p_{i}} \varphi$.


## Computational Complexity

## Computational Complexity

Known results:

- $\mathcal{H}(@)$-satisfiability is PSpace-complete
(Areces, Blackburn, Marx),
- $\mathcal{M} \mathcal{L C}$-satisfiability is ExpTime-complete with unary encoded numbers (PhD of Tobies),
- $\mathcal{M} \mathcal{L C}$-satisfiability is NExpTime-complete with binary encoded numbers (Zawidzki, Schmidt, Tishkovsky).

How does $\mathcal{M} \mathcal{L}(\iota)$ fit into this picture?
New results:

- $\mathcal{M L}(\iota)$-satisfiability is ExpTime-complete,
- $\mathcal{M} \mathcal{L}(\iota)$-satisfiability with Boolean DDs is PSpace-complete.


## $\mathcal{M} \mathcal{L}(\iota)$-satisfiability is ExpTime-complete

## Proof.

For ExpTime-hardness reduce $\mathcal{M} \mathcal{L}(\mathrm{A})$-satisfiability:

1. Transform $\mathcal{M} \mathcal{L}(\mathrm{A})$-formula to NNF formula $\varphi$ (it will mention $\wedge, \square, \mathrm{E}$ ),
2. Let $\left.\varphi^{\prime}=\neg s \wedge @_{\iota s}\right\rceil \wedge @_{\iota \diamond s} s \wedge \tau(\varphi)$,
3. Where $\tau$ translates $\mathcal{M} \mathcal{L}(\mathrm{A})$-formulas in NNF to $\mathcal{M} \mathcal{L}(\iota)$-formulas:

$$
\begin{aligned}
\tau(p) & =p \\
\tau(\neg p) & =\neg p \\
\tau(\psi \vee \chi) & =\tau(\psi) \vee \tau(\chi) \\
\tau(\psi \wedge \chi) & =\tau(\psi) \wedge \tau(\chi)
\end{aligned}
$$

$$
\begin{aligned}
\tau(\diamond \psi) & =\diamond \tau(\psi) \\
\tau(\square \psi) & =\square \tau(\psi) \\
\tau(\mathrm{E} \psi) & =@_{\iota p_{\psi}}(\tau(\psi) \wedge \neg s) \\
\tau(\mathrm{A} \psi) & =@_{\iota(s \vee \neg \tau(\psi))} \top
\end{aligned}
$$

4. Show that $\varphi$ and $\varphi^{\prime}$ are equisatisfiable.

Corollary: Modal logic with $\exists_{=1}$ is ExpTime-complete.

## Game

For a formula $\varphi$, define the following game:
In the first turn Eloise plays a set $\mathcal{H}$ of at most $|\iota(\varphi)|+1$ (for $\iota(\varphi)$ being the set of formulas $\psi$ such that $@_{\iota \psi}$ occurs in $\varphi$ ) Hintikka sets and $R \subseteq \mathcal{H} \times \mathcal{H}$ such that:

- $\varphi \in H$, for some $H \in \mathcal{H}$,
- each $\psi \in \iota(\varphi)$ can occur in at most one $H \in \mathcal{H}$,
- for all $@_{\iota \psi} \chi \in \mathrm{cl}(\varphi)$ and $H \in \mathcal{H}$ we have $@_{\iota \psi} \chi \in H$ iff there is $H^{\prime} \in \mathcal{H}$ such that $\{\psi, \chi\} \subseteq H^{\prime}$,
- and for all $\forall \psi \in \mathrm{cl}(\varphi)$, if $R\left(H, H^{\prime}\right)$ and $\psi \in H^{\prime}$, then $\diamond \psi \in H$.


## Game

Abelard selects $H \in$ Current (initially Current $=\mathcal{H}$ ) and a formula $\diamond \varphi^{\prime} \in H$ (modal depth of chosen formula needs to decrease in each turn).

Eloise plays a Hintikka set $H^{\prime}$ such that

- $\varphi^{\prime} \in H^{\prime}$,
- if $H^{\prime} \cap \iota(\varphi) \neq \emptyset$, then $H^{\prime} \in \mathcal{H}$,
- for all $\varrho_{\iota \psi} \chi \in \operatorname{cl}(\varphi)$ we have $@_{\iota \psi} \chi \in H^{\prime}$ iff there is $H^{\prime \prime} \in \mathcal{H}$ such that $\{\psi, \chi\} \subseteq H^{\prime \prime}$,
- and for all $\diamond \psi \in \mathrm{cl}(\varphi)$, if $\psi \in H^{\prime}$, then $\diamond \psi \in H$.

If $H^{\prime} \cap \iota(\varphi) \neq \emptyset$, then Eloise wins.
Otherwise, it is Abelard's turn with $\mathcal{H}::=\mathcal{H} \cup\left\{H^{\prime}\right\}$ and Current $::=\left\{H^{\prime}\right\}$.
If a player cannot make a move, they lose.
$\mathcal{M} \mathcal{L}(\iota)$-satisfiability with Boolean DDs is PSpace-complete.

Proof.
Let $\varphi$ be an $\mathcal{M} \mathcal{L}(\iota)$-formula $\varphi$ with Boolean DDs.

1. $\varphi$ is satisfiable iff Eloise has a winning strategy in the game,
2. Game depth is polynomial and so are representations of game states,
3. Hence, the existence of a winning strategy is in PSpace (as AP $=P$ Space, by Chandra-Kozen-Stockmeyer Theorem).

## Expressive Power

## Expressive Power

New results:

- $\mathcal{H}(@) \prec \mathcal{M L}(\iota) \prec \mathcal{M L C}$
- $\mathcal{H}(@) \prec_{L} \mathcal{M L}(\iota) \prec_{L} \mathcal{M L C}$
- $\mathcal{H}(@) \prec_{\mathbb{Z}} \mathcal{M L}(\iota) \approx_{\mathbb{Z}} \mathcal{M L C}$
where $L$ stands for strict linear frames, and $\mathbb{Z}$ for the ordered set of integers $(\mathbb{Z},<)$.


## Bisimulation form $\mathcal{M} \mathcal{L}(\iota)$

Definition. A $\iota$-bisimulation between $\mathcal{M}=(W, R, V)$ and $\mathcal{M}^{\prime}=\left(W^{\prime}, R^{\prime}, V^{\prime}\right)$ is any total (i.e., serial and surjective) $Z \subseteq W \times W^{\prime}$ such that whenever $\left(w, w^{\prime}\right) \in Z$ :

Atom: $w$ and $w^{\prime}$ satisfy the same propositional variables,
Zig: if there is $v \in W$ such that $(w, v) \in R$, then there is $v^{\prime} \in W^{\prime}$ such $\left(v, v^{\prime}\right) \in Z$ and $\left(w^{\prime}, v^{\prime}\right) \in R^{\prime}$,
Zag: if there is $v^{\prime} \in W^{\prime}$ such that $\left(w^{\prime}, v^{\prime}\right) \in R^{\prime}$, then there is $v \in W$ such $\left(v, v^{\prime}\right) \in Z$ and $(w, v) \in R$,
Singular: $Z(w)=\left\{w^{\prime}\right\}$ if and only if $Z^{-1}\left(w^{\prime}\right)=\{w\}$.

## Bisimulation form $\mathcal{M} \mathcal{L}(\iota)$

Definition. A $\iota$-bisimulation between $\mathcal{M}=(W, R, V)$ and $\mathcal{M}^{\prime}=\left(W^{\prime}, R^{\prime}, V^{\prime}\right)$ is any total (i.e., serial and surjective) $Z \subseteq W \times W^{\prime}$ such that whenever $\left(w, w^{\prime}\right) \in Z$ :

Atom: $w$ and $w^{\prime}$ satisfy the same propositional variables,
Zig: if there is $v \in W$ such that $(w, v) \in R$, then there is $v^{\prime} \in W^{\prime}$ such $\left(v, v^{\prime}\right) \in Z$ and $\left(w^{\prime}, v^{\prime}\right) \in R^{\prime}$,
Zag: if there is $v^{\prime} \in W^{\prime}$ such that $\left(w^{\prime}, v^{\prime}\right) \in R^{\prime}$, then there is $v \in W$ such $\left(v, v^{\prime}\right) \in Z$ and $(w, v) \in R$,
Singular: $Z(w)=\left\{w^{\prime}\right\}$ if and only if $Z^{-1}\left(w^{\prime}\right)=\{w\}$.

Lemma (Bisimulation Invariance). If there is a $\iota$-bisimulation between $\mathcal{M}$ and $\mathcal{M}^{\prime}$ which maps $w$ to $w^{\prime}$, then

$$
\mathcal{M}, w \models \varphi \operatorname{iff} \mathcal{M}^{\prime}, w^{\prime} \models \varphi
$$

for any $\mathcal{M} \mathcal{L}(\iota)$-formula $\varphi$.

## $\mathcal{M L}(\iota) \prec \mathcal{M} \mathcal{L C}$

## Proof.

There is no $\mathcal{M} \mathcal{L}(\iota)$-formula equivalent to $\mathcal{M} \mathcal{L C}$-formula $\exists_{=2} \top$.

Indeed, consider models $\mathcal{M}$ and $\mathcal{M}^{\prime}$ and a $\iota$-bisimulation between them:


## $\mathcal{M L}(\iota) \prec_{L} \mathcal{M} \mathcal{L C}$

Proof.
There is no $\mathcal{M} \mathcal{L}(\iota)$-formula equivalent to $\mathcal{M} \mathcal{L C}$-formula $\exists_{\geq 1} p$ over linear frames.


1. $\mathcal{N}, v_{0} \models \exists{ }_{\geq 1} p$, but $\mathcal{N}^{\prime}, v_{0}^{\prime} \not \models \exists \exists_{1} p$.
2. $Z$ is a (standard) bisimulation, so $v_{0}$ and $v_{0}^{\prime}$ satisfy the same basic modal formulas.
3. Define $\iota$-bisimulation $Z_{\mathcal{N}}=\left\{\left(w_{n}, w_{m}\right),\left(v_{n}, v_{m}\right) \mid n, m \in \mathbb{Z}\right\}$ between $\mathcal{N}$ and $\mathcal{N}$.
4. So all $w_{n}$ and all $v_{m}$ satisfy the same $\mathcal{M L}(\iota)$-formulas in $\mathcal{N}$ (and in $\mathcal{N}^{\prime}$ ).
5. So no DD is proper, and so, $v_{0}$ and $v_{0}^{\prime}$ satisfy the same $\mathcal{M} \mathcal{L}(\iota)$-formulas.
$\mathcal{M} \mathcal{L}(\iota) \approx_{\mathbb{Z}} \mathcal{M} \mathcal{L C}$

## Proof.

1. Let $\quad \psi_{n}=\psi \wedge \diamond(\psi \wedge \diamond(\psi \wedge \ldots))$, where $\psi$ occurs $n$ times.
2. Show that $\exists_{\geq n} \psi$ is equivalent to $\diamond \psi_{n} \vee @_{\iota\left(\psi_{n} \wedge \neg \diamond \psi_{n}\right)} \top$ over $\mathbb{Z}$.
3. Indeed, $\exists_{\geq n} \psi$ holds at $w$ if either
(1) there are $w_{1}<\cdots<w_{n}$, all larger than $w$, in which $\psi$ holds or
(2) there exists the unique $w^{\prime}$ such that $\psi$ holds in $w^{\prime}$ and in exactly $n-1$ words larger than $w^{\prime}$.
(1) is expressed by $\diamond \psi_{n}$ and (2) by $@_{\iota\left(\psi_{n} \wedge \neg \diamond \psi_{n}\right)} \top$.

## Conclusions for Part 1

Complexity:

- $\mathcal{M} \mathcal{L}(\iota)$-satisfiability is ExpTime-complete (like $\mathcal{M} \mathcal{L C}$ with unary encoded numbers),
- $\mathcal{M L}(\iota)$-satisfiability with Boolean DDs is PSpace-complete (like $\mathcal{H}(@)$ and basic modal logic).

Expressiveness:

- $\mathcal{H}(@) \prec \mathcal{M L}(\iota) \prec \mathcal{M L C}$
- $\mathcal{H}(@) \prec_{L} \mathcal{M L}(\iota) \prec_{L} \mathcal{M L C}$
- $\mathcal{H}(@) \prec_{\mathbb{Z}} \mathcal{M L}(\iota) \approx_{\mathbb{Z}} \mathcal{M L C}$


# 2. Temporal References 

via Definite Descriptions

## Motivations

Referring to particular points of time is essential for our everyday communication and for knowledge representation systems, e.g., consider

- 'the last time I read "On Denoting"',
- 'the time when the system was upgraded to version 2.0'.

Temporal reference can be:

1. definite, when we refer to a unique point of time

- e.g., in past simple tenses:
"I didn't turn off the stove"
- corresponds to the article 'the'

2. indefinite, otherwise

- e.g., in present perfect tenses:
"Have you ever eaten caviar before?", "No. But I have eaten oysters"
- corresponds to the article 'a'.

We will focus on type 1 .

## Related Work

- Tense Logic: tense operators to express temporal relations between time points, (Łoś, Prior, von Wright, etc.)
- $\mathrm{FO}(<)$ : temporal logics are related to FO :
- FOMLO is $\mathrm{TL}(\mathrm{U}, \mathrm{S})$ (Kamp)
- $\mathrm{FO}^{2}(<)$ is unary-TL (Etessami, Vardi, Wilke)
- Hybrid Logics: use clock-variables (Prior) a.k.a. names (Gargov, Goranko) a.k.a. nominals (Blackburn) to label points of a model
- First-order Logics: use term-forming operators, e.g., $\iota$ operator (Peano)
- Context of reference: time of utterance is a crucial component of the context, model it with a two-dimensional logic (Kamp) or a special constant now (Prior)


## Contributions

1. Logic for expressing complex temporal references,
2. Sound and complete tableau system for the logic,
3. Complexity results for well-behaving fragments of the logic,
$\mathrm{FO}(<, \iota$, now $)$

We obtain $\mathrm{FO}(<, \iota$, now $)$ by extending first-order monadic logic of order $\mathrm{FO}(<)$ with:

- operator $\iota$, for DDs
- constant now, for the time of utterance.

FO $(<, \iota$, now $)$ allows us to express complex temporal references, for example the term

$$
\begin{gathered}
\text { 'the last time I met Mary' } \\
\iota x(\operatorname{MeetM}(x) \wedge x<\text { now } \wedge \forall y(x<y<\text { now } \rightarrow(\neg \operatorname{MeetM}(y))) .
\end{gathered}
$$

Syntax of $\mathrm{FO}(<, \iota$, now $)$
Vocabulary:

- set $\Sigma$ of unary predicates $P, Q, R, \ldots$,
- set VAR of first-order variables $x, y, z, \ldots$,
- ᄀ, , ヨ,
- earlier-later relation <,
- definite description operator $\iota$,
- constant now.

Terms $s$ and formulas $\varphi$ are defined simultaneously:

$$
\begin{aligned}
& s::=x \mid \text { now } \mid \iota x \varphi(x) \\
& \varphi::=P(s)\left|s_{1}=s_{2}\right| s_{1}<s_{2}|\neg \varphi| \varphi_{1} \vee \varphi_{2} \mid \exists x \varphi(x),
\end{aligned}
$$

- $\varphi(x)$ is a formula with a free variable $x$, where variables are bound by both quantifiers and the $\iota$-operator.


## Syntax of $\mathrm{FO}(<, \iota$, now $)$

'I was studying "On Denoting" the last time I met Mary; therefore, I have not met her since I was studying "On Denoting"':

$$
\operatorname{Study}\left(s_{M}\right) \rightarrow \exists x(x<\operatorname{now} \wedge \operatorname{Study}(x) \wedge \forall y(x<y<\operatorname{now} \rightarrow \neg \operatorname{Meet} M(y)))
$$

where $s_{M}::=\iota x(\operatorname{Meet} M(x) \wedge x<$ now $\wedge \forall y(x<y<\operatorname{now} \rightarrow(\neg \operatorname{Meet} M(y)))$.
$\mathrm{FO}^{2}(<, \iota$, now $)$ is the 2 -variable fragment of $\mathrm{FO}(<, \iota$, now $)$. It enables to express, e.g., 'I have not met John since I met Mary'

$$
\exists x(x<\operatorname{now} \wedge \operatorname{MeetM}(x) \wedge \forall y(x<y<\operatorname{now} \rightarrow \neg \operatorname{MeetJ}(y)))
$$

## $\mathrm{FO}(<, \iota$, now $)$ semantics

Model is a tuple $\mathcal{M}=\left(\mathcal{T},<, \mathcal{I}, t_{0}\right)$ where
$-\mathcal{T}$ is a set of of time points (strictly) linearly ordered by $<$,

- $\mathcal{I}: \Sigma \longrightarrow \mathcal{P}(\mathcal{T})$
- $t_{0} \in \mathcal{T}$ is the time of utterance.
$\mathcal{M}, v \models \varphi$, for assignment $v$ of constants, is defined as usual for $\varphi$ with no $\iota$-operators.
For $\iota$-operators we adopt the Russellian semantics:

$$
\begin{aligned}
& \mathcal{M}, v \models P(\iota x \varphi(x)) \quad \text { iff } \quad \text { there exists a unique } t \in \mathcal{T} \text { such that } \\
& \mathcal{M}, v[x \mapsto t] \models \varphi(x), \text { and } t \in \mathcal{I}(P) \text { for this } t
\end{aligned}
$$

$$
\mathcal{M}, v \equiv s \lessgtr \iota x \varphi(x) \quad \text { iff } \quad \text { there exists a unique } t \in \mathcal{T} \text { such that }
$$

$\mathcal{M}, v[x \mapsto t] \models \varphi(x)$, and $v(s) \lessgtr t$ for this $t$

$$
\mathcal{M}, v \models \iota x \varphi(x) \lessgtr \iota y \psi(y) \quad \text { iff } \quad \text { there exist unique } t_{1}, t_{2} \in \mathcal{T} \text { such that }
$$

$$
\mathcal{M}, v\left[x \mapsto t_{1}\right] \models \varphi(x) \text { and } \mathcal{M}, v\left[y \mapsto t_{2}\right] \models \psi(y)
$$

$\mathrm{FO}(<, \iota$, now $)$ semantics

Note that $s_{1}=s_{2}$ is not equivalent to $\neg\left(s_{1}<s_{2}\right) \wedge \neg\left(s_{1}>s_{2}\right)$,
e.g., if $s_{1}$ or $s_{2}$ is an improper DD , then $s_{1}=s_{2}$ is not true, but the latter is true.

A formula is valid if it is satisfied in every model and every assignment, e.g.,
'I was studying "On Denoting" the last time I met Mary; therefore, I have not met her since I was studying "On Denoting"':

$$
\operatorname{Study}\left(s_{M}\right) \rightarrow \exists x(x<\operatorname{now} \wedge \operatorname{Study}(x) \wedge \forall y(x<y<\operatorname{now} \rightarrow \neg \operatorname{Meet} M(y)))
$$

## Tableau System

A tableau-proof of $\varphi$ is any closed tableau with $\neg \varphi$ at the root.
We use the following convention:

- $s, s_{1}, s_{2}$ are terms,
- $d, d_{1}, d_{2}$ are DDs,
- $x \in \mathrm{VAR}$,
- $a, a_{1}, a_{2} \in \mathrm{VAR}$ are free and freshly introduced to the branch by a rule application,
- $b, b_{1}, b_{2}, b_{3} \in \mathrm{VAR} \cup\{$ now $\}$ are free and need to be present on a branch before a rule application,
- $\varphi\left[s_{1} / s_{2}\right]$ is $\varphi$ with all occurrences of $s_{1}$ substituted by $s_{2}$,
- $\varphi\left[s_{1} / / s_{2}\right]$ is $\varphi$ with some occurrences of $s_{1}$ substituted by $s_{2}$.


## Tableau System

Timeline rules:

$$
(\mathrm{NE})^{*} \overline{a=a} \quad(\operatorname{tran}) \frac{b_{1}<b_{2}, b_{2}<b_{3}}{b_{1}<b_{3}} \quad \text { (irref) } \frac{b<b}{\perp} \quad \text { (trich) } \overline{b_{1}<b_{2}\left|b_{1}=b_{2}\right| b_{2}<b_{1}}
$$

## Basic first-order rules:

$$
\begin{array}{rllll}
\text { ( ᄀᄀ) } \frac{\neg \neg \varphi}{\varphi} & (\vee) \frac{\varphi \vee \psi}{\varphi \mid \psi} & (\neg \vee) \frac{\neg(\varphi \vee \psi)}{\neg \varphi} & \text { (ヨ) } \frac{\exists x \varphi}{\varphi[x / a]} & (\neg \exists) \frac{\neg \exists x \varphi}{\neg \varphi[x / b]} \\
& (\text { sym }) \frac{s_{1}=s_{2}}{s_{2}=s_{1}} & \text { (rep) } \frac{s_{1}=s_{2}, \varphi\left(s_{1}\right)}{\varphi\left[s_{1} / / s_{2}\right]} & \text { (clash) } \frac{\varphi, \neg \varphi}{\perp}
\end{array}
$$

## Definite description rules:

$$
\begin{array}{ccc}
\begin{array}{c}
\left(\iota \mathrm{S}_{1}\right) \frac{P(d)}{a=d} \\
\left(\iota \mathrm{~S}_{2}\right) \frac{d<s}{a=d}
\end{array} & \left(\iota \mathrm{~S}_{3}\right) \frac{s<d}{a=d} \quad\left(\iota \mathrm{~S}_{4}\right) \frac{d_{1}=d_{2}}{a=d_{1}} \\
\left(\iota \mathrm{E}_{1}\right) \frac{b=\iota x \varphi(x)}{\varphi[x / b]} & \left(\iota \mathrm{E}_{2}\right) \frac{b_{1}=\iota x \varphi(x)}{\neg \varphi\left[x / b_{2}\right] \mid b_{1}=b_{2}} & (\neg \iota \mathrm{E}) \frac{b \neq \iota x \varphi(x)}{\neg \varphi[x / b] \left\lvert\, \begin{array}{c}
a \neq b \\
\varphi[x / a]
\end{array}\right.} \quad \text { (cut) } \overline{b=d \mid b \neq d}
\end{array}
$$

* (NE) can be applied only if there are no free variables or now on the branch and no other rules are applicable.


## Example of a Tableau-proof

We show a proof for 'I was studying "On Denoting" the last time I met Mary; therefore, I have not met her since I was studying "On Denoting"':

$$
\begin{gathered}
\neg\left(\operatorname{Study}\left(s_{M}\right) \rightarrow \exists x(x<\text { now } \wedge \operatorname{Study}(x) \wedge \forall y(x<y \wedge y<\text { now } \rightarrow \neg \operatorname{MeetM}(y)))\right) \\
\downarrow(\neg \rightarrow) \\
\operatorname{Study}\left(s_{\text {LastM }}\right) \\
<y \wedge y<\operatorname{now} \rightarrow \neg \operatorname{MeetM}(y))) \\
\downarrow \exists x(x<\operatorname{now} \wedge \operatorname{Study}(x) \wedge \forall y(x) \\
a=s_{\text {LastM }} \\
\downarrow(\mathrm{rep}) \\
\operatorname{Study}(a) \\
\downarrow(\neg \exists) \\
\neg(a<\operatorname{now} \wedge \operatorname{Study}(a) \wedge \forall y(a<y \wedge y<\text { now } \rightarrow \neg \operatorname{MeetM}(y))) \\
\downarrow\left(\iota \mathrm{E}_{1}\right) \\
\operatorname{Meet} M(a) \wedge a<\operatorname{now} \wedge \forall y(a<y \wedge y<\operatorname{now} \rightarrow \neg \operatorname{MeetM}(y))
\end{gathered}
$$

## Example of a Tableau-proof Cont.



## Soundness

Calculus is sound if every $\mathrm{FO}(<, \iota$, now $)$-formula $\varphi$ that has a tableau-proof is valid.

Theorem. Our calculus is sound.
Proof.

1. Show the Coincidence Lemma, i.e., $\mathcal{M}, v_{1} \models \varphi$ iff $\mathcal{M}, v_{2} \models \varphi$, for any $v_{1}, v_{2}$ agreeing on free variables in $\varphi$.
2. Show the Substitution Lemma, i.e., $\mathcal{M}, v \models \varphi[x / a]$ iff $\mathcal{M}, v[x \mapsto v(a)] \models \varphi$, for $x$ and $a$ free variables in $\varphi$.
3. Show that for each rule $\frac{\Phi}{\Psi_{1}|\ldots| \Psi_{n}}$, if $\Phi$ is satsifiable, then so is some $\Psi_{i}$.

## Completeness

Calculus is complete if every $\mathrm{FO}(<, \iota$, now $)$-formula $\varphi$ that is valid has a tableau-proof.
Theorem. Our calculus is complete.

## Proof.

1. Let $\mathcal{B}$ be an open, expanded branch with root $\neg \varphi$; to show that $\neg \varphi$ is satisfiable.
2. Let $b_{1} \approx b_{2}$ iff $b_{1}=b_{2}$ is in $\mathcal{B}$.
3. Construct $\mathcal{M}=\left(\mathcal{T},<, \mathcal{I}, t_{0}\right)$ and $v: \operatorname{VAR} \longrightarrow \mathcal{T}$ such that:

$$
\begin{array}{rlrl}
\mathcal{T} & =\left\{[b]_{\approx} \mid b \in \mathrm{TERM}\right\}, & <=\left\{\left(\left[b_{1}\right]_{\approx},\left[b_{2}\right]_{\approx}\right) \in \mathcal{T} \times \mathcal{T} \mid\right. \\
\mathcal{I}(P) & =\left\{[s]_{\approx \in \mathcal{T}} \mid P(s) \in \mathcal{B}\right\}, & \mathcal{I}(\text { now })=t_{0}, \\
t_{0} & =\left\{\begin{array}{lll}
{[n o w]_{\approx}} & \text { if now occurs on } \mathcal{B}, \\
{\left[b_{0}\right]_{\approx}} & \text { otherwise, } & v(x)= \begin{cases}{[x]_{\approx}} & \text { if } x \text { is free on } \mathcal{B}, \\
t_{0} & \text { otherwise },\end{cases}
\end{array} .\right.
\end{array}
$$

4. Show by induction on the structure of $\psi$ that $\psi \in \mathcal{B}$ implies $\mathcal{M}, v \models \psi$.

## Complexity

Theorem. Satisfiability checking over $\mathbb{N}$ is:

- decidable, but not elementary recursive in $\mathrm{FO}(<, \iota$, now $)$,
- NExpTime-complete in $\mathrm{FO}^{2}(<, \iota$, now $)$,
- NP-complete in $\mathrm{FO}^{2}(<, \iota$, now $)$ with bounded number of predicates.


## Proof.

1. It suffices to show that each formula of $\mathrm{FO}(<, \iota$, now $)$ (resp. $\mathrm{FO}^{2}(<, \iota$, now)) can be polynomially translated to an equisatisfiable formula of $\mathrm{FO}(<)$ (resp. $\left.\mathrm{FO}(<)^{2}\right)$.
2. Trick: $x$ in $\iota x \psi(x)$ is not free, so rewrite $x$ with different variable, e.g.

$$
\begin{aligned}
\tau(P(\iota x \psi(x))) & =\exists z(P(z) \wedge \forall x(\tau(\psi(x)) \leftrightarrow x=z)) \\
\tau(x \lessgtr \iota y \psi(y)) & =\exists z(x \lessgtr z \wedge \forall x(\tau(\psi(x)) \leftrightarrow x=z))
\end{aligned}
$$

## Conclusions for Part 2

- $\mathrm{FO}(<, \iota$, now $)$ is a dedicated language for complex temporal references thanks to
- exploiting $\iota$ for temporal reference
- capturing temporal context with now
- $\mathrm{FO}(<, \iota$, now $)$ has a sound an complete tableau system,
- Reasoning in $\mathrm{FO}(<, \iota$, now $)$ is decidable with NExpTime- and NP-complete fragments.


## Future directions

- DDs in first-order temporal logics
- DDs in two-dimensional temporal logics
- DDs in description logics


# Thank you for your attention 

p.a.walega@gmail.com

Funded by the European Union (ERC, ExtenDD, project number: 101054714). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them.


