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Definite Descriptions via Binary Quantification
Definite descriptions are normally treated as term forming
operations: ‘the’ takes a (simple or complex) predicate F and
forms a singular term out of it: the F . ‘The F ’ then takes a
further predicate or further singular terms and a relational
expression to form a sentence: ‘The F is G ’ or ‘a is R to the F ’.

Formalising DD by the ι operator follows this pattern: ι binds a
variable and forms a singular term from an open formula. This
method is due to Peano and used by Whitehead and Russell,
Hilbert and Bernays, Hintikka, Lambert, van Fraassen and others.

There is an alternative method that formalises the complete
sentences in which DD occur in one go. ‘The F is G ’ is formalised
by a binary quantifier I that binds a variable and takes two open
formulas to form a formula: Ix [F ,G ].

This takes on Russell’s idea that DD only appear to be singular
terms and have meaning only in the context of complete sentences,
and the view that DD are quantificational devices.



Plan of this Talk
I will give an overview over a number of options of rules of
inference for the binary quantifier:

(1) As part of a system that stays close to Neil Tennant’s system
of natural deduction for intuitionist negative free logic with ι.
(2) These rules also work for classical negative free logic, but I’ll
rephrase them for sequent calculus.
(3) Rather complicated rules for positive free logic with the
motivation of saying very little about improper DD, both
intuitionist and classical, in natural deduction and sequent calculus.
(4) Greatly simplified rules for classical and intuitionist positive
free logic, in natural deduction and sequent calculus again.

(3) and (4) are a contribution to formalising new theories of
definite descriptions.

INF is intuitionist negative free logic, IPF is intuitionist positive
free logic, both in natural deduction; CNF and CPF are their
classical versions, both in sequent calculus.



Quantifiers in Free Logic. Natural Deduction.

The rules for the sentential connectives are as for intuitionist logic.
Free logic alters the rules for the quantifiers and appeals to a
primitive predicate ∃!, interpreted as ‘exists’ or ‘refers’:

[∃!a]i

Π
Ax
a(∀I ) i∀xA

∀xA ∃!t(∀E )
Ax
t

∀I : a not in A or any open assumptions of Π except ∃!a.

Ax
t ∃!t

(∃I ) ∃xA
∃xA

[Ax
a ]i , [∃!a]j︸ ︷︷ ︸

Π
C(∃E ) i ,j

C

∃E : a not in A, C or any open assumptions of Π except Ax
a , ∃!a.



Identity and Atomic Denotation. Natural Deduction
The elimination rule for identity is the same in positive and
negative free logic. In the former, identity is also governed by the
Law of Self-Identity:

= I : t = t
t1 = t2 Ax

t1
= E :

Ax
t2

where A is an atomic formula.

In negative free logic, self-identity is conditional on ∃!t:

∃!t
= I n t = t

Atomic Denotation is characteristic of negative free logic. An
atomic formula can only be true if all terms occurring in it refer:

Rt1...tn
AD ∃!ti

for 1 ≤ i ≤ n.



Free Logic in Sequent Calculus
Andrzej Indrzejczak cut free formalisation of positive free logic:

Ax
t , Γ ⇒ ∆

(L∀) ∃!t,∀xA, Γ ⇒ ∆

∃!a, Γ ⇒ ∆,Ax
a(R∀)

Γ ⇒ ∆, ∀xA

∃!a,Ax
a , Γ ⇒ ∆

(L∃) ∃xA, Γ ⇒ ∆

Γ ⇒ ∆,Ax
t(R∃) ∃!t, Γ ⇒ ∆,∃xA

where in (L∃) and (R∀), a does not occur in the conclusion.

Ax
t2
, Γ ⇒ ∆

(= I )
t1 = t2,A

x
t1
, Γ ⇒ ∆

t = t, Γ ⇒ ∆
(= E )

Γ ⇒ ∆

where A is atomic.

For negative free logic, replace (= I ) by (NEI ) and add (NEE ):

t = t, Γ ⇒ ∆
(NEI ) ∃!t, Γ ⇒ ∆

∃!t1, Γ ⇒ ∆
(NEE )

Rt1 . . . tn, Γ ⇒ ∆



Rules for I in Intuitionist Negative Free Logic

F x
t G x

t ∃!t

[F x
a ]i [∃!a]j

Π
a = t

II : i ,j
Ix [F ,G ]

where t is free for x in F and in G , and a does not occur in t nor
in any undischarged assumptions in Π except F x

a and ∃!a.

Ix [F ,G ]

[F x
a ]i [G x

a ]j [∃!a]k

Π
C

IE 1 : i ,j ,k
C

where a is not free in F , G , C nor any undischarged assumptions
in Π except F x

a , G x
a and ∃!a.

ιx [F ,G ] ∃!t1 ∃!t2 F x
t1

F x
t2

Ax
t1

ιE 2A : Ax
t2

where t1 and t2 are free for x in F and A is atomic.



Properties of I

Let INFI be intuitionist negative free logic extended by the rules
for the binary quantifier I . The following hold:

∗1. Ix [F ,G ] ` ∃x(F ∧ ∀y(F x
y → y = x) ∧ G )

∗2. ∃x(F ∧ ∀y(F x
y → y = x) ∧ G ) ` Ix [F ,G ]

∗3. Ix [F , x = t],G x
t ` Ix [F ,G ]

∗4. ∀y(Ix [A, x = y ]↔ ∀x(A↔ x = y))
∗5. ∃!t ` Ix [x = t, x = t]
∗6. Deductions in INFI normalise

∗1 and ∗2: Ix [F ,G ] captures Russell’s analysis of ‘The F is G ’.
∗3 and variants thereof show that we can operate with formulas
Ix [F ,G ] as we would with terms in Leibniz’ Law.
∗4: analogue to Lambert’s Axiom: ∀y(ιxA = y ↔ ∀x(A↔ x = y))
∗5: analogue to the negative version of Lambert’s second axiom.
∗6 is a desirable proof theoretic property.



Tennant’s Rules for ι

Tennant adds the following rules to INF. Call the system INFι.

∃!t

[a = t]i

Ξ
F x
a

[F x
a ]i [∃!a]i

Π
a = t

ιI : i
ιxF = t

where a is not free in F and does not occur in any undischarged
assumptions in Ξ and Π except those displayed.

ιxF = t u = t
ιE 1 : F x

u

ιxF = t F x
u ∃!u

ιE 2 : u = t

ιxF = t
ιE 3 : ∃!t

where u is free for x in F .



Comparison between INFI and INFι

A direct comparison between the two systems is not possible: The
binary quantifier I permits the drawing of scope distinctions. For
instance, it is possible to distinguish between external and internal
negation in INFI : ¬Ix [F ,G ] vs. Ix [F ,¬G ]. There are no scope
markers in INFι, so this distinction cannot be drawn and there is
only the one formula ¬G (ιxF ).

INFI is more expressive than INFι, so we need to restrict it. The
following will do: let INFIR be like INFI except that the G in
Ix [F ,G ] is restricted to identity. Analogously for INFιR (in a way
nothing is lost here, as rules of INFι do not tell us how to operate
with formulas G (ιxF ): we always need an identity). Then we have:

Γ ` A in INFIR iff τ(Γ) ` τ(A) in INFιR , where τ translates
Ix [F , x = t] as ιxF = t.

Tennant’s rules are Lambert’s Axiom in rule form, a formula that
translates as Lambert’s Axiom under τ is derivable in INFI .



I in Classical Negative Free Logic

The following are appropriate rules for the binary quantifier I in
negative free logic:

Γ⇒ ∆,F x
t Γ⇒ ∆,G x

t F x
a , Γ⇒ ∆, a = t

(RI )
∃!t, Γ⇒ ∆, Ix [F ,G ]

F x
a ,G

x
a , ∃!a, Γ∆

(LI 1)
Ix [F ,G ], Γ∆

Γ⇒ ∆,F x
t1

Γ⇒ ∆,F x
t2

Γ⇒ ∆,Ax
t2(LI 2)

Ix [F ,G ],∃!t1, ∃!t2, Γ⇒ ∆,At1

where in (RI ) and (LI 1), a does not occur in the conclusion, and in
(LI 2) A is an atomic formula.

Added to Indrzejczak’s cut free formalisation of classical negative
free logic results in a system CPFI that is also cut free.



Negative vs. Positive Free Logic
The equivalence of Ix [F ,G ] with ∃x(F ∧ ∀y(F x

y → y = x) ∧ G )
means that adding I to INF does not actually increase its
expressiveness: I is definable. Negative free logic is very Russellian
in this respect. (In INFι, G (ιxF ) is equivalent to the Russellian
analysis if G is atomic.)

This situation is different in positive free logic. Here the idea is
that atomic sentences can be true even if some terms occurring in
them, including definite descriptions, do not refer. So the
Russellian equivalence should not hold anymore.

The proof that shows that ∃x(F ∧ ∀y(F x
y → y = x) ∧ G ) and

Ix [F ,G ] are equivalent does not appeal to the law of self-identity
or atomic denotation. Hence it also holds in positive free logic, if
the rules for I we have considered so far were added to IPF or CPF.

The spirit of positive free logic asks for different rules for the
binary quantifier.



The Binary Quantifier in Positive Free Logic

In positive free logic with a term forming ι operator, we have:

∗7. G (ιxF ) ∧ ∃!ιxF ↔ ∃x(F ∧ ∀y(F x
y → y = x) ∧ G )

To find rules for I suitable for positive free logic, I propose to
assume that the analogous equivalence holds:

∗8. Ix [F ,G ] ∧ Ix [F ,∃!x ]↔ ∃x(F ∧ ∀y(F x
y → y = x) ∧ G )

Exploiting these equivalences and casting them into rule form gives
rather complicated rules for I , to be given on the next slide.

The resulting logic is also very weak. Hintikka and Lambert both
declare that positive free logic should be largely silent on improper
definite descriptions. With the rules to be given, we remain very
quiet indeed about them: not even the analogue of the law of
self-identity ‘The F = the F ’, i.e. Ix [F , Iy [F x

y , x = y ]], holds.



Natural Deduction for the Binary Quantifier I for IPF

F x
t Gx

t ∃!t

[F x
a ]i , [∃!a]j︸ ︷︷ ︸

Π

a = t
II : i,j

Ix[F , G ]
where a is different from t, does not occur in F , G or in any undischarged assumption in Π except F x

a and ∃!a.

Ix[F , G ] F x
t ∃!t

[F x
a ]i1 , [∃!a]i2︸ ︷︷ ︸

Π

a = t

[F x
b ]i3 , [Gx

b ]i4 , [∃!b]i5︸ ︷︷ ︸
Σ

C
IE1p : i1...i5

C
where a is different from t, does not occur in F , G or any undischarged assumptions of Π except F x

a and ∃!a; and
b does not occur in F , G , C or any undischarged assumptions of Σ except F x

b , Gx
b and ∃!b.

Ix[F , ∃!x]

[F x
a ]i , [∃!a]j︸ ︷︷ ︸

Π

C
IE3p : i,j

C

Ix[F , x = t] ∃!t

[F x
a ]i , [∃!a]j︸ ︷︷ ︸

Π

C
IE5p : i,j

C
where a does not occur in F , C or any undischarged assumptions of Π except F x

a and ∃!a.

Ix[F , ∃!x] ∃!t1 ∃!t2 F x
t1

F x
t2

Ax
t1

IE2p :
Ax
t2

where A is an atomic formula.

Ix[F , x = t2] ∃!t1 ∃!t2 F x
t1

Ax
t1

IE4p :
Ax
t2

where A is an atomic formula.



Sequent Calculus Rules for I for CPF
Γ ⇒ ∆, F x

t Γ ⇒ ∆, Gx
t Γ ⇒ ∆, ∃!t ∃!a, F x

a , Γ ⇒ ∆, a = t
(RI )

Γ ⇒ ∆, Ix[F , G ]

where a does not occur in the conclusion.

Γ ⇒ ∆, F x
t Γ ⇒ ∆, ∃!t F x

a , ∃!a, Γ ⇒ ∆, a = t F x
b , G

x
b , ∃!b, Γ ⇒ ∆

(LI 1p)
Ix[F , G ], Γ ⇒ ∆

where a and b do not occur in the conclusion.

Γ ⇒ ∆, F x
t1

Γ ⇒ ∆, F x
t2

Γ ⇒ ∆, ∃!t1 Γ ⇒ ∆, ∃!t2 Γ ⇒ ∆, Ax
t2

(LI 2p)
Ix[F , ∃!x], Γ ⇒ ∆, Ax

t1

where A is an atomic formula.

F x
a , ∃!a, Γ∆

(LI 3p)
Ix[F , ∃!x], Γ∆

where a does not occur in the conclusion.

Γ ⇒ ∆, F x
t1

Γ ⇒ ∆, ∃!t1 Γ ⇒ ∆, ∃!t2 Γ ⇒ ∆, Ax
t2

(LI 4p)
Ix[F , x = t2], Γ ⇒ ∆, Ax

t1

where A is an atomic formula.

Γ ⇒ ∆, ∃!t F x
a , ∃!a, Γ ⇒ ∆

(LI 5p)
Ix[F , x = t], Γ ⇒ ∆

where a does not occur in the conclusion.



Assessing the Rules for I in IPF and CPF
Call the result of adding the new rules for I in natural deduction to
IPF IPFI and those of sequent calculus to CPF CPFI .

Both systems have desirable proof theoretic properties: Deductions
in IPFI normalise, cut can be eliminated from those in CPFI . The
resulting theory of definite descriptions is also original.

But the rules for I are excessively complicated. The motivation
was to stay close to standard positive free logic with a term
forming ι operator by exploiting an equivalence that holds for
formulas with ι terms to find rules for the binary quantifier I .
Although it may be said to take to heart a tenet of Hintikka’s and
Lambert’s, it is rather removed from standard systems.

If the aim is to stay close to standard systems, IPFI and CPFI are
maybe a little disappointing; if the aim is to formulate a new
theory of definite descriptions suitable I in positive free logic, there
is a simpler way.



Note the Existence Assumptions in the Rule for I

F x
t G x

t ∃!t

[F x
a ]i [∃!a]j

Π
a = t

II : i ,j
Ix [F ,G ]

where t is free for x in F and in G , and a does not occur in t nor
in any undischarged assumptions in Π except F x

a and ∃!a.

Ix [F ,G ]

[F x
a ]i [G x

a ]j [∃!a]k

Π
C

IE 1 : i ,j ,k
C

where a is not free in F , G , C nor any undischarged assumptions
in Π except F x

a , G x
a and ∃!a.

Ix [F ,G ] ∃!t1 ∃!t2 F x
t1

F x
t2

Ax
t1

IE 2 : Ax
t2

where t1 and t2 are free for x in F and A is atomic.



Alternative Rules for I for Positive Free Logic

What distinguishes positive from negative free logic is that truth or
assertibility is not dependent on terms having referents: atomic
sentences may be true even if some of their terms do not refer.

This applies to definite descriptions, too. When they are formalised
by a binary quantifier in the context of complete sentences, the
existence assumptions of the negative free logic should be relaxed
or altogether given up. There not many options:

(1) Drop the existence assumptions of II : then unique existence of
an F is no longer required for ‘The F is G’ to be derivable, only
uniqueness.
(2) Drop the discharged existence assumption in IE 1, which
mirrors that of ∃E .
(3) IE 2 has two symmetric existence assumptions. If one goes,
both go: dropping them also means that the identity of t1 and t2

no longer depends on their existence, but uniqueness still follows.



Natural Deduction Rules for I for Positive Free Logic

F x
t G x

t

[F x
a ]i

Π
a = t

II : i
Ix [F ,G ]

where a is different from t and does not occur in F , G or any undischarged
assumptions of Π except F x

a .

Ix [F ,G ]

[F x
a ]i , [G x

a ]j︸ ︷︷ ︸
Π
C

IE 1 : i,j
C

where a is not free in C or any undischarged assumptions in Π except F x
a , G x

a .

Ix [F ,G ] F x
t1 F x

t2 C x
t2

IE 2 :
C x
t1

where C is an atomic formula. (The general case follows by induction.)



Sequent Calculus Rules for I for Positive Free Logic

Γ⇒ ∆,Ax
t Γ⇒ ∆,Bx

t Ax
a , Γ⇒ ∆, a = t

(RI )
Γ⇒ ∆, Ix [A,B]

Ax
a ,B

x
a , Γ⇒ ∆

(LI 1)
Ix [A,B], Γ⇒ ∆

Γ⇒ ∆,Ax
t1

Γ⇒ ∆,Ax
t2

Γ⇒ ∆,C x
t2

(LI 2)
Ix [A,B], Γ⇒ ∆,C x

t1

where in (RI ) and (LI 1), a does not occur in the conclusion, and in (LI 2)

C is an atomic formula. (The general case follows by induction.)



In Favour of the Revised Rules for I

The revised rules for I are simple and straightforward. They are
motivated by considerations characteristic for positive free logic:

Negative free logic takes on Russell’s analysis that the occurrence
of a definite description ‘the F ’ in a sentence indicates the
existence and uniqueness of an F . To modify this to suit positive
free logic there is really only one option: give up the requirement
of existence.Thus we keep uniqueness, and this makes sense: with
‘The F is G ’ we aim to speak of only one F , whether it exists or
not. This is the effect of giving up the existence assumptions.

Added to CPF, resulting the system is cut free, added to IPF, the
result permits normalisation.

But note that this goes against the views of some free logicians:
Lambert thinks that ‘The F is G ’ can be true not only if there is
no F , but also if there is more than one.



Some Properties of I in Positive Free Logic

The derivability of a formula analogous to ιx(x = t) = t is
immediate. Let F and G be x = t in II :

t = t t = t [a = t]1

1
Ix[x = t, x = t]

This is desirable: It is an important principle for Lambert, but he
has to add it as an axiom. Here it is for free.

An analogue of one half of Lambert’s Law is derivable.

Ix[A, x = b]

[a = b]1

[c = b]3 [Ax
c ]4

Ax
b

Ax
a

Ix[A, x = b] [Ax
a ]2

[c = b]3 [Ax
c ]4

Ax
b

a = b
1,2

Ax
a ↔ a = b

∀x(A ↔ x = b)
3,4

∀x(A ↔ x = b)

The other half is not derivable. The unique existence of an A is
not sufficient for Ix [A, x = b], because there might also be a
non-existent A, in which case Ix [A, x = b] is false.



Semantics. I

A structure A is a function from the expressions of the language L
of CPFI to elements, a (possibly empty) subset, the sets of
n-tuples of and operations on a non-empty set |A|, called the
domain of A, such that:

1. A assigns to the quantifier ∀ a (possibly empty) set |A∀| ⊆ |A|
called the inner domain or the domain of quantification of A.
2. A assigns to the predicate ∃! the set |A∀|.
3. A assigns to each n-place predicate symbol P an n-ary relation
PA ⊆ |A|n.
4. A assigns to each constant symbol c an element cA of |A|.
5. A assigns to each n-place function symbol f an n-ary operation
f A on |A|, i.e. f A : |A|n → |A|.



Semantics. II
Let s be a function from the variables for L to the domain of |A|. Then:

1. For each variable x , s(x) = s(x)
2. For each constant symbol c, s(c) = cA.
3. For terms t1 . . . tn, n-place function symbols f , s(ft1 . . . tn) = f A(s(t1) . . . s(tn))

Satisfaction is defined explicitly for the atomic formulas of L:

1. �A t1 = t2 [s] iff s(t1) = s(t2).
2. �A ∃!t [s] iff s(t) ∈ |A∀|.
3. For n-place predicate parameters P, �A Pt1 . . . tn [s] iff 〈s(t1) . . . s(tn)〉 ∈ PA.

And for the rest by recursion. s(x |d) is like s, only that it assigns d to the variable x :

1. For atomic formulas, as above.
2. �A ¬A [s] iff 2A A [s].
3. �A A → B [s] iff either 2A A [s] or �A B [s].
4. �A ∀xA [s] iff for every d ∈ |A∀|, �A A [s(x |d)].
5. �A Ix[A,B] [s] iff there is d ∈ |A| such that: �A A [s(x |d)], there is no other
e ∈ |A| such that �A A [s(x |e)], and �A B [s(x |d)].

�A Ix[F ,G ] [s] iff there is exactly one element in the domain of A such that A satisfies

A with s modified to assign that element to x , and A satisfies B with the same

modified s.
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