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Motivations

Definite descriptions are term-forming expressions, e.g., ‘the x such that φ(x)’.

Such expression have been intensively studied in first-order languages, but only recently
considered in propositional modal languages.

In particular, we have introduced ML(DD) by adding operator @φ to modal logic:

▶ @φψ is to mean that ‘ψ holds in the modal world in which φ holds’.

Przemysław (Przemek) Wałęga (przemyslaw.walega@cs.ox.ac.uk) 2

przemyslaw.walega@cs.ox.ac.uk


Motivations

Known results on the complexity of satisfiability checking:
▶ H(@)-satisfiability is PSpace-complete

(Areces, Blackburn, Marx),

▶ MLC-satisfiability is ExpTime-complete with unary encoded numbers
(PhD of Tobies),

▶ MLC-satisfiability is NExpTime-complete with binary encoded numbers
(Zawidzki, Schmidt, Tishkovsky).

We showed that:
▶ ML(DD)-satisfiability is ExpTime-complete,
▶ ML(DD)-satisfiability with Boolean DDs is PSpace-complete.
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Motivations

We also studied relative expressiveness and showed the following results on equivalence
preserving translations:

▶ H(@) ≺ ML(DD) ≺ MLC (arbitrary frames)
▶ H(@) ≺L ML(DD) ≺L MLC (linear frames)
▶ H(@) ≺Z ML(DD) ≈Z MLC (integer frame)

It remains, however, unclear what exactly does ML(DD) allow us to express.
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Contributions

Aiming to fill this gap we will provide a bisimulation for ML(DD).

Our ML(DD)-bisimulation enjoys:

▶ the bisimulation invariance property, i.e.,

bisimilar worlds satisfy the same ML(DD)-formulas,

▶ the Hennessy-Milner property, i.e.,

the opposite implication for image-finite (i.e., finite branching) models.
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Logic ML(DD)



Syntax of ML(DD)

▶ We introduce operators @φ, for any formula φ.

▶ @φψ is to mean that ‘ψ holds in the unique world in which φ holds’.

ML(DD)-formulas are generated by

φ ::= p | ¬φ | φ ∨ φ | ♢φ | @φφ,

We call @φ a definite description; we call it Boolean if so is φ.
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Semantics of ML(DD)
A model is a triple M = (W,R, V ) where:
▶ W ̸= ∅,
▶ R ⊆ W ×W ,
▶ V : PROP −→ P(W ).

Satisfaction of a formula in M and w ∈ W is defined recursively:

M, w |= p iff w ∈ V (p), for each p ∈ PROP
M, w |= ¬φ iff M, w ̸|= φ

M, w |= φ ∨ ψ iff M, w |= φ or M, w |= ψ

M, w |= ♢φ iff there exists v ∈ W such that (w, v) ∈ R and M, v |= φ

M, w |= @φψ iff there exists v ∈ W such that M, v |= φ and M, v |= ψ

and M, v′ ̸|= φ for all v′ ̸= v in W
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Meaning of exemplary formulas

1. @p⊤ ‘there exists exactly one world satisfying p’,
2. @⊤⊤ ‘there exists exactly one world’,

3. @(¬♢⊤)⊤ ‘there exists exactly one world which has no outgoing accessibility
relation’,

4. @(♢♢♢⊤)⊤ ‘the longest path (via accessibility relation) is of length 3’,

5. @p♢p ‘there exists exactly one world which satisfies p; moreover this world can be
accessed from itself’,

6. @(p∧♢p)⊤ ‘there exists exactly one world which satisfies p and can be accessed
from itself’,

7. @(p∨¬φ)(φ) ‘formula φ holds in every world (and p holds in exactly one world)’,
8. @pφ ‘formula φ holds in some world (and p holds in exactly one world and this

world is one of the worlds in which φ holds)’.
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Bisimulations



Standard bisimulation

Definition. An ML-bisimulation between
M = (W,R, V ) and M′ = (W ′, R′, V ′) is
any Z ⊆ W ×W ′ such that if (w,w′) ∈ Z:

Atom: w and w′ satisfy the same atoms,
Zig: if there is v ∈ W with (w, v) ∈ R, then

there is v′ ∈ W ′ such that (v, v′) ∈ Z
and (w′, v′) ∈ R′,

Zag: if there is v′ ∈ W ′ with (w′, v′) ∈ R′,
then there is v ∈ W such that
(v, v′) ∈ Z and (w, v) ∈ R.

Theorem (Bisimulation Invariance
Lemma). If M, w -ML M′, w′ then w
and w′ satisfy the same ML-formulas.

Theorem (Hennessy-Milner Theorem).
Assume that M and M′ are
image-finite. Then M, w -ML M′, w′ if
and only if w and w′ satisfy the same
ML-formulas.
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Standard bisimulation is inadequate for ML(DD)

Definition. An ML-bisimulation between
M = (W,R, V ) and M′ = (W ′, R′, V ′) is
any Z ⊆ W ×W ′ such that if (w,w′) ∈ Z:

Atom: w and w′ satisfy the same atoms,
Zig: if there is v ∈ W with (w, v) ∈ R, then

there is v′ ∈ W ′ such that (v, v′) ∈ Z
and (w′, v′) ∈ R′,

Zag: if there is v′ ∈ W ′ with (w′, v′) ∈ R′,
then there is v ∈ W such that
(v, v′) ∈ Z and (w, v) ∈ R.

w1
p, q

w2
p

w3
p

w′
1

p, q

w′
2

q

w′
3

q

M M′

Z

M |= @q⊤ M′ ̸|= @q⊤

Z is an ML-bisimulation, but does not
preserve ML(DD)-satisfiability.
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Bisimulation for ML(DD)



Names and named worlds

Definition. Names(M) is the set of all
ML-formulas φ such that φ is satisfied in a
unique world of M.

Definition. NamedWorlds(M) is the set of
all worlds w such that M, w |= φ, for some
φ ∈ Names(M).

Intuitively we should require that:
1. bisimilar models have the same Names,
2. bisimulation relates all NamedWorlds.

w1
p, q

w2
p

w3
p

w′
1

p, q

w′
2

q

w′
3

q

M M′

Z

M |= @q⊤ M′ ̸|= @q⊤

Z does not satisfy Requirement 1:
q ∈ Names(M), but q /∈ Names(M′).
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Z ′

N |= @p♢⊤ N ′ ̸|= @p♢⊤

Z ′ does not satisfy Requirement 2:
v1 ∈ NamedWorlds(N ) and
v′

1 ∈ NamedWorlds(N ′),
but they are not related by Z ′.
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ML(DD)-bisimulation

Definition. An ML(DD)-bisimulation
between M and M′, with
Names(M) = Names(M′), is any
ML-bisimulation Z such that:

Dom: the domain of Z contains
NamedWorlds(M),

Rng: the range of Z contains
NamedWorlds(M′).

p p p pp

M M’
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Properties of
ML(DD)-bisimulations



Basic properties

Proposition. If Names(M) ̸= Names(M′), then there exists an ML(DD)-formula φ
such that M |= φ and M′ ̸|= φ.

Indeed, if ψ ∈ Names(M), but ψ /∈ Names(M′), then φ = @ψ⊤ witnesses proposition.

Proposition. Let Z be an ML(DD)-bisimulation between models M = (W,R, V ) and
M′ = (W ′, R′, V ′). Then Z = Z1 ∪ Z2 where
▶ Z1 is a bijection,
▶ Z1 ⊆ NamedWorlds(M) × NamedWorlds(M ′),
▶ Z2 ⊆(W \NamedWorlds(M))×(W ′\NamedWorlds(M′)).

Hence bisimilar models have the same number of named worlds, i.e.,
|NamedWorlds(M)| = |NamedWorlds(M′)|.
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Removing nesting of @

Lemma. For each ML(DD)-formula there exists an equivalent ML(DD)-formula with
no nesting of @.

For example @p@(@qr)s is equivalent to:

(@qr ∧ @⊤s ∧ @p⊤) ∨
(@qr ∧ ¬@⊤s ∧ @p⊥) ∨
(¬@qr ∧ @⊤s ∧ @p⊤) ∨
(¬@qr ∧ ¬@⊤s ∧ @p⊥) .
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Main results
Theorem (Bisimulation invariance property for ML(DD)). If M, w -ML(DD) M′, w′

then w and w′ satisfy the same ML(DD)-formulas.

▶ Proof is by induction on formula structure.
▶ The interesting case is for a formula of the form @φψ.

Theorem (Hennessy-Milner property for ML(DD)). Assume that M and M′ are
image-finite, models. Then M, w -ML(DD) M′, w′ if and only if w and w′ satisfy the
same ML(DD)-formulas.

▶ Let (w,w′) ∈ Z if and only if w and w′ satisfy the same ML(DD)-formulas.
▶ We can show that Z is an ML(DD)-bisimulation.
▶ The interesting part is to show that Names(M) = Names(M′) and that Z

satisfies Dom and Rng.
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Theorem (Bisimulation invariance property for ML(DD)). If M, w -ML(DD) M′, w′

then w and w′ satisfy the same ML(DD)-formulas.

▶ Proof is by induction on formula structure.
▶ The interesting case is for a formula of the form @φψ.

Theorem (Hennessy-Milner property for ML(DD)). Assume that M and M′ are
image-finite, models. Then M, w -ML(DD) M′, w′ if and only if w and w′ satisfy the
same ML(DD)-formulas.

▶ Let (w,w′) ∈ Z if and only if w and w′ satisfy the same ML(DD)-formulas.
▶ We can show that Z is an ML(DD)-bisimulation.
▶ The interesting part is to show that Names(M) = Names(M′) and that Z
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Bisimulation for ML(DD)
with Boolean DDs



w1

w2

w′
1

w′
2 w′

3

Z

M M’

Z is not an ML(DD)-bisimulation, but it should be a bisimulation if we allow for
Boolean DDs only.

marks named worlds, nut not worlds have Boolean names

Definition.
▶ NamesB(M) = {φ ∈ Names(M) | φ is Boolean}.
▶ NamedWorldsB(M) = {w | M, w |= φ and φ ∈ NamesB(M)}.

Definition. A BML(DD)-bisimulation is defined as ML(DD)-bisimulation but with
Names and NamedWorlds replaced by NamesB and NamedWorldsB, respectively.
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BML(DD)-bisimulation properties

Proposition. Each ML(DD)-bisimulation is also an BML(DD)-bisimulation, but not
vice versa. Moreover each BML(DD)-bisimulation is an ML-bisimulation, but not
vice versa.

Theorem (Bisimulation invariance property for BML(DD)). If
M, w -BML(DD) M′, w′ then w and w′ satisfy the same BML(DD)-formulas.

Theorem (Hennessy-Milner property for BML(DD)). Assume that M and M′ are
image-finite, models. Then M, w -BML(DD) M′, w′ if and only if w and w′ satisfy the
same BML(DD)-formulas.
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Applications of
ML(DD)-bisimulation



Non-definability of operators

In ML(DD) (and in BML(DD)) we
cannot define:
▶ ‘everywhere’ (universal) operator A,
▶ the difference operator D,
▶ ‘somewhere’ operator E,
▶ counting operator ∃n, for any n ≥ 2.

w1
p

w2
p

w3
p

w4
p

w′
1

p

w′
2

p

w′
3

w′
4

M

M, w1 |= Ap
M, w1 ̸|= D¬p
M, w1 ̸|= E¬p

M′

M′, w′
1 ̸|= Ap

M′, w′
1 |= D¬p

M′, w′
1 |= E¬p

Z
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Non-definability of operators

In ML(DD) (and in BML(DD)) we
cannot define:
▶ ‘everywhere’ (universal) operator A,
▶ the difference operator D,
▶ ‘somewhere’ operator E,
▶ counting operator ∃n, any n ≤ 2.

v1
p

v2
p

...

vn
p

v′
1

p

v′
2

...

v′
n

p

v′
n+1

p

N

N , v1 |= ∃≤np

N ′

N ′, v′
1 ̸|= ∃≤np

Z ′
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Conclusions



Conclusions and Future Work

ML(DD) extends modal logic with operators @φ, where
▶ @φψ means that ‘ψ holds in the world in which φ holds’.

We defined an ML(DD)-bisimulation which enjoys:

▶ the bisimulation invariance property,
▶ the Hennessy-Milner property.

Next steps:
▶ develop an algorithm constructing a (maximal) ML(DD)-bisimulation between a

pair of models.
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