Bisimulation for
 Propositional Modal Logic With Definite Descriptions

Przemysław (Przemek) Wałęga
www.walega.pl | przemyslaw.walega@cs.ox.ac.uk

29 November 2023

Motivations

Definite descriptions are term-forming expressions, e.g., 'the x such that $\varphi(x)$ '.

Such expression have been intensively studied in first-order languages, but only recently considered in propositional modal languages.

In particular, we have introduced $\mathcal{M} \mathcal{L}(D D)$ by adding operator $@_{\varphi}$ to modal logic:

- @ $\varphi \psi$ is to mean that ' ψ holds in the modal world in which φ holds'.

Motivations

Known results on the complexity of satisfiability checking:

- $\mathcal{H}(@)$-satisfiability is PSpace-complete (Areces, Blackburn, Marx),
- $\mathcal{M} \mathcal{L C}$-satisfiability is ExpTime-complete with unary encoded numbers (PhD of Tobies),
- $\mathcal{M} \mathcal{L C}$-satisfiability is NExpTime-complete with binary encoded numbers (Zawidzki, Schmidt, Tishkovsky).

We showed that:

- $\mathcal{M} \mathcal{L}(\mathrm{DD})$-satisfiability is ExpTime-complete,
- $\mathcal{M L}(\mathrm{DD})$-satisfiability with Boolean DDs is PSpace-complete.

Motivations

We also studied relative expressiveness and showed the following results on equivalence preserving translations:

- $\mathcal{H}(@) \prec \mathcal{M L}(D D) \prec \mathcal{M L C} \quad$ (arbitrary frames)
- $\mathcal{H}(@) \prec_{L} \mathcal{M L}(D D) \prec_{L} \mathcal{M L C} \quad$ (linear frames)
- $\mathcal{H}(@) \prec_{\mathbb{Z}} \mathcal{M L}(\mathrm{DD}) \approx_{\mathbb{Z}} \mathcal{M L C} \quad$ (integer frame)

It remains, however, unclear what exactly does $\mathcal{M} \mathcal{L}(D D)$ allow us to express.

Contributions

Aiming to fill this gap we will provide a bisimulation for $\mathcal{M} \mathcal{L}(D D)$.

Our $\mathcal{M} \mathcal{L}(\mathrm{DD})$-bisimulation enjoys:

- the bisimulation invariance property, i.e.,
bisimilar worlds satisfy the same $\mathcal{M L}(D D)$-formulas,
- the Hennessy-Milner property, i.e., the opposite implication for image-finite (i.e., finite branching) models.

Logic $\mathcal{M L}(\mathrm{DD})$

Syntax of $\mathcal{M} \mathcal{L}(D D)$

- We introduce operators $@_{\varphi}$, for any formula φ.
- $@_{\varphi} \psi$ is to mean that ' ψ holds in the unique world in which φ holds'.
$\mathcal{M L}(\mathrm{DD})$-formulas are generated by

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi|\diamond \varphi| @_{\varphi} \varphi,
$$

We call $@_{\varphi}$ a definite description; we call it Boolean if so is φ.

Semantics of $\mathcal{M} \mathcal{L}(D D)$

A model is a triple $\mathcal{M}=(W, R, V)$ where:

- $W \neq \emptyset$,
- $R \subseteq W \times W$,
- $V: \mathrm{PROP} \longrightarrow \mathcal{P}(W)$.

Satisfaction of a formula in \mathcal{M} and $w \in W$ is defined recursively:

$$
\begin{array}{lll}
\mathcal{M}, w \models p & \text { iff } \quad & w \in V(p), \text { for each } p \in \mathrm{PROP} \\
\mathcal{M}, w \models \neg \varphi & \text { iff } \quad & \mathcal{M}, w \not \models \varphi \\
\mathcal{M}, w \models \varphi \vee \psi & \text { iff } \quad & \mathcal{M}, w \models \varphi \text { or } \mathcal{M}, w \models \psi \\
\mathcal{M}, w \models \diamond \varphi & \text { iff } \quad & \text { there exists } v \in W \text { such that }(w, v) \in R \text { and } \mathcal{M}, v \models \varphi \\
\mathcal{M}, w \models @_{\varphi} \psi & \text { iff } \quad & \quad \begin{array}{l}
\text { there exists } v \in W \text { such that } \mathcal{M}, v \models \varphi \text { and } \mathcal{M}, v \models \psi \\
\end{array}
\end{array} \quad \begin{array}{ll}
\text { and } \mathcal{M}, v^{\prime} \not \models \varphi \text { for all } v^{\prime} \neq v \text { in } W
\end{array}
$$

Meaning of exemplary formulas

1. $@_{p} T$ 'there exists exactly one world satisfying p ',
2. @ ${ }_{\top} \top$ 'there exists exactly one world',

Meaning of exemplary formulas

1. $@_{p} T$ 'there exists exactly one world satisfying p ',
2. @ \top 'there exists exactly one world',
3. $@_{(\neg \diamond T)} T$ 'there exists exactly one world which has no outgoing accessibility relation',
4. $@_{(\diamond \diamond \diamond T)} \top$ 'the longest path (via accessibility relation) is of length 3 ',

Meaning of exemplary formulas

1. $@_{p} T$ 'there exists exactly one world satisfying p ',
2. @ ${ }_{\mathrm{T}} \top$ 'there exists exactly one world',
3. $@_{(\neg \diamond T)} T$ 'there exists exactly one world which has no outgoing accessibility relation',
4. @ $(\diamond \diamond \diamond T) \top$ 'the longest path (via accessibility relation) is of length 3 ',
5. $@_{p} \diamond p$ 'there exists exactly one world which satisfies p; moreover this world can be accessed from itself',
6. @ ${ }_{(p \wedge \diamond p)} \top$ 'there exists exactly one world which satisfies p and can be accessed from itself',

Meaning of exemplary formulas

1. $@_{p} T$ 'there exists exactly one world satisfying p ',
2. @ ${ }_{\mathrm{T}} \top$ 'there exists exactly one world',
3. $@_{(\neg \diamond T)} T$ 'there exists exactly one world which has no outgoing accessibility relation',
4. @ $(\diamond \diamond \diamond T) \top$ 'the longest path (via accessibility relation) is of length 3 ',
5. $@_{p} \diamond p$ 'there exists exactly one world which satisfies p; moreover this world can be accessed from itself',
6. @ ${ }_{(p \wedge \diamond p)} \top$ 'there exists exactly one world which satisfies p and can be accessed from itself',
7. $@_{(p \vee \neg \varphi)}(\varphi)$

Meaning of exemplary formulas

1. $@_{p} T$ 'there exists exactly one world satisfying p ',
2. $@_{\top} \top$ 'there exists exactly one world',
3. $@_{(\neg \diamond T)} T$ 'there exists exactly one world which has no outgoing accessibility relation',
4. @ $(\diamond \diamond \diamond T) \top$ 'the longest path (via accessibility relation) is of length 3 ',
5. $@_{p} \diamond p$ 'there exists exactly one world which satisfies p; moreover this world can be accessed from itself',
6. @ ${ }_{(p \wedge \diamond p)} \top$ 'there exists exactly one world which satisfies p and can be accessed from itself',
7. $@_{(p \vee \neg \varphi)}(\varphi)$ 'formula φ holds in every world (and p holds in exactly one world)',
8. $@_{p} \varphi$ 'formula φ holds in some world (and p holds in exactly one world and this world is one of the worlds in which φ holds)'.

Bisimulations

Standard bisimulation

Definition. An ML-bisimulation between
$\mathcal{M}=(W, R, V)$ and $\mathcal{M}^{\prime}=\left(W^{\prime}, R^{\prime}, V^{\prime}\right)$ is
any $Z \subseteq W \times W^{\prime}$ such that if $\left(w, w^{\prime}\right) \in Z$:
Atom: w and w^{\prime} satisfy the same atoms,
Zig: if there is $v \in W$ with $(w, v) \in R$, then
there is $v^{\prime} \in W^{\prime}$ such that $\left(v, v^{\prime}\right) \in Z$ and $\left(w^{\prime}, v^{\prime}\right) \in R^{\prime}$,
Zag: if there is $v^{\prime} \in W^{\prime}$ with $\left(w^{\prime}, v^{\prime}\right) \in R^{\prime}$, then there is $v \in W$ such that

$$
\left(v, v^{\prime}\right) \in Z \text { and }(w, v) \in R
$$

Standard bisimulation

Definition. An ML-bisimulation between $\mathcal{M}=(W, R, V)$ and $\mathcal{M}^{\prime}=\left(W^{\prime}, R^{\prime}, V^{\prime}\right)$ is any $Z \subseteq W \times W^{\prime}$ such that if $\left(w, w^{\prime}\right) \in Z$:
Atom: w and w^{\prime} satisfy the same atoms,
Zig: if there is $v \in W$ with $(w, v) \in R$, then there is $v^{\prime} \in W^{\prime}$ such that $\left(v, v^{\prime}\right) \in Z$ and $\left(w^{\prime}, v^{\prime}\right) \in R^{\prime}$,
Zag: if there is $v^{\prime} \in W^{\prime}$ with $\left(w^{\prime}, v^{\prime}\right) \in R^{\prime}$, then there is $v \in W$ such that $\left(v, v^{\prime}\right) \in Z$ and $(w, v) \in R$.

Theorem (Bisimulation Invariance Lemma). If $\mathcal{M}, w \leftrightarrows_{\mathcal{M} \mathcal{L}} \mathcal{M}^{\prime}, w^{\prime}$ then w and w^{\prime} satisfy the same $\mathcal{M} \mathcal{L}$-formulas.

Theorem (Hennessy-Milner Theorem).
Assume that \mathcal{M} and \mathcal{M}^{\prime} are image-finite. Then $\mathcal{M}, w \leftrightarrows_{\mathcal{M} \mathcal{L}} \mathcal{M}^{\prime}, w^{\prime}$ if and only if w and w^{\prime} satisfy the same $\mathcal{M L}$-formulas.

Standard bisimulation is inadequate for $\mathcal{M} \mathcal{L}(D D)$

Definition. An ML-bisimulation between
$\mathcal{M}=(W, R, V)$ and $\mathcal{M}^{\prime}=\left(W^{\prime}, R^{\prime}, V^{\prime}\right)$ is
any $Z \subseteq W \times W^{\prime}$ such that if $\left(w, w^{\prime}\right) \in Z$:
Atom: w and w^{\prime} satisfy the same atoms,
Zig: if there is $v \in W$ with $(w, v) \in R$, then there is $v^{\prime} \in W^{\prime}$ such that $\left(v, v^{\prime}\right) \in Z$ and $\left(w^{\prime}, v^{\prime}\right) \in R^{\prime}$,
Zag: if there is $v^{\prime} \in W^{\prime}$ with $\left(w^{\prime}, v^{\prime}\right) \in R^{\prime}$, then there is $v \in W$ such that $\left(v, v^{\prime}\right) \in Z$ and $(w, v) \in R$.

Z is an $\mathcal{M} \mathcal{L}$-bisimulation, but does not preserve $\mathcal{M} \mathcal{L}(D D)$-satisfiability.

Standard bisimulation is inadequate for $\mathcal{M} \mathcal{L}(D D)$

Definition. An ML-bisimulation between
$\mathcal{M}=(W, R, V)$ and $\mathcal{M}^{\prime}=\left(W^{\prime}, R^{\prime}, V^{\prime}\right)$ is any $Z \subseteq W \times W^{\prime}$ such that if $\left(w, w^{\prime}\right) \in Z$:
Atom: w and w^{\prime} satisfy the same atoms,
Zig: if there is $v \in W$ with $(w, v) \in R$, then there is $v^{\prime} \in W^{\prime}$ such that $\left(v, v^{\prime}\right) \in Z$ and $\left(w^{\prime}, v^{\prime}\right) \in R^{\prime}$,
Zag: if there is $v^{\prime} \in W^{\prime}$ with $\left(w^{\prime}, v^{\prime}\right) \in R^{\prime}$, then there is $v \in W$ such that $\left(v, v^{\prime}\right) \in Z$ and $(w, v) \in R$.

Z is an $\mathcal{M} \mathcal{L}$-bisimulation, but does not preserve $\mathcal{M} \mathcal{L}(D D)$-satisfiability.

Standard bisimulation is inadequate for $\mathcal{M} \mathcal{L}(D D)$

Definition. An ML-bisimulation between $\mathcal{M}=(W, R, V)$ and $\mathcal{M}^{\prime}=\left(W^{\prime}, R^{\prime}, V^{\prime}\right)$ is any $Z \subseteq W \times W^{\prime}$ such that if $\left(w, w^{\prime}\right) \in Z$:
Atom: w and w^{\prime} satisfy the same atoms,
Zig: if there is $v \in W$ with $(w, v) \in R$, then there is $v^{\prime} \in W^{\prime}$ such that $\left(v, v^{\prime}\right) \in Z$ and $\left(w^{\prime}, v^{\prime}\right) \in R^{\prime}$,
Zag: if there is $v^{\prime} \in W^{\prime}$ with $\left(w^{\prime}, v^{\prime}\right) \in R^{\prime}$, then there is $v \in W$ such that $\left(v, v^{\prime}\right) \in Z$ and $(w, v) \in R$.

Z^{\prime} is an $\mathcal{M} \mathcal{L}$-bisimulation, but does not preserve $\mathcal{M} \mathcal{L}(D D)$-satisfiability.

Standard bisimulation is inadequate for $\mathcal{M} \mathcal{L}(D D)$

Definition. An ML-bisimulation between $\mathcal{M}=(W, R, V)$ and $\mathcal{M}^{\prime}=\left(W^{\prime}, R^{\prime}, V^{\prime}\right)$ is any $Z \subseteq W \times W^{\prime}$ such that if $\left(w, w^{\prime}\right) \in Z$:
Atom: w and w^{\prime} satisfy the same atoms,
Zig: if there is $v \in W$ with $(w, v) \in R$, then there is $v^{\prime} \in W^{\prime}$ such that $\left(v, v^{\prime}\right) \in Z$ and $\left(w^{\prime}, v^{\prime}\right) \in R^{\prime}$,
Zag: if there is $v^{\prime} \in W^{\prime}$ with $\left(w^{\prime}, v^{\prime}\right) \in R^{\prime}$, then there is $v \in W$ such that $\left(v, v^{\prime}\right) \in Z$ and $(w, v) \in R$.

Z^{\prime} is an $\mathcal{M} \mathcal{L}$-bisimulation, but does not preserve $\mathcal{M} \mathcal{L}(D D)$-satisfiability.

Bisimulation for $\mathcal{M L}(D D)$

Names and named worlds

Definition. $\operatorname{Names}(\mathcal{M})$ is the set of all $\mathcal{M} \mathcal{L}$-formulas φ such that φ is satisfied in a unique world of \mathcal{M}.

Definition. NamedWorlds (\mathcal{M}) is the set of all worlds w such that $\mathcal{M}, w \models \varphi$, for some $\varphi \in \operatorname{Names}(\mathcal{M})$.

Names and named worlds

Definition. $\operatorname{Names}(\mathcal{M})$ is the set of all $\mathcal{M} \mathcal{L}$-formulas φ such that φ is satisfied in a unique world of \mathcal{M}.

Definition. NamedWorlds (\mathcal{M}) is the set of all worlds w such that $\mathcal{M}, w \models \varphi$, for some $\varphi \in \operatorname{Names}(\mathcal{M})$.

Intuitively we should require that:

1. bisimilar models have the same Names,
2. bisimulation relates all NamedWorlds.

Names and named worlds

Definition. $\operatorname{Names}(\mathcal{M})$ is the set of all $\mathcal{M} \mathcal{L}$-formulas φ such that φ is satisfied in a unique world of \mathcal{M}.

Definition. NamedWorlds (\mathcal{M}) is the set of all worlds w such that $\mathcal{M}, w \models \varphi$, for some $\varphi \in \operatorname{Names}(\mathcal{M})$.

Intuitively we should require that:

1. bisimilar models have the same Names,

2. bisimulation relates all NamedWorlds.

Names and named worlds

Definition. $\operatorname{Names}(\mathcal{M})$ is the set of all $\mathcal{M} \mathcal{L}$-formulas φ such that φ is satisfied in a unique world of \mathcal{M}.

Definition. NamedWorlds(\mathcal{M}) is the set of all worlds w such that $\mathcal{M}, w \models \varphi$, for some $\varphi \in \operatorname{Names}(\mathcal{M})$.

Intuitively we should require that:

1. bisimilar models have the same Names,
2. bisimulation relates all NamedWorlds.

Z does not satisfy Requirement 1 : $q \in \operatorname{Names}(\mathcal{M})$, but $q \notin \operatorname{Names}\left(\mathcal{M}^{\prime}\right)$.

Names and named worlds

Definition. $\operatorname{Names}(\mathcal{M})$ is the set of all $\mathcal{M} \mathcal{L}$-formulas φ such that φ is satisfied in a unique world of \mathcal{M}.

Definition. NamedWorlds(\mathcal{M}) is the set of all worlds w such that $\mathcal{M}, w \models \varphi$, for some $\varphi \in \operatorname{Names}(\mathcal{M})$.

Intuitively we should require that:

1. bisimilar models have the same Names,
2. bisimulation relates all NamedWorlds.

Names and named worlds

Definition. $\operatorname{Names}(\mathcal{M})$ is the set of all $\mathcal{M} \mathcal{L}$-formulas φ such that φ is satisfied in a unique world of \mathcal{M}.

Definition. NamedWorlds (\mathcal{M}) is the set of all worlds w such that $\mathcal{M}, w \models \varphi$, for some $\varphi \in \operatorname{Names}(\mathcal{M})$.

Intuitively we should require that:

1. bisimilar models have the same Names,
2. bisimulation relates all NamedWorlds.

Z^{\prime} does not satisfy Requirement 2:
$v_{1} \in \operatorname{NamedWorlds(\mathcal {N})\text {and}}$ $v_{1}^{\prime} \in \operatorname{NamedWorlds}\left(\mathcal{N}^{\prime}\right)$,
but they are not related by Z^{\prime}. . cs.ox.ac.uk

Definition. An $\mathcal{M} \mathcal{L}(D D)$-bisimulation between \mathcal{M} and \mathcal{M}^{\prime}, with
$\operatorname{Names}(\mathcal{M})=\operatorname{Names}\left(\mathcal{M}^{\prime}\right)$, is any $\mathcal{M} \mathcal{L}$-bisimulation Z such that:

Dom: the domain of Z contains
NamedWorlds(\mathcal{M}),
Rng: the range of Z contains
NamedWorlds $\left(\mathcal{M}^{\prime}\right)$.

Definition. An $\mathcal{M} \mathcal{L}(\mathrm{DD})$-bisimulation between \mathcal{M} and \mathcal{M}^{\prime}, with
$\operatorname{Names}(\mathcal{M})=\operatorname{Names}\left(\mathcal{M}^{\prime}\right)$, is any $\mathcal{M} \mathcal{L}$-bisimulation Z such that:

Dom: the domain of Z contains
NamedWorlds(\mathcal{M}),
Rng: the range of Z contains
NamedWorlds $\left(\mathcal{M}^{\prime}\right)$.

Definition. An $\mathcal{M} \mathcal{L}(D D)$-bisimulation between \mathcal{M} and \mathcal{M}^{\prime}, with $\operatorname{Names}(\mathcal{M})=\operatorname{Names}\left(\mathcal{M}^{\prime}\right)$, is any $\mathcal{M} \mathcal{L}$-bisimulation Z such that:

Dom: the domain of Z contains
NamedWorlds(M),
Rng: the range of Z contains
NamedWorlds $\left(\mathcal{M}^{\prime}\right)$.

Definition. An $\mathcal{M} \mathcal{L}(D D)$-bisimulation between \mathcal{M} and \mathcal{M}^{\prime}, with $\operatorname{Names}(\mathcal{M})=\operatorname{Names}\left(\mathcal{M}^{\prime}\right)$, is any $\mathcal{M} \mathcal{L}$-bisimulation Z such that:

Dom: the domain of Z contains
NamedWorlds(\mathcal{M}),
Rng: the range of Z contains
NamedWorlds $\left(\mathcal{M}^{\prime}\right)$.

Properties of $\mathcal{M L}(\mathrm{DD})$-bisimulations

Basic properties

Proposition. If $\operatorname{Names}(\mathcal{M}) \neq \operatorname{Names}\left(\mathcal{M}^{\prime}\right)$, then there exists an $\mathcal{M} \mathcal{L}(\mathrm{DD})$-formula φ such that $\mathcal{M} \models \varphi$ and $\mathcal{M}^{\prime} \not \models \varphi$.

Indeed, if $\psi \in \operatorname{Names}(\mathcal{M})$, but $\psi \notin \operatorname{Names}\left(\mathcal{M}^{\prime}\right)$, then $\varphi=@_{\psi} \top$ witnesses proposition.

Basic properties

Proposition. If $\operatorname{Names}(\mathcal{M}) \neq \operatorname{Names}\left(\mathcal{M}^{\prime}\right)$, then there exists an $\mathcal{M} \mathcal{L}(\mathrm{DD})$-formula φ such that $\mathcal{M} \models \varphi$ and $\mathcal{M}^{\prime} \not \models \varphi$.

Indeed, if $\psi \in \operatorname{Names}(\mathcal{M})$, but $\psi \notin \operatorname{Names}\left(\mathcal{M}^{\prime}\right)$, then $\varphi=@_{\psi} \top$ witnesses proposition.

Proposition. Let Z be an $\mathcal{M L}(\mathrm{DD})$-bisimulation between models $\mathcal{M}=(W, R, V)$ and $\mathcal{M}^{\prime}=\left(W^{\prime}, R^{\prime}, V^{\prime}\right)$. Then $Z=Z_{1} \cup Z_{2}$ where

- Z_{1} is a bijection,
- $Z_{1} \subseteq$ NamedWorlds $(\mathcal{M}) \times$ NamedWorlds $\left(M^{\prime}\right)$,
- $Z_{2} \subseteq(W \backslash \operatorname{Named}$ Worlds $(\mathcal{M})) \times\left(W^{\prime} \backslash \operatorname{NamedWorlds}\left(\mathcal{M}^{\prime}\right)\right)$.

Hence bisimilar models have the same number of named worlds, i.e., $|\operatorname{NamedWorlds}(\mathcal{M})|=\mid \operatorname{Named}$ Worlds $\left(\mathcal{M}^{\prime}\right) \mid$.

Removing nesting of @

Lemma. For each $\mathcal{M} \mathcal{L}(D D)$-formula there exists an equivalent $\mathcal{M} \mathcal{L}(D D)$-formula with no nesting of @.

For example $@_{p} @_{\left(@_{q} r\right)} s$ is equivalent to:

$\left(@_{q} r\right.$	\wedge	$@_{\top} s$	\wedge	$\left.@_{p} \top\right)$	\vee
$\left(@_{q} r\right.$	\wedge	$\neg_{\top} s$	\wedge	$\left.@_{p} \perp\right)$	\vee
$\left(\neg_{q} r\right.$	\wedge	$@_{\top} s$	\wedge	$\left.@_{p} \top\right)$	\vee
$\left(\neg_{q} r\right.$	\wedge	$\square_{\top} s$	\wedge	$\left.@_{p} \perp\right)$.

Main results
Theorem (Bisimulation invariance property for $\mathcal{M} \mathcal{L}(\mathrm{DD})$). If $\mathcal{M}, w \leftrightarrows_{\mathcal{M L}(\mathrm{DD})} \mathcal{M}^{\prime}, w^{\prime}$ then w and w^{\prime} satisfy the same $\mathcal{M} \mathcal{L}(\mathrm{DD})$-formulas.

- Proof is by induction on formula structure.
- The interesting case is for a formula of the form $@_{\varphi} \psi$.

Main results

Theorem (Bisimulation invariance property for $\mathcal{M} \mathcal{L}(\mathrm{DD})$). If $\mathcal{M}, w \leftrightarrows_{\mathcal{M L}(\mathrm{DD})} \mathcal{M}^{\prime}, w^{\prime}$ then w and w^{\prime} satisfy the same $\mathcal{M} \mathcal{L}(\mathrm{DD})$-formulas.

- Proof is by induction on formula structure.
- The interesting case is for a formula of the form $@_{\varphi} \psi$.

Theorem (Hennessy-Milner property for $\mathcal{M L}(\mathrm{DD})$). Assume that \mathcal{M} and \mathcal{M}^{\prime} are image-finite, models. Then $\mathcal{M}, w \leftrightarrows_{\mathcal{M L}(\mathrm{DD})} \mathcal{M}^{\prime}, w^{\prime}$ if and only if w and w^{\prime} satisfy the same $\mathcal{M} \mathcal{L}(D D)$-formulas.

- Let $\left(w, w^{\prime}\right) \in Z$ if and only if w and w^{\prime} satisfy the same $\mathcal{M} \mathcal{L}(\mathrm{DD})$-formulas.
- We can show that Z is an $\mathcal{M} \mathcal{L}(D D)$-bisimulation.
- The interesting part is to show that $\operatorname{Names}(\mathcal{M})=\operatorname{Names}\left(\mathcal{M}^{\prime}\right)$ and that Z satisfies Dom and Rng.

Bisimulation for $\mathcal{M} \mathcal{L}(D D)$ with Boolean DDs

Z is not an $\mathcal{M} \mathcal{L}(\mathrm{DD})$-bisimulation, but it should be a bisimulation if we allow for Boolean DDs only.
marks named worlds, nut not worlds have Boolean names

Definition.

- $\operatorname{Names}_{B}(\mathcal{M})=\{\varphi \in \operatorname{Names}(\mathcal{M}) \mid \varphi$ is Boolean $\}$.
- $\operatorname{NamedWorlds}_{B}(\mathcal{M})=\left\{w|\mathcal{M}, w|=\varphi\right.$ and $\left.\varphi \in \operatorname{Names}_{B}(\mathcal{M})\right\}$.

Definition. A $\mathcal{B} \mathcal{M} \mathcal{L}(\mathrm{DD})$-bisimulation is defined as $\mathcal{M} \mathcal{L}(\mathrm{DD})$-bisimulation but with Names and NamedWorlds replaced by Names $_{B}$ and NamedWorlds ${ }_{B}$, respectively.

$\mathcal{B} \mathcal{M} \mathcal{L}(\mathrm{DD})$-bisimulation properties

Proposition. Each $\mathcal{M} \mathcal{L}(\mathrm{DD})$-bisimulation is also an $\mathcal{B M} \mathcal{L}(\mathrm{DD})$-bisimulation, but not vice versa. Moreover each $\mathcal{B M} \mathcal{L}(\mathrm{DD})$-bisimulation is an $\mathcal{M L}$-bisimulation, but not vice versa.

Theorem (Bisimulation invariance property for $\mathcal{B M} \mathcal{L}(D D)$). If $\mathcal{M}, w \leftrightarrows_{\mathcal{B} \mathcal{M}(\mathrm{DD})} \mathcal{M}^{\prime}, w^{\prime}$ then w and w^{\prime} satisfy the same $\mathcal{B} \mathcal{M} \mathcal{L}(\mathrm{DD})$-formulas.

Theorem (Hennessy-Milner property for $\mathcal{B M} \mathcal{L}(\mathrm{DD})$). Assume that \mathcal{M} and \mathcal{M}^{\prime} are image-finite, models. Then $\mathcal{M}, w \leftrightarrows_{\mathcal{B M L}(\mathrm{DD})} \mathcal{M}^{\prime}, w^{\prime}$ if and only if w and w^{\prime} satisfy the same $\mathcal{B} \mathcal{M} \mathcal{L}(D D)$-formulas.

> Applications of $\mathcal{M} \mathcal{L}(\mathrm{DD})$-bisimulation

Non-definability of operators

In $\mathcal{M L}(\mathrm{DD})$ (and in $\mathcal{B} \mathcal{M} \mathcal{L}(\mathrm{DD})$) we cannot define:

- 'everywhere' (universal) operator A,
- the difference operator D,
- 'somewhere' operator E,
- counting operator \exists_{n}, for any $n \geq 2$.

Non-definability of operators

In $\mathcal{M L}(D D)$ (and in $\mathcal{B} \mathcal{M L}(D D)$) we cannot define:

- 'everywhere' (universal) operator A,
- the difference operator D,
- 'somewhere' operator E,
- counting operator \exists_{n}, any $n \leq 2$.

Conclusions

Conclusions and Future Work

$\mathcal{M} \mathcal{L}(D D)$ extends modal logic with operators $@_{\varphi}$, where

- @ $\varphi_{\varphi} \psi$ means that ' ψ holds in the world in which φ holds'.

We defined an $\mathcal{M} \mathcal{L}(D D)$-bisimulation which enjoys:

- the bisimulation invariance property,
- the Hennessy-Milner property.

Next steps:

- develop an algorithm constructing a (maximal) $\mathcal{M} \mathcal{L}(D D)$-bisimulation between a pair of models.

Thank you for your attention

przemyslaw.walega@cs.ox.ac.uk

Funded by the European Union (ERC, ExtenDD, project number: 101054714). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them.

