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Term-forming operators (variable-binding term operators):

Examples:

iota-operator (Peano): ıxϕ - the (only) x such that ϕ;

epsilon-operator (Hilbert): εxϕ - a(n) x such that ϕ;

abstraction-operator: {x : ϕ} - the set of (all) x satisfying ϕ;

counting-operator (Frege): ]xϕ - the number of x such that
ϕ;

lambda-operator (Church): λxϕ - the property of being ϕ.

Why do they matter?

1. The role of complex terms is crucial in communication.
2. The role of complex terms is totally neglected in modern logic.

It’s time to fill this gap =⇒ ExtenDD project.
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Term-forming operators (variable-binding term operators):

Is there a general theory of such operators?

There are two attempts to develop such a theory.
1 A theory independently proposed by Scott, by Hatcher,

Corcoran and Herring, and by Da Costa.

D. Scott.
Existence and description in formal logic, in B. Russell,
Philosopher of the Century, Little, Brown and Co., Boston
1967.
W. S. Hatcher.
1968. Foundations of Mathematics, Saunders, Philadelphia.
1982. The logical foundations of Mathematics, Pergamon
J. Corcoran and J. Herring.
1971.- Notes on a semantical analysis of variable-binding term
operators, Logique et Analyse 55, pp. 644-657.
J. Corcoran, W. S. Hatcher and J. Herring.
1972.- Variable-binding term operators, Zeitschr. f. math.
Logik u. Grund. d. Math. 18, pp. 177-182.
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Term-forming operators (variable-binding term operators):

Is there a general theory of such operators?

There are two attempts to develop such a theory.
1 A theory independently proposed by Scott, by Hatcher,

Corcoran and Herring, and by Da Costa.

N. C. A. da Costa.
1973.- Review of Corcoran, Hatcher and Herring 1972,
Zentralblatt f. Math. 257, pp. 8-9.
1980.- A model-theoretical approach to variable-binding term
operators, in: Mathematical Logic in Latin America, pp.
133–162, North-Holland

2 An approach developed by Neil Tennant
1978. Natural Logic, Edinburgh.
1987. Anti-Realism and Logic, Oxford.
2004.- A general theory of Abstraction Operators, The
Philosophical Quaterly 54(214), pp. 105–133.
2022. The Logic of Number, Oxford.
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Term-forming operators (variable-binding term operators):

The first theory (Scott, Hatcher, Corcoran and Herring, Da Costa)

It is based on two general principles added to PFFOLI (positive
free first-order logic with identity) [Scott] or to CFOLI (classical
FOLI) [the remaining authors].

EXT: ∀x(ϕ(x) ↔ ψ(x)) → τxϕ(x) = τxψ(x)
AV: τxϕ(x) = τyϕ(y)

or, equivalently:

EXTAV: ∀xy(x = y → ϕ(x) ↔ ψ(y)) → τxϕ(x) = τyψ(y)

It may be also developed in the setting of FOL (no identity) by
means of:

EXT’: ∀x(ϕ(x) ↔ ψ(x)) → (χ[τxϕ(x)] ↔ χ[τxψ(x)])
AV’: χ[τxϕ(x)] ↔ χ[τyψ(y)]
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Term-forming operators (variable-binding term operators):

The first theory – possible objections:

1. In a sense it is too general and too weak. For several operators
one needs additional principles. For example:

For ι Rosser adds to EXT and AV:
∃1xϕ(x) → ∀x(x = ιxϕ(x) ↔ ϕ(x))

and Da Costa adds:
∃1xϕ(x) → ∀x(x = ιxϕ(x) → ϕ(x))
¬∃1xϕ(x) → ιxϕ(x) = ιx(x 6= x)

For ε we need to add:
∃xϕ(x) → ∀x(x = εxϕ(x) → ϕ(x))

2. For some theories of DD it is too strong, e.g. for the Russellian
theory.
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Term-forming operators (variable-binding term operators):

The second theory (Tennant)

Developed in the setting of NFFOLI (negative free FOLI).
Based on the following ND rules:

τ I If ϕ(a),Ea ` Rat and Rat ` ϕ(a) and Et, then t = τxϕ(x);
τE1 If t = τxϕ(x) and ϕ(b) and Eb, then Rbt
τE2 If t = τxϕ(x), then Et
τE3 If t = τxϕ(x) and Rbt, then ϕ(b)

where a is an eigenvariable, and R is the specific relation involved
in the characterisation of τ ; e.g. = for ι, ∈ for set builder.

Note that Tennant’s natural logicist’s approach uses single-barreled
characterisation of operators in contrast to double-barreled
abstraction principles based on equivalences, preferred by
neo-logicists and present also in the first approach.
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The basic system GC for CFOL:

(Cut)
Γ ⇒ ∆, ϕ ϕ,Π ⇒ Σ

Γ,Π ⇒ ∆,Σ
(AX ) ϕ, Γ ⇒ ∆, ϕ

(¬⇒)
Γ ⇒ ∆, ϕ

¬ϕ, Γ ⇒ ∆
(⇒¬)

ϕ, Γ ⇒ ∆

Γ ⇒ ∆,¬ϕ
(W⇒)

Γ ⇒ ∆

ϕ, Γ ⇒ ∆

(⇒∧)
Γ ⇒ ∆, ϕ Γ ⇒ ∆, ψ

Γ ⇒ ∆, ϕ ∧ ψ
(∧⇒)

ϕ, ψ, Γ ⇒ ∆

ϕ ∧ ψ, Γ ⇒ ∆
(⇒W )

Γ ⇒ ∆

Γ ⇒ ∆, ϕ

(∨⇒)
ϕ, Γ ⇒ ∆ ψ, Γ ⇒ ∆

ϕ ∨ ψ, Γ ⇒ ∆
(⇒∨)

Γ ⇒ ∆, ϕ, ψ

Γ ⇒ ∆, ϕ ∨ ψ
(C⇒)

ϕ, ϕ, Γ ⇒ ∆

ϕ, Γ ⇒ ∆

(→⇒)
Γ ⇒ ∆, ϕ ψ, Γ ⇒ ∆

ϕ → ψ, Γ ⇒ ∆
(⇒→)

ϕ, Γ ⇒ ∆, ψ

Γ ⇒ ∆, ϕ → ψ
(⇒C)

Γ ⇒ ∆, ϕ, ϕ

Γ ⇒ ∆, ϕ

(↔⇒)
Γ⇒ ∆, ϕ, ψ ϕ, ψ, Γ⇒ ∆

ϕ↔ψ, Γ⇒ ∆
(∀⇒)

ϕ[x/t], Γ⇒ ∆

∀xϕ, Γ⇒ ∆
(⇒∃)

Γ⇒ ∆, ϕ[x/t]

Γ⇒ ∆, ∃xϕ

(⇒↔)
ϕ, Γ⇒ ∆, ψ ψ, Γ ⇒ ∆, ϕ

Γ⇒ ∆, ϕ↔ψ
(⇒∀)

Γ⇒ ∆, ϕ[x/a]

Γ⇒ ∆, ∀xϕ
(∃⇒)

ϕ[x/a], Γ⇒ ∆

∃xϕ, Γ⇒ ∆

where a is a fresh parameter (eigenvariable), not present in Γ,∆ and ϕ.
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Variants:

1. GPC: instead of (∀⇒) and (⇒∃) we have:

(∀⇒)
ϕ[x/b], Γ⇒ ∆

∀xϕ, Γ⇒ ∆
(⇒∃)

Γ⇒ ∆, ϕ[x/b]

Γ⇒ ∆, ∃xϕ

2. GF: Change all quantifier rules into:

(∀⇒)
ϕ[x/t], Γ⇒ ∆

Et,∀xϕ, Γ⇒ ∆
(⇒∀)

Ea, Γ⇒ ∆, ϕ[x/a]

Γ⇒ ∆,∀xϕ

(∃⇒)
Ea, ϕ[x/a], Γ⇒ ∆

∃xϕ, Γ⇒ ∆
(⇒∃)

Γ⇒ ∆, ϕ[x/t]

Et, Γ⇒ ∆,∃xϕ

For pure version b instead of t.

3. For NFOL add:

(Str)
Et, Γ⇒ ∆

ϕ(t), Γ⇒ ∆
where ϕ is atomic

Desiderata for proof-theoretic characterisation: cut-elimination,
subformula-, subterm-property.
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How to deal with identity?

In SC framework:

I Global approach (by substitution on the whole sequent).

II Local approach:

1 Addition of axiomatic sequents ⇒ ϕ for each axiom ϕ.

2 Addition of “mathematical basic sequents” which consists of
atomic formulae.

3 Addition of all axioms as a context in the antecedents of all
provable sequents.

4 Addition of new rules corresponding to axioms.

In the first case:
Ref: ⇒ t = t
LL: ⇒ t1 = t2 → (ϕ[x/t1] → ϕ[x/t2]), where ϕ is atomic
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Rules for = (Rule-maker theorem Indrzejczak 2013)

(1 =) t = t, Γ⇒ ∆
Γ⇒ ∆ for Ref and the following for LL:

(2 =)
ϕ[x/t2], Γ⇒ ∆

t1 = t2, ϕ[x/t1], Γ⇒ ∆
(3 =)

Γ⇒ ∆, ϕ[x/t1]
t1 = t2, Γ⇒ ∆, ϕ[x/t2]

(4 =) Γ⇒ ∆, t1 = t2
ϕ[x/t1], Γ⇒ ∆, ϕ[x/t2]

(5 =)
Γ⇒ ∆, t1 = t2 Γ⇒ ∆, ϕ[x/t1]

Γ⇒ ∆, ϕ[x/t2]

(6 =)
Γ⇒ ∆, t1 = t2 ϕ[x/t2], Γ⇒ ∆

ϕ[x/t1], Γ⇒ ∆

(7 =)
Γ⇒ ∆, ϕ[x/t1] ϕ[x/t2], Γ ⇒ ∆

t1 = t2, Γ⇒ ∆

(8 =)
Γ⇒ ∆, t1 = t2 Γ⇒ ∆, ϕ[x/t1] ϕ[x/t2], Γ⇒ ∆

Γ⇒ ∆
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The first approach to term-forming operators:

The first formalisation GT1: to GC add:

ϕ(a), Γ ⇒ ∆, ψ(a) ψ(a), Γ ⇒ ∆, ϕ(a)
(Ext)

Γ ⇒ ∆, τxϕ(x) = τxψ(x)

τxϕ(x) = τyϕ(y), Γ ⇒ ∆
(AV )

Γ ⇒ ∆

The second formalisation GT2: add only:

a = b, ϕ(a), Γ ⇒ ∆, ψ(b) a = b, ψ(b), Γ ⇒ ∆, ϕ(a)
(ExtAV )

Γ ⇒ ∆, τxϕ(x) = τyψ(y)
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The first approach to term-forming operators:

The rules are adequate:
Provability of EXTAV (axiom):

a = b ⇒ a = b ϕ(a) ↔ ψ(b), ϕ(a) ⇒ ψ(b)
(→⇒)

a = b → (ϕ(a) ↔ ψ(b)), a = b, ϕ(a) ⇒ ψ(b)
(∀ ⇒)

∀xy(x = y → (ϕ(x) ↔ ψ(y))), a = b, ϕ(a) ⇒ ψ(b) D
(ExtAV )

∀xy(x = y → (ϕ(x) ↔ ψ(y))) ⇒ τxϕ(x) = τyψ(y)
(⇒→)

⇒ ∀xy(x = y → (ϕ(x) ↔ ψ(y))) → τxϕ(x) = τyψ(y)

where D is a proof of
∀xy(x = y → (ϕ(x) ↔ ψ(y))), a = b, ψ(b) ⇒ ϕ(b).
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The first approach to term-forming operators:

Problems to overcome (in both systems):

1) How to avoid the problem with the lost subformula-property for
(⇒ ∃) and (∀ ⇒)?

2) How to formulate the rules for LL to avoid clash on
cut-formulas generated with (Ext) ((ExtAV ))?
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The first approach to term-forming operators:

ad 1. Restrict all quantifier rules to parameters (use GPC), and to
avoid the loss of generality add to GT1 or GT2:

a = τxϕ(x), Γ ⇒ ∆
(a ⇒)

Γ ⇒ ∆

The resulting system is GPT1 (GPT2) [i.e. GC with (a ⇒) and
(Ext), (AV ) or (ExtAV )] and it is equivalent to GT1 (GT2).
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The first approach to term-forming operators:

(a ⇒) is derivable in GT1 (GT2) with cut:

ϕ(a) ⇒ ϕ(a) ϕ(a) ⇒ ϕ(a)
(Ext)

⇒ τxϕ(x) = τxϕ(x)
(⇒ ∃)

⇒ ∃y(y = τxϕ(x))

a = τxϕ(x), Γ ⇒ ∆
(∃ ⇒)

∃y(y = τxϕ(x)), Γ ⇒ ∆
(Cut)

Γ ⇒ ∆

[a proof in GT2 similar]
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The first approach to term-forming operators:

Unrestricted (∀ ⇒), (⇒ ∃) are derivable in GPT1 (GPT2) with
unrestricted LL and cut:

Γ ⇒ ∆, ϕ(τxψ(x)) ϕ(τxψ(x)), a = τxψ(x) ⇒ ϕ(a)
(Cut)

a = τxψ(x), Γ ⇒ ∆, ϕ(a)
(⇒ ∃)

a = τxψ(x), Γ ⇒ ∆, ∃xϕ
(a ⇒)

Γ ⇒ ∆, ∃xϕ

and similarly for (∀ ⇒).
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The first approach to term-forming operators:

Which rule for LL should we use?
All variants except (5 =) and (8 =) make a clash in the proof of
cut elimination, e.g. (2 =):

ϕ(a), Γ ⇒ ∆, ψ(a) ψ(a), Γ ⇒ ∆, ϕ(a)
(Ext)

Γ ⇒ ∆, τxϕ(x) = τxψ(x)

χ[z/τxϕ(x)],Π ⇒ Σ
(2 =)

τxϕ(x) = τxψ(x), χ[z/τxψ(x)],Π ⇒ Σ
(Cut)

χ[z/τxψ(x)], Γ,Π ⇒ ∆,Σ

But if we use (5 =), i.e.

Γ ⇒ ∆, t = t ′ Γ ⇒ ∆, ϕ[x/t]
(LL)

Γ ⇒ ∆, ϕ[x/t ′]

We can avoid clash in the proof of cut elimination (all rules are
right-sided).

The cut elimination theorem and the subformula property (but not
the subterm property) hold for both Systems GPT1 and GPT2.
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The first approach to term-forming operators:

Some remarks on the identity treatment:

1. Note that we can keep:

b = b, Γ ⇒ ∆
(R)

Γ ⇒ ∆

[for τxϕ(x) = τxϕ(x) it is derivable by (Ext)]

2. In fact we can keep also (2 =) for parameters (and even for
mixed b = t with the second premiss not of the form t = t ′); the
only troublesome cases of LL which make a clash in the proof of
cut elimination are:

1 b = t, t = t ′ ⇒ b = t ′

2 t = t ′, ϕ(t) ⇒ ϕ(t ′)

3 t = t ′, t ′ = t ′′ ⇒ t = t ′′
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Application to set-builders

Several kinds of set theory can be taken into account, in particular:

Quine’s NF (its formalisation in Rosser, Hatcher)

Quine’s ML

Quine’s theory of virtual sets (its formalisation in Scott)

Tennant’s basic logic of classes

paraconsistent set theory (naive)

Cantorian set theory as developed by Oliver and Smiley

ZF

BG
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Application to set-builders – preliminary issues concerning
=; possible choices:

1. Start with CFOLI ( = and ∈ primitive) with some axioms/rules
for = and add: ExtAx ∀xy(∀z(z ∈ x ↔ z ∈ y) → x = y)
[the converse is provable by LL]

2. Start with CFOL (only ∈ primitive) and defined = either as:

2.1. (Leibnizian): t = t ′ := ∀z(t ∈ z ↔ t ′ ∈ z);
then obtain a standard characterisation of = and add ExtAx
[the converse is provable by LL. In principle the same effect as in
approach 1]

2.2. t = t ′ := ∀z(z ∈ t ↔ z ∈ t ′)
but then we must add a form of LL as an extensionality axiom:
ExtAx ′ ∀xyz(x = y → (x ∈ z → y ∈ z))
[the form with z ∈ x derivable from definition; cf. Quine, Rosser,
Mendelson, Hatcher]

It explains a difference between nomenclature in the use of the
term extensionality axiom either for ExtAx or for LL (i.e. ExtAx ′).
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Application to set-builders

Quine’s NF

Language with ∈ primitive.

= defined:

t = t ′ := ∀z(z ∈ t ↔ z ∈ t ′)

[Note that the approach 2.2. is involved]

Two axioms:

Abs ∀x(x ∈ {y : ϕ(y)} ↔ ϕ(y/x)), ϕ stratified.
Ext ∀xy(x = y → (ϕ(x) ↔ ϕ(y)))
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Application to set-builders – Quine’s NF

Take GCP and add:

a ∈ t, Γ ⇒ ∆, a ∈ t ′ a ∈ t ′, Γ ⇒ ∆, a ∈ t
(⇒=)

Γ ⇒ ∆, t = t ′

Γ ⇒ ∆, b ∈ t, b ∈ t ′ b ∈ t, b ∈ t ′, Γ ⇒ ∆
(=⇒)

t = t ′, Γ ⇒ ∆

ϕ(t), Γ ⇒ ∆
(Abs ⇒)

t ∈ {x : ϕ(x)}, Γ ⇒ ∆

Γ ⇒ ∆, ϕ(t)
(⇒ Abs)

Γ ⇒ ∆, t ∈ {x : ϕ(x)}

these rules correspond to the definition of = for sets and to axiom
of abstraction with ϕ stratified (in fact a kind of β-reduction).
All rules are reducible for cut elimination (providing we treat ∈ as
having smaller degree than =).
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Application to set-builders – Quine’s NF

Note that (Ext) is derivable in such a system:

ϕ(a), Γ ⇒ ∆, ψ(a)
(Abs ⇒ Abs)

a ∈ {x : ϕ(x)}, Γ ⇒ ∆, a ∈ {x : ψ(x)}

ψ(a), Γ ⇒ ∆, ϕ(a)

a ∈ {x : ψ(x)}, Γ ⇒ ∆, a ∈ {x : ϕ(x)}
(⇒=)

Γ ⇒ ∆, {x : ϕ(x)} = {x : ψ(x)}

[similar for the case of (ExtAV )]
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Application to set-builders – Quine’s NF

But what with LL? There are following cases:

1 t = t′, t ∈ t′′ ⇒ t′ ∈ t′′

2 t = t′, t′′ ∈ t ⇒ t′′ ∈ t′

3 t = t′, t′ = t′′ ⇒ t = t′′

With 3 no problem; derivable by (⇒=), (=⇒), as other properties of =, including ref
and sym.

2 is provable by (=⇒) but on condition that instead of b we can use any term t′′; so
even this case is problematic (subformula property, cut reduction).

1 even worse. To avoid troubles we could follow the general solution sketched above
(with LL as two-premiss right-sided rule (5 =)) but it does not work too. 1 is not
reducible with (Abs ⇒):

Γ ⇒ ∆, t = t′ Γ ⇒ ∆, t′ ∈ {x : ϕ}
(LL)

Γ ⇒ ∆, t ∈ {x : ϕ}
ϕ(t),Π ⇒ Σ

(Abs ⇒)
t ∈ {x : ϕ},Π ⇒ Σ

(Cut)
Γ,Π ⇒ ∆,Σ
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Application to set-builders

Quine’s NF

In the presence of (Abs ⇒) and (⇒ Abs) only 3-premiss version of
(LL):

Γ ⇒ ∆, t = t ′ Γ ⇒ ∆, ϕ(t) ϕ(t ′), Γ ⇒ ∆
(8 =)

Γ ⇒ ∆

works, but it is not fully satisfactory (no subformula, no term
property).
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Application to set-builders

Quine’s NF

Perhaps the application of the approach 1 or 2.1 to = works
better?

Take some set of rules characterising = but still no set is reducible
with either (Abs ⇒) or (⇒ Abs) except 3-premiss version of (LL).

Moreover we need a rule-characterisation of (ExtAx); (⇒=) works
(in particular with 3-premiss LL).

No advantage over the approach 2.2 based on the original Quine’s
formulation.
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No advantage over the approach 2.2 based on the original Quine’s
formulation.
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