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2 Sequent Calculus GO for LO.

3 Sequent Calculus GOP for LO with predicates.

4 Three variants of Extended LO (ELO).

5 Sequent Calculi GELOi , for i ∈ {w ,m, s}.

Andrzej Indrzejczak
When Epsilon Meets Lambda: Extended Leśniewski’s Ontology
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2 Sequent Calculus GO for LO.

3 Sequent Calculus GOP for LO with predicates.

4 Three variants of Extended LO (ELO).

5 Sequent Calculi GELOi , for i ∈ {w ,m, s}.

Andrzej Indrzejczak
When Epsilon Meets Lambda: Extended Leśniewski’s Ontology
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INTRODUCTION

FOL versus natural language:

Two features of natural languages badly represented in FOL:

1 the subject-predicate structure of atomic sentences, characteristic not
only for traditional logic but also for modern linguistics with its NP+VP
model of sentences applied in generative grammar;

2 the wide class of naming expressions which are used not only to refer to
x , but also to convey information about x , and even if they refer to
something it is not necessarily the singular reference.

Reaction – some alternatives to FOL:

the calculi of names due to Sommers;

the variety of relational sylogistics of Moss and Pratt-Hartmann;

the logic QUARC of Ben-Yami;

the plural logic of Oliver and Smiley.

The oldest approach of this kind: Leśniewski’s ontology.
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INTRODUCTION

Leśniewski and his Systems:

Stanis law Leśniewski (1886-1939) – Polish Philosopher and
Logician.

Protothetics - a general form of propositional logic where, in
addition to sentence variables and specific connectives,
arbitrary sentence-forming variables, as well as quantifiers
binding all these kinds of variables are considered.

Ontology - the most comprehensive calculus of names
proposed as an alternative (to Fregean paradigm)
formalization of elementary logic.

Mereology - a theory of parthood relation proposed as the
alternative (to set theory) formalization of the theory of
classes, providing a nominalistic approach to foundations of
mathematics.
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Leśniewski and his Systems:
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INTRODUCTION

Leśniewski’s Ontology:

the most comprehensive calculus of names proposed as an
alternative formalization of logic;

a theory of the binary predicate ε meant as the formalization
of the Greek ‘esti’;

originally based on the protothetics which is a more general
form of propositional logic where functorial variables as well as
quantifiers binding all kinds of variables are involved;

alternative approach – a kind of first-order theory of ε based
on classical first-order logic (S lupecki SL 1955, Iwanuś SL
1973).
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INTRODUCTION
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INTRODUCTION

Leśniewski’s Ontology:

Convention: instead of aεb we write ab.

In all languages we have only name variables (bound x , y , z and
free a, b, c , d , ... called parameters) which range over all names
(individual, general and empty).

LA (Leśniewski’s axiom):
∀xy(xy ↔ ∃z(zx) ∧ ∀z(zx → zy) ∧ ∀zv(zx ∧ vx → zv))

The following formulae are equivalent to LA:

1 ∀xy(xy ↔ ∃z(zx ∧ zy) ∧ ∀zv(zx ∧ vx → zv))

2 ∀xy(xy ↔ ∃z(zx ∧ zy ∧ ∀v(vx → vz)))

3 ∀xy(xy ↔ ∃z(∀v(vx ↔ vz) ∧ zy))
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INTRODUCTION

Leśniewski’s Ontology - proof theory:

Ontology was often developed as a kind of ND: S lupecki, Lejewski,
Wojciechowski, indeed Leśniewski himself.

There is also a tableau system for a part of LO due to Kobayashi
and Ishimoto SL 1982 (also Ishimoto SL 1977, Takano 1985).

Recently cut-free sequent calculus GO for LO and GOP for LO
with predicates was proposed by Indrzejczak [IJCAR 2022].

Moreover it was shown that LO (with predicates) satisfies Craig
Interpolation Theorem, constructively, via Maehara’s method in
GO and GOP by Indrzejczak [AWPL 2024].
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INTRODUCTION
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INTRODUCTION
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SEQUENT CALCULUS GO

(Cut)
Γ⇒ ∆, ϕ ϕ,Π⇒ Σ

Γ,Π⇒ ∆,Σ
(AX ) ϕ⇒ ϕ

(¬⇒)
Γ⇒ ∆, ϕ

¬ϕ, Γ⇒ ∆
(⇒¬)

ϕ, Γ⇒ ∆

Γ⇒ ∆,¬ϕ
(W⇒)

Γ⇒ ∆

ϕ, Γ⇒ ∆

(⇒∧)
Γ⇒ ∆, ϕ Γ⇒ ∆, ψ

Γ⇒ ∆, ϕ ∧ ψ
(∧⇒)

ϕ, ψ, Γ⇒ ∆

ϕ ∧ ψ, Γ⇒ ∆
(⇒W )

Γ⇒ ∆

Γ⇒ ∆, ϕ

(∨⇒)
ϕ, Γ⇒ ∆ ψ, Γ⇒ ∆

ϕ ∨ ψ, Γ⇒ ∆
(⇒∨)

Γ⇒ ∆, ϕ, ψ

Γ⇒ ∆, ϕ ∨ ψ
(C⇒)

ϕ, ϕ, Γ⇒ ∆

ϕ, Γ⇒ ∆

(→⇒)
Γ⇒ ∆, ϕ ψ, Γ⇒ ∆

ϕ→ ψ, Γ⇒ ∆
(⇒→)

ϕ, Γ⇒ ∆, ψ

Γ⇒ ∆, ϕ→ ψ
(⇒C)

Γ⇒ ∆, ϕ, ϕ

Γ⇒ ∆, ϕ

(↔⇒)
Γ⇒ ∆, ϕ, ψ ϕ, ψ, Γ⇒ ∆

ϕ↔ψ, Γ⇒ ∆
(∀⇒)

ϕ[x/b], Γ⇒ ∆

∀xϕ, Γ⇒ ∆
(⇒∃)

Γ⇒ ∆, ϕ[x/b]

Γ⇒ ∆, ∃xϕ

(⇒↔)
ϕ, Γ⇒ ∆, ψ ψ, Γ⇒ ∆, ϕ

Γ⇒ ∆, ϕ↔ψ
(⇒∀)

Γ⇒ ∆, ϕ[x/a]

Γ⇒ ∆, ∀xϕ
(∃⇒)

ϕ[x/a], Γ⇒ ∆

∃xϕ, Γ⇒ ∆

(R)
bb, Γ⇒ ∆

bc, Γ⇒ ∆
(T )

bd, Γ⇒ ∆

bc, cd, Γ⇒ ∆
(S)

cb, Γ⇒ ∆

bc, cc, Γ⇒ ∆

(E)
ab, Γ⇒ ∆, ac ac, Γ⇒ ∆, ab cd, Γ⇒ ∆

bd, Γ⇒ ∆
where a is a fresh parameter (eigenvariable)
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SEQUENT CALCULUS GO

(Cut)
Γ⇒ ∆, ϕ ϕ,Π⇒ Σ

Γ,Π⇒ ∆,Σ
(AX ) ϕ⇒ ϕ

(¬⇒)
Γ⇒ ∆, ϕ

¬ϕ, Γ⇒ ∆
(⇒¬)

ϕ, Γ⇒ ∆

Γ⇒ ∆,¬ϕ
(W⇒)

Γ⇒ ∆

ϕ, Γ⇒ ∆

(⇒∧)
Γ⇒ ∆, ϕ Γ⇒ ∆, ψ

Γ⇒ ∆, ϕ ∧ ψ
(∧⇒)

ϕ, ψ, Γ⇒ ∆

ϕ ∧ ψ, Γ⇒ ∆
(⇒W )

Γ⇒ ∆

Γ⇒ ∆, ϕ

(∨⇒)
ϕ, Γ⇒ ∆ ψ, Γ⇒ ∆

ϕ ∨ ψ, Γ⇒ ∆
(⇒∨)

Γ⇒ ∆, ϕ, ψ

Γ⇒ ∆, ϕ ∨ ψ
(C⇒)

ϕ, ϕ, Γ⇒ ∆

ϕ, Γ⇒ ∆

(→⇒)
Γ⇒ ∆, ϕ ψ, Γ⇒ ∆

ϕ→ ψ, Γ⇒ ∆
(⇒→)

ϕ, Γ⇒ ∆, ψ

Γ⇒ ∆, ϕ→ ψ
(⇒C)

Γ⇒ ∆, ϕ, ϕ

Γ⇒ ∆, ϕ

(↔⇒)
Γ⇒ ∆, ϕ, ψ ϕ, ψ, Γ⇒ ∆

ϕ↔ψ, Γ⇒ ∆
(∀⇒)

ϕ[x/b], Γ⇒ ∆

∀xϕ, Γ⇒ ∆
(⇒∃)

Γ⇒ ∆, ϕ[x/b]

Γ⇒ ∆, ∃xϕ

(⇒↔)
ϕ, Γ⇒ ∆, ψ ψ, Γ⇒ ∆, ϕ

Γ⇒ ∆, ϕ↔ψ
(⇒∀)

Γ⇒ ∆, ϕ[x/a]

Γ⇒ ∆, ∀xϕ
(∃⇒)

ϕ[x/a], Γ⇒ ∆

∃xϕ, Γ⇒ ∆

(R)
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bd, Γ⇒ ∆

bc, cd, Γ⇒ ∆
(S)

cb, Γ⇒ ∆

bc, cc, Γ⇒ ∆

(E)
ab, Γ⇒ ∆, ac ac, Γ⇒ ∆, ab cd, Γ⇒ ∆

bd, Γ⇒ ∆
where a is a fresh parameter (eigenvariable)
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ADEQUACY OF GO

aa⇒ aa(R)
ab ⇒ aa(⇒ ∃)

ab ⇒ ∃x(xa)

cb ⇒ cb (T )
ca, ab ⇒ cb

(⇒→)
ab ⇒ ca→ cb (⇒ ∀)

ab ⇒ ∀x(xa→ xb)
(⇒ ∧)

ab ⇒ ∃x(xa) ∧ ∀x(xa→ xb)

(⇒ ∧) with:

cd ⇒ cd (T )
ca, ad ⇒ cd

(S)
ca, da, aa⇒ cd

(R)
ca, da, ab ⇒ cd

(∧ ⇒)
ab, ca ∧ da⇒ cd

(⇒→)
ab ⇒ ca ∧ da→ cd (⇒ ∀)

ab ⇒ ∀xy(xa ∧ ya→ xy)

yields LA→ after (⇒→).
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ADEQUACY OF GO

aa⇒ aa(R)
ab ⇒ aa(⇒ ∃)

ab ⇒ ∃x(xa)

cb ⇒ cb (T )
ca, ab ⇒ cb

(⇒→)
ab ⇒ ca→ cb (⇒ ∀)

ab ⇒ ∀x(xa→ xb)
(⇒ ∧)

ab ⇒ ∃x(xa) ∧ ∀x(xa→ xb)

(⇒ ∧) with:

cd ⇒ cd (T )
ca, ad ⇒ cd

(S)
ca, da, aa⇒ cd

(R)
ca, da, ab ⇒ cd

(∧ ⇒)
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ADEQUACY OF GO

ca⇒ ca

da⇒ da ca⇒ ca
(⇒ ∧)

da, ca⇒ da ∧ ca dc ⇒ dc
(→⇒)

da, ca, da ∧ ca→ dc ⇒ dc
(∀ ⇒)

da, ca, ∀xy(xa ∧ ya→ xy)⇒ dc

da⇒ da
(T )

dc, ca⇒ da ab ⇒ ab
(E)

cb, ca, ∀xy(xa ∧ ya→ xy)⇒ ab
(→⇒)

ca, ca→ cb, ∀xy(xa ∧ ya→ xy)⇒ ab
(∀ ⇒)

ca, ∀x(xa→ xb), ∀xy(xa ∧ ya→ xy)⇒ ab
(∃ ⇒)

∃x(xa), ∀x(xa→ xb), ∀xy(xa ∧ ya→ xy)⇒ ab

yields LA← after (∧ ⇒), (⇒→).

On the other hand (R), (S), (T ), (E ) are derivable in GO with
additional axioms ⇒ LA→,⇒ LA←.
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ADEQUACY OF GO

ca⇒ ca
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(∀ ⇒)
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(E)

cb, ca, ∀xy(xa ∧ ya→ xy)⇒ ab
(→⇒)

ca, ca→ cb, ∀xy(xa ∧ ya→ xy)⇒ ab
(∀ ⇒)

ca, ∀x(xa→ xb), ∀xy(xa ∧ ya→ xy)⇒ ab
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EXTENSIONS – SYSTEM GOP

Da := ∃x , xa Ea := ¬∃x , xa Sa := ∃x , ax
Ga := ∃xy(xa ∧ ya ∧ ¬xy) Ua := ∀xy(xa ∧ ya→ xy)

(D ⇒)
ba, Γ⇒ ∆

Da, Γ⇒ ∆
(⇒ D)

Γ⇒ ∆, ca

Γ⇒ ∆,Da
(S ⇒)

ab, Γ⇒ ∆

Sa, Γ⇒ ∆

(⇒ S)
Γ⇒ ∆, ac

Γ⇒ ∆, Sa
(E ⇒)

Γ⇒ ∆, ca

Ea, Γ⇒ ∆
(⇒ E )

ba, Γ⇒ ∆

Γ⇒ ∆,Ea

where b is new in all schemata.

(G ⇒)
ba, ca, Γ⇒ ∆, bc

Ga, Γ⇒ ∆
(⇒ G)

Γ⇒ ∆, da Π⇒ Σ, ea de,Θ⇒ Λ

Γ,Π,Θ⇒ ∆,Σ,Λ,Ga

(⇒ U)
ba, ca, Γ⇒ ∆, bc

Γ⇒ ∆,Ua
(U ⇒)

Γ⇒ ∆, da Π⇒ Σ, ea de,Θ⇒ Λ

Ua, Γ,Π,Θ⇒ ∆,Σ,Λ

where b, c are new, and d , e are arbitrary parameters.
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EXTENSIONS – SYSTEM GOP

Identity and coextensiveness:

a = b := ab ∧ ba a ≡ b := ∀x(xa↔ xb) a ≈ b := a ≡ b ∧ Da

(=⇒)
ab, ba, Γ⇒ ∆

a = b, Γ⇒ ∆
(⇒=)

Γ⇒ ∆, ab Π⇒ Σ, ba

Γ,Π⇒ ∆,Σ, a = b

(≡⇒)
Γ⇒ ∆, ca, cb ca, cb,Π⇒ Σ

a ≡ b, Γ,Π⇒ ∆,Σ
(⇒≡)

da, Γ⇒ ∆, db db,Π⇒ Σ, da

Γ,Π⇒ ∆,Σ, a ≡ b

(≈⇒)
da, Γ⇒ ∆, ca, cb ca, cb, da,Π⇒ Σ

a ≈ b, Γ,Π⇒ ∆,Σ

(⇒≈)
da, Γ⇒ ∆, db db,Π⇒ Σ, da Θ⇒ Λ, ca

Γ,Π,Θ⇒ ∆,Σ,Λ, a ≈ b

where d is new and c arbitrary.

Attention: let us call GO with two rules for ≡, GOI.
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EXTENSIONS – SYSTEM GOP
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EXTENSIONS – SYSTEM GOP

Inclusion and noninclusion:

aε̄b := aa ∧ ¬ab
a ⊂ b := ∀x(xa→ xb)
a * b := ∀x(xa→ ¬xb)

(ε̄⇒)
aa, Γ⇒ ∆, ab

aε̄b, Γ⇒ ∆
(⇒ ε̄)

Γ⇒ ∆, aa ab,Π⇒ Σ

Γ,Π⇒ ∆,Σ, aε̄b

(⊂⇒)
Γ⇒ ∆, ca cb,Π⇒ Σ

a ⊂ b, Γ,Π⇒ ∆,Σ
(⇒⊂)

da, Γ⇒ ∆, db

Γ⇒ ∆, a ⊂ b

(*⇒)
Γ⇒ ∆, ca Π⇒ Σ, cb

a * b, Γ,Π⇒ ∆,Σ
(⇒*)

da, db, Γ⇒ ∆

Γ⇒ ∆, a * b

where d is new and c arbitrary.
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EXTENSIONS – SYSTEM GOP

Categorical sentences:

aAb := a ⊂ b ∧ Da aEb := a * b ∧ Da
aIb := ∃x(xa ∧ xb) aOb := ∃x(xa ∧ ¬xb)

(A⇒)
da, Γ⇒ ∆, ca cb, da,Π⇒ Σ

aAb, Γ,Π⇒ ∆,Σ
(⇒ A)

da, Γ⇒ ∆, db Π⇒ Σ, ca

Γ,Π⇒ ∆,Σ, aAb

(E ⇒)
da, Γ⇒ ∆, ca da,Π⇒ Σ, cb

aEb, Γ,Π⇒ ∆,Σ
(⇒ E)

da, db, Γ⇒ ∆ Π⇒ Σ, ca

Γ,Π⇒ ∆,Σ, aEb

(I ⇒)
da, db, Γ⇒ ∆

aIb, Γ⇒ ∆
(⇒ I )

Γ⇒ ∆, ca Π⇒ Σ, cb

Γ,Π⇒ ∆,Σ, aIb

(O ⇒)
da, Γ⇒ ∆, db

aOb, Γ⇒ ∆
(⇒ O)

Γ⇒ ∆, ca cb,Π⇒ Σ

Γ,Π⇒ ∆,Σ, aOb

where d is new and c arbitrary.
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(⇒ E)

da, db, Γ⇒ ∆ Π⇒ Σ, ca

Γ,Π⇒ ∆,Σ, aEb

(I ⇒)
da, db, Γ⇒ ∆

aIb, Γ⇒ ∆
(⇒ I )

Γ⇒ ∆, ca Π⇒ Σ, cb

Γ,Π⇒ ∆,Σ, aIb

(O ⇒)
da, Γ⇒ ∆, db

aOb, Γ⇒ ∆
(⇒ O)

Γ⇒ ∆, ca cb,Π⇒ Σ

Γ,Π⇒ ∆,Σ, aOb

where d is new and c arbitrary.
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HARVEST

1 All rules for constants are explicit, separate and symmetric which are
usual requirements for well-behaved SC rules.

2 Several quantifier-free fragments may be formalised due to 1.

3 All rules, except cut, satisfy the subformula property – side formulae are
only atomic of degree 0.

4 All rules are pairwise reductive, modulo substitution of terms, hence
reduction of cut-degree holds.

5 Substitution theorem holds for the system with any combination of the
above rules.

6 The only primitive rules for ε are all one-sided (active formulae in the
antecedents only), hence reduction of cut-height holds.

7 Cut elimination holds due to 4, 5 and 6 [Indrzejczak IJCAR, Hajfa 2022].

8 The interpolation theorem holds due to 3 and 7 [Indrzejczak AWPL,
Sapporo 2024].

9 The system is analytic due to 3 and 7.

10 Semidecision procedures (and decision procedures for quantifier-free
fragments) can be provided due to 9.
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THE PROBLEM

How to extend LO to cover complex terms?

How to provide cut-free SC for LO with complex terms?

The original approach of Leśniewski to the problem is not
satisfactory. There are two problems:

1 Definitions of term-forming operations in LO are creative.
Iwanuś has shown that the problem can be overcome by
enriching elementary ontology with two axioms corresponding
to special versions of the comprehension axiom but this opens
a problem of derivability of these axioms in GO (GOP)
enriched with special rules.

2 Even if we can provide reductive rules for Leśniewski’s
operations, we run into a problem with quantifier rules. If
unrestricted instantiation of terms is admitted in
(⇒ ∃), (∀ ⇒) the subformula property is lost.

Another approach proposed by Waragai 1990.
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operations, we run into a problem with quantifier rules. If
unrestricted instantiation of terms is admitted in
(⇒ ∃), (∀ ⇒) the subformula property is lost.

Another approach proposed by Waragai 1990.

Andrzej Indrzejczak
When Epsilon Meets Lambda: Extended Leśniewski’s Ontology



THE PROBLEM

How to extend LO to cover complex terms?

How to provide cut-free SC for LO with complex terms?
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Leśniewski’s solution:

Example term functors:

ab̄ := aa ∧ ¬ab
a(b ∩ c) := ab ∧ ac
a(b ∪ c) := ab ∨ ac

(− ⇒)
Γ⇒ ∆, ab

ab̄, Γ⇒ ∆
(⇒ −)

ab, Γ⇒ ∆

Γ⇒ ∆, ab̄

(∩ ⇒)
ab, ac , Γ⇒ ∆

a(b ∩ c), Γ⇒ ∆
(⇒ ∩)

Γ⇒ ∆, ab Π⇒ Σ, ac

Γ,Π⇒ ∆,Σ, a(b ∩ c)

(∪ ⇒)
ab, Γ⇒ ∆ ac,Π⇒ Σ

a(b ∪ c), Γ,Π⇒ ∆,Σ
(⇒ ∪)

Γ⇒ ∆, ab, ac

Γ⇒ ∆, a(b ∪ c)

The rules are reductive but the system with these rules fails to be
cut-free if quantifier rules (⇒ ∃), (∀ ⇒) are not modified.
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Leśniewski’s solution:

Example term functors:

ab̄ := aa ∧ ¬ab
a(b ∩ c) := ab ∧ ac
a(b ∪ c) := ab ∨ ac

(− ⇒)
Γ⇒ ∆, ab

ab̄, Γ⇒ ∆
(⇒ −)

ab, Γ⇒ ∆

Γ⇒ ∆, ab̄

(∩ ⇒)
ab, ac , Γ⇒ ∆

a(b ∩ c), Γ⇒ ∆
(⇒ ∩)

Γ⇒ ∆, ab Π⇒ Σ, ac

Γ,Π⇒ ∆,Σ, a(b ∩ c)

(∪ ⇒)
ab, Γ⇒ ∆ ac,Π⇒ Σ

a(b ∪ c), Γ,Π⇒ ∆,Σ
(⇒ ∪)

Γ⇒ ∆, ab, ac

Γ⇒ ∆, a(b ∪ c)

The rules are reductive but the system with these rules fails to be
cut-free if quantifier rules (⇒ ∃), (∀ ⇒) are not modified.

Andrzej Indrzejczak
When Epsilon Meets Lambda: Extended Leśniewski’s Ontology



EXTENDED LO

LO with lambda operator:

The language of GO extended with:

additional binary predicate ≡ (considered in GOP);

lambda operator λ;

a denumerable set of n-ary relational predicate variables
Rn, n > 1.

Complex terms are of the form λxϕ, where ϕ is a formula.
There are three kinds of atoms:

relational atoms Rt1...tn, where all arguments are variables;

identities t1 ≡ t2, where both arguments can be simple or
complex;

ε-atoms t1εt2.
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EXTENDED LO

LO with lambda operator:

The language of GO extended with:

additional binary predicate ≡ (considered in GOP);

lambda operator λ;

a denumerable set of n-ary relational predicate variables
Rn, n > 1.

Complex terms are of the form λxϕ, where ϕ is a formula.

There are three kinds of atoms:

relational atoms Rt1...tn, where all arguments are variables;

identities t1 ≡ t2, where both arguments can be simple or
complex;

ε-atoms t1εt2.

Andrzej Indrzejczak
When Epsilon Meets Lambda: Extended Leśniewski’s Ontology
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EXTENDED LO

LO with lambda operator:

We consider the hierarchy of three languages: weak, medium and
strong, depending on what kind of terms are admitted as
arguments of ε-atoms t1εt2:

1 Lw : t1 simple, t2 arbitrary;

2 Lm: additionally ε-atoms with both arguments complex;

3 Ls : additionally ε-atoms with t1 complex and t2 simple.

So only Ls admits all possible combination of terms, as in
identities.
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EXTENDED LO

LO with lambda operator:

Note that in the setting of ELO, the axiom LA covers in fact four
schemata:

LA1 ab ↔ ∃z(za) ∧ ∀z(za→ zb) ∧ ∀zv(za ∧ va→ zv);

LA2 aλxψ ↔ ∃z(za) ∧ ∀z(za→ zλxψ) ∧ ∀zv(za ∧ va→ zv);

LA3 λxϕλxψ ↔ ∃z(zλxϕ) ∧ ∀z(zλxϕ→
zλxψ) ∧ ∀zv(zλxϕ ∧ vλxϕ→ zv);

LA4 λxϕb ↔ ∃z(zλxϕ) ∧ ∀z(zλxϕ→ zb) ∧ ∀zv(zλxϕ ∧ vλxϕ→
zv).

They form a hierarchy of the commitment of complex terms in
forming atoms of ELO, representing different strength of
expression.
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EXTENDED LO

three variants of ELO formalised in respective languages:

1 weak ELOw in Lw satisfying LA1, LA2;

2 medium ELOm in Lm satisfying LA1, LA2, LA3;

3 strong ELOs in Ls satisfying LA1, LA2, LA3, LA4.
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EXTENDED LO

Lambda operator:

Even ELOs is in a sense too weak for real applications to the
analysis of reasoning in natural languages. For example, we are not
able to demonstrate the validity of such simple argument as:

‘Ann is the oldest daughter of Betty. Therefore, she is Betty’s
daughter.’

To resolve this problem we need a kind of β-conversion (BC ) of
the form:

aλxϕ↔ aa ∧ ϕ[x/a]

where aa is added to restrict a to individual names.

Similar principle was considered by Waragai in his system
combining FOL with LO.

Andrzej Indrzejczak
When Epsilon Meets Lambda: Extended Leśniewski’s Ontology
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EXTENDED LO

How to obtain well-behaved SC for ELO?

One may think about the generalisation of the rules of GO to
arbitrary terms but we loose the subformula property.

The better option is to introduce new rules for ε-atoms with
complex terms to obtain the (three systems of) GELO.

The starting point is the system GOI, i.e. GO with two rules for ≡:

(≡⇒)
Γ⇒ ∆, db, dc db, dc ,Π⇒ Σ

b ≡ c , Γ,Π⇒ ∆,Σ

(⇒≡)
ab, Γ⇒ ∆, ac ac,Π⇒ Σ, ab

Γ,Π⇒ ∆,Σ, b ≡ c

where a is new.
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EXTENDED LO

GELOw := GOI in Lw + the following rules:

(β ⇒)
ϕ[x/b], Γ⇒ ∆

bλxϕ, Γ⇒ ∆
(⇒ β)

Γ⇒ ∆, bb Γ⇒ ∆, ϕ[x/b]

Γ⇒ ∆, bλxϕ

(≡⇒ E )
a ≡ t, Γ⇒ ∆

Γ⇒ ∆
(⇒≡ E )

Γ⇒ ∆, b ≡ c Γ⇒ ∆, ϕ[x/c]

Γ⇒ ∆, ϕ[x/b]

where a is a fresh parameter (eigenvariable), b, c are arbitrary
parameters,
t ∈ term(Γ ∪∆) [the set of complex terms of Γ ∪∆] in (≡⇒ E ),
ϕ in (⇒≡ E ) is a relational atom.

Note that there is no need to generalise the rules (R), (T ), (S), (E )
to cover complex terms!
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EXTENDED LO

THE IMPORTANCE OF (≡⇒ E ):

(∀ ⇒), (⇒ ∃) are derivable by (≡⇒ E ):

a ≡ t, ϕ[x/a]⇒ ϕ[x/t]
(∀ ⇒)

a ≡ t,∀xϕ⇒ ϕ[x/t]
(≡⇒ E )

∀xϕ⇒ ϕ[x/t] ϕ[x/t], Γ⇒ ∆
(Cut) ∀xϕ, Γ⇒ ∆

where the left top sequent is a provable instance of Leibniz Law LL.
In a similar way we prove derivability of unrestricted (⇒ ∃).
(≡⇒ E ) is derivable in the calculus with unrestricted (⇒ ∃):

at ⇒ at at ⇒ at(⇒≡) ⇒ t ≡ t(⇒ ∃)
⇒ ∃x(x ≡ t)

a ≡ t, Γ⇒ ∆
(∃ ⇒)

∃x(x ≡ t), Γ⇒ ∆
(Cut)

Γ⇒ ∆
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ADEQUACY OF GELOw

aλxϕ⇒ ab, aλxϕ

aa⇒ aa
(⇒ ∃)

aa⇒ ∃x(xa)
(R)

ab, aλxϕ⇒ ∃x(xa)
(≡⇒)

b ≡ λxϕ, aλxϕ⇒ ∃x(xa)
(≡⇒ E)

aλxϕ⇒ ∃x(xa)

aλxϕ⇒ ac, aλxϕ

bc ⇒ bc
(T )

ac, aλxϕ, ba⇒ bc
(≡⇒)

c ≡ λxϕ, aλxϕ, ba⇒ bc, bλxϕ bc, bλxϕ⇒ bλxϕ
(≡⇒)

c ≡ λxϕ, aλxϕ, ba⇒ bλxϕ
(≡⇒ E)

aλxϕ, ba⇒ bλxϕ
(⇒→)

aλxϕ⇒ ba→ bλxϕ
(⇒ ∀)

aλxϕ⇒ ∀x(xa→ xλxϕ)

aλxϕ⇒ ab, aλxϕ

cd ⇒ cd
(T )

ca, ad ⇒ cd
(S)

aa, ca, da⇒ cd
(R)

ab, aλxϕ, ca, da⇒ cd
(≡⇒)

b ≡ λxϕ, aλxϕ, ca, da⇒ cd
(∧ ⇒)

b ≡ λxϕ, aλxϕ, ca ∧ da⇒ cd
(⇒→)

b ≡ λxϕ, aλxϕ⇒ ca ∧ da→ cd
(⇒ ∀)

b ≡ λxϕ, aλxϕ⇒ ∀xy(xa ∧ ya→ xy)
(≡⇒ E)

aλxϕ⇒ ∀xy(xa ∧ ya→ xy)

yield together by (⇒ ∧) and (⇒→) the left-right implication of LA2.
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D1
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(∀ ⇒)
ba,∀xy(xa ∧ ya→ xy), da⇒ db

yields LA←2
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EXTENDED LO

GELOm := GELOw in Lm + the following rules:

(λ⇒ 1)
aλxϕ, at, Γ⇒ ∆

λxϕt, Γ⇒ ∆

(λ⇒ 2)
Γ⇒ ∆, cλxϕ Γ⇒ ∆, dλxϕ cd , Γ⇒ ∆

λxϕt, Γ⇒ ∆

(⇒ λ)
Γ⇒ ∆, cλxϕ Γ⇒ ∆, ct aλxϕ, bλxϕ, Γ⇒ ∆, ab

Γ⇒ ∆, λxϕt

where a, b are new parameters (eigenvariable), c , d are arbitrary, t
is complex.

GELOs := GELOm in Ls :

Note – no new rules! Just the relaxation of formulation: in GELOs

t may be an arbitrary term in (λ⇒ 1), (λ⇒ 2) and (⇒ λ).
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EXTENDED LO

GELOm := GELOw in Lm + the following rules:

(λ⇒ 1)
aλxϕ, at, Γ⇒ ∆

λxϕt, Γ⇒ ∆

(λ⇒ 2)
Γ⇒ ∆, cλxϕ Γ⇒ ∆, dλxϕ cd , Γ⇒ ∆

λxϕt, Γ⇒ ∆

(⇒ λ)
Γ⇒ ∆, cλxϕ Γ⇒ ∆, ct aλxϕ, bλxϕ, Γ⇒ ∆, ab

Γ⇒ ∆, λxϕt

where a, b are new parameters (eigenvariable), c , d are arbitrary, t
is complex.

GELOs := GELOm in Ls :

Note – no new rules! Just the relaxation of formulation: in GELOs

t may be an arbitrary term in (λ⇒ 1), (λ⇒ 2) and (⇒ λ).

Andrzej Indrzejczak
When Epsilon Meets Lambda: Extended Leśniewski’s Ontology
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ADEQUACY OF GELOm

aλxϕ, at ⇒ aλxϕ
(⇒ ∃)

aλxϕ, at ⇒ ∃x(xλxϕ)
(λ⇒ 1)

λxϕt ⇒ ∃x(xλxϕ)

aλxϕ⇒ aλxϕ bλxϕ⇒ bλxϕ ab, bt ⇒ at
(λ⇒ 2)

aλxϕ, bλxϕ, bt, λxϕt ⇒ at
(λ⇒ 1)

aλxϕ, λxϕt ⇒ at
(⇒→)

λxϕt ⇒ aλxϕ→ at
(⇒ ∀)

λxϕt ⇒ ∀x(xλxϕ→ xt)

where the rightmost sequent is provable.

aλxϕ⇒ aλxϕ bλxϕ⇒ bλxϕ ab ⇒ ab
(λ⇒ 2)

λxϕt, aλxϕ, bλxϕ⇒ ab
(∧ ⇒)

λxϕt, aλxϕ ∧ bλxϕ⇒ ab
(⇒→)

λxϕt ⇒ aλxϕ ∧ bλxϕ→ ab
(⇒ ∀)

λxϕt ⇒ ∀xy(xλxϕ ∧ yλxϕ→ xy)

the above proofs yield the left-right part of LA3 after application of (⇒ ∧) and (⇒→).
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ADEQUACY OF GELOm

aλxϕ⇒ aλxϕ at, aλxϕ, ∀xy(xλxϕ ∧ yλxϕ→ xy)⇒ λxϕt
(→⇒)

aλxϕ, aλxϕ→ at,∀xy(xλxϕ ∧ yλxϕ→ xy)⇒ λxϕt
(∀ ⇒)

aλxϕt, ∀x(xλxϕ→ xt),∀xy(xλxϕ ∧ yλxϕ→ xy)⇒ λxϕt
(∃ ⇒)

∃x(xλxϕ), ∀x(xλxϕ→ xt), ∀xy(xλxϕ ∧ yλxϕ→ xy)⇒ λxϕt

where the rightmost sequent is proved as follows:

aλxϕ⇒ aλxϕ at ⇒ at

bλxϕ⇒ bλxϕ cλxϕ⇒ cλxϕ
(⇒ ∧)

bλxϕ, cλxϕ⇒ bλxϕ ∧ cλxϕ bc ⇒ bc
(→⇒)

bλxϕ, cλxϕ, bλxϕ ∧ cλxϕ→ bc ⇒ bc
(∀ ⇒)

bλxϕ, cλxϕ, ∀xy(xλxϕ ∧ yλxϕ→ xy)⇒ bc
(⇒ λ)

at, aλxϕ, ∀xy(xλxϕ ∧ yλxϕ→ xy)⇒ λxϕt

For GELOs the proof is similar.
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EXTENDED LO – SUMMARY OF RESULTS

Lemma

GELOi ` s ≡ t, ϕ[x/s]⇒ ϕ[x/t], for i ∈ {w ,m, s}.

Lemma

aλxψ ↔ ∃x(xa) ∧ ∀x(xa→ xλxψ) ∧ ∀xy(xa ∧ ya→ xy) is
provable in GELOw .

Lemma

λxϕt ↔ ∃x(xλxϕ) ∧ ∀x(xλxϕ→ xt) ∧ ∀xy(xλxϕ ∧ yλxϕ→ xy)
is provable in GELOm with t complex, and in GELOs with t
arbitrary.

Lemma

The rules of GELOi are derivable in GOI+LAi used as an
additional axiomatic sequent, for i ∈ {w ,m, s}. .
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CUT ELIMINATION IN ELO

Note that:

1 if st is strictly atomic, i.e. containing parameters only, it can
be principal only in the antecedent of the right premiss of cut,
due to (R), (S), (T ), (E );

2 if it is of the form bλxϕ, it can be principal in both premisses
of cut but only via (⇒ β) and (β ⇒);

3 if it is of the form λxϕt, it can be principal in both premisses
of cut but only via (⇒ λ) and (λ⇒ 1) or (λ⇒ 2);

4 identity is principal in both premisses of cut only via (⇒≡)
and (≡⇒);

5 relational atom is principal only in the succedent of the left
premiss via (⇒≡ E ).

In cases 1, 5 we proceed by induction on the height, in cases 2, 3,
4 by induction on the grade.
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CUT ELIMINATION IN ELO

Lemma (Substitution)

If `k Γ⇒ ∆, then `k Γ[a/b]⇒ ∆[a/b].

Lemma

1 The rules (⇒ β) with (β ⇒) are reductive in general;

2 (⇒ λ) with (λ⇒ 1), and (⇒ λ) with (λ⇒ 2) are pairwise
reductive in GELOm.
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CUT ELIMINATION IN ELO - reductivity of λ-rules:

Γ⇒ ∆, cλxϕ Γ⇒ ∆, cλyψ aλxϕ, bλxϕ, Γ⇒ ∆, ab
(⇒ λ)

Γ⇒ ∆, λxϕλyψ

dλxϕ, dλyψ,Π⇒ Σ
(λ⇒ 1)

λxϕλyψ,Π⇒ Σ
(Cut)

Γ,Π⇒ ∆,Σ

we apply substitution lemma to premiss of (λ⇒ 1) to replace the
occurrences of fresh d with c , then we continue:

Γ⇒ ∆, cλyψ

Γ⇒ ∆, cλxϕ cλxϕ, cλyψ,Π⇒ Σ
(Cut)

cλyψ, Γ,Π⇒ ∆,Σ
(Cut)

Γ, Γ,Π⇒ ∆,∆,Σ
(C ⇒), (⇒ C )

Γ,Π⇒ ∆,Σ

Both cuts are of lower degree, hence both rules are reductive.
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CUT ELIMINATION IN ELO - reductivity of λ-rules:

aλxϕ, bλxϕ, Γ⇒ ∆, ab
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Γ⇒ ∆, λxϕλyψ

Π⇒ Σ, cλxϕ Π⇒ Σ, dλxϕ cd,Π⇒ Σ
(λ⇒ 2)

λxϕλyψ,Π⇒ Σ
(Cut)

Γ,Π⇒ ∆,Σ

where on the left side we display only one (relevant) premiss.

We apply substitution lemma (twice) to the rightmost premiss of
the application of (⇒ λ) instead, to replace the occurrences of
fresh a, b with c , d respectively, then we continue:

Π⇒ Σ, dλxϕ

Π⇒ Σ, cλxϕ cλxϕ, dλxϕ, Γ⇒ ∆, cd
(Cut)

dλxϕ, Γ,Π⇒ ∆,Σ, cd
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(Cut)

Γ,Π,Π,Π⇒ ∆,Σ,Σ,Σ
(C ⇒), (⇒ C)

Γ,Π⇒ ∆,Σ

All cuts are of lower degree, hence both rules are reductive.

But it does not work for GELOs !
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CUT ELIMINATION IN ELO

Theorem

Every proof in GELOw and GELOm can be transformed into a
cut-free proof.

Corollary

If ` Γ⇒ ∆ in GELOw or GELOm, then it is provable in a proof
which is closed under subformulae of Γ ∪∆ and atomic formulae
with possibly new parameters.
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ELO - CONCLUDING REMARKS

Open problems and further developments:

1 Better solution for GELOs - satisfying cut elimination.

2 Proving Interpolation for ELO.

3 Changing the additional linguistic component of ELO (e.g.
DL or relational syllogistics) and its grammatical status (e.g.
instead of fusion with the language of LO, introduce the
second component only inside lambda terms).
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