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Definite Descriptions formalised by Binary Quantification

Sentences containing definite descriptions can be formalised by a
binary quantifier that binds a variable and forms a formula from
two formulas:

(1) The F is G
(2) Ix [F ,G ]

This has the advantage of building scope distinctions immediately
into the notation:

(3) External negation: ¬Ix [F ,G ]
(4) Internal negation: Ix [F ,¬G ]

(5) Modality de dicto: �Ix [F ,G ]: It is necessary that the F is G
(6) Modality de re: Ix [F ,�G ]: The F is necessarily G



Descriptions formalised by Term Forming Operators. I

Definite descriptions are commonly formalised by the ı operator. It
binds a variable and forms a singular term from a formula:

(1) The F
(2) ıxF

Sentences containing definite descriptions are then formalised by
attaching ı terms to predicate letters:

(3) The F is G
(4) G ıxF

This is how the ı operator was introduced by Peano and how
definite descriptions are now mostly formalised, in particular in
formalisations of theories of definite descriptions in free logic by
Hintikka, Lambert, van Fraassen and others. Russell used the ı
operator, too, but with a caveat.



Descriptions formalised by Term Forming Operators. II

The caveat concerning Russell is that he only introduced the ı
operator after having explained the meaning of definite
descriptions in the context of complete sentences in which they
occur, and this explanation required markers for scope distinctions.

Some free logicians abhor scope distinctions, but it is clear that
they are needed in quantified modal logic with definite descriptions.
To mark scope, it is necessary to introduce a further device into
the language. Often the λ operator is used for this purpose.
Formulas with λ abstracts are formed as follows: if A is a formula,
λxA is a λ abstract, and if t is a term, λxA(t) is a formula.

(1) Modality de dicto: �λxG (ıxF )
(2) Modality de re: λx�G (ıxF )



Plan of the Talk

First, I’ll present a prominent system of quantified modal logic with
definite descriptions in which they are formalised as usual by the ı
operator and scope is marked by λ: this is the system presented by
Garson in his Modal Logic for Philosophers.

Then, I’ll present how modal logic can be extended by a binary
quantifier for formalising complete sentences in which definite
descriptions occur.

Next, I’ll compare the two approaches, in particular with respect to
the important notion of rigidity.

I’ll end with a few words comparing my system to Fitting and
Mendelsohn’s system of First Order Modal Logic (second edition).



Garson’s System. I

The rules for the connectives ¬,→ are those for classical logic.
The rules for propositional modal logic K are standard:

[A]i

Π
B(→ I ) i

A→ B
A→ B A(→ E )

B

[¬A]i

Π
⊥

(⊥EC ) i
A

�A1 . . .�An

[A1]i1 . . . [An]in︸ ︷︷ ︸
Π
B

(�I ) i1,...in where n ≥ 0
�B

T, S4, B, S5: add the usual axioms/rules/modifications of rules



Garson’s System. II

The rules for the quantifiers and identity adapt those of standard
positive free logic PFL. An atomic term is a constant or
parameter. A predication is a predicate letter or λ abstract.

[∃!a]i

Π
Ax
a(∀I ) i∀xA

∀xA ∃!c(∀E )
Ax
c

Restrictions on ∀I are as usual. In ∀E , c is an atomic term.

(= I )
t = t

s = t Ax
s(= E )

Ax
t

where A is a predication and t, s are any terms.

The restrictions on (∀E ) and (= E ) are there to give rules sensible
in quantified modal logic: consider the case where x is in the scope
of a modal operator in A and the instantiating terms are not rigid.



Garson’s System. III

Constants and parameters are interpreted rigidly:

c = d(RC1)
� c = d

¬ c = d(RC2)
�¬ c = d

where c , d are atomic terms.

We can always refer to the referent of a term rigidly by picking a
fresh parameter and assuming it to have the same referent:

[a = t]i

Π
A(∃i) i
A

where a is a parameter that does not occur free in A, t nor any
undischarged assumptions of Π except a = t.



Garson’s System. IV

The rules for λ operator are almost those one would expect:

Ax
c(λI )

λxA(c)

λxA(c)
(λE )

Ax
c

where c is an atomic term.

Hence ` λx�A(c)↔ �Ax
c and ` �Ax

c ↔ �λxA(c).

The restriction is needed because modalities de re and de dicto are
not equivalent for definite descriptions:

(1) �λxA(ıxF ): It is necessary that being A is true of the F .
(2) λx�A(ıxF ): Being necessarily A is true of the F .

There are no function symbols, so the only non-rigid terms are
definite descriptions. (Function symbols are not needed: functions
can be defined in terms of a relation and a definite description.)



Garson’s System. V
The ı operator is governed by rules standard for positive free logic:

Ax
c ∃!c

[Ax
a ]i [∃!a]j

Π
c = a

(ıI ) i ,j
c = ıxA

c = ıxA ∃!c(ıE1)
Ax
c

c = ıxA Ax
d ∃!c ∃!d

(ıE2)
c = d

where c , d are atomic terms, and in (ıI ), a is a parameter that does
not occur in any undischarged assumption of Π except Ax

a and ∃!a.

The restriction to atomic terms corresponds to the restriction on
(∀E ) if we derive these rules from Lambert’s Axiom:

∀y(y = ıxA↔ (∀x(A↔ y = x)))



Garson’s System. VI

The semantics for Garson’s system is the standard semantics for
variable domain quantified modal logic, so I won’t go into the
details: a structure M consists of a set D of objects, a set of
worlds w , each with a domain D(w) ⊆ D of objects that exist at
that world, and an accessibility relation on them. The language is
interpreted as usual: constants and predicate letters are assigned
objects and subsets of D, same for assignment functions for
variables. I’ll only give the clauses for ı and λ terms:

d ∈ I v (w , λxA) iff for the x-variant v ′ of v s.th. v ′(x) = d :
M,w 
v ′ A

I v (w , ıxA) = d , if there is a unique object d in D(w) such that for
the x-variant v ′ of v that assigns d to x , M,w 
v ′ A;
I v (w , ıxA) 6∈ D(w) otherwise.



A Comment on the Clause for ı

I v (w , ıxA) = d , if there is a unique object d in D(w) such that for
the x-variant v ′ of v that assigns d to x , M,w 
v ′ A;
I v (w , ıxA) 6∈ D(w) otherwise.

If a unique F exists at a world w , then ıxA refers to it. If not, ıxA
refers to an unspecified object in the outer domain of w .

As in Garson’s system all terms refer, he has no other choice: there
may not be an A in the outer domain of w .

(1) The round square is round.
(2) The round square is not round.

Which one is true at a world w depends on the random object to
which the description ‘the round square’ refers.

This is an oddity of the system.



Comment on (∃i)
Garson’s (∃i) is admissible, but not derivable, in (non-modal) PFL.
(a) Any application of (∃i) can be transformed into a correct proof
of CPF by replacing a by t and leaving out the rule:

[a = t]i

Π
A(∃i) i
A

 
t = t

Πa
t

A

The transformation does not lead to any violations of restrictions
on rules, and closes all assumptions t = t by (= I ).

(b) Consider a semantics for PFL that is like the standard one
(outer domain D and inner domain E ⊆ D over which ∃! is
interpreted), but with an element ∗ not in the outer domain.
Interpretation of the language stays untouched, i.e. all constants
and ı terms are interpreted in the outer domain. Then all rules of
CPF preserve validity. But a = t is false, if v(a) = ∗, for any t,
and so (∃i) doesn’t preserve validity.



Formalising Definite Descriptions with a Binary Quantifier

Formalising definite descriptions with a binary quantifier takes on
Russell’s point that we shouldn’t look for a referent of ‘the F ’ first
and then ask for the truth conditions of ‘The F is G ’, but should
start with the latter, i.e. with a complete sentence.

The present approach is un-Russellian in two respects:

(a) It is modal.
(b) It uses positive free logic.

Nonetheless, it takes on Russell’s point about complete sentences.

Proposal: The minimal requirement we should impose on the truth
of Ix [F ,G ] is that there be a unique F . But it need not exist.

Thus ‘The author of Principia smokes a pipe’, ‘The round square is
round’ and ‘The round square is not round’ are all false.



Natural Deduction Rules for I for Positive Free Logic

Where c, c1, c2 are atomic terms:

F x
c G x

c

[F x
a ]i

Π
a = c

(II ) i
Ix [F ,G ]

where a is different from c and does not occur in F , G or any undischarged
assumptions of Π except F x

a .

Ix [F ,G ]

[F x
a ]i , [G x

a ]j︸ ︷︷ ︸
Π
C

(IE 1) i,j
C

where a is not free in C or any undischarged assumptions in Π except F x
a , G x

a .

Ix [F ,G ] F x
c1 F x

c2
(IE 2) c1 = c2



The Rigid Parameters Rules

Do we need to add a rule corresponding to Garson’s (∃i) for
picking rigid designators for complex terms?

[a = t]i

Π
A(∃i) i
A

where a is a parameter that does not occur free in A, t nor any
undischarged assumptions of Π except a = t.
No. In fact it is worse, and we mustn’t, as the analogous rule:

[Ix [B, a = x ]]i

Π
A

i
A

is inconsistent. Let B be a contraction ⊥(x). As Ix [⊥(x),G ] ` ⊥,
for any G , this rule trivialises the system.



Semantics for I
M,w 
v Ix [A,B] iff there is a d ∈ D such that for the x-variant
v ′ of v such that v ′(x) = d , M,w 
v ′ A, and for any x-variant v ′′

of v ′, if M,w 
v ′′ A, then v ′′(x) = d , and M,w 
v ′ B.

So: Ix [F ,G ] is true at a world w iff F is assigned a singleton
subset of the domain of the model at w and its element is G at w .

Note: I haven’t proved completeness, but I think this works.

Uniqueness of F in the domain of the model is quite a strong
requirement. If every x ∈ D is in some D(w), then for the universal
possibility Ix [F ,G ] � Ix [F ,♦∃!x ]. (Garson does not demand this).

An alternative would be to assign to each world an outer domain
that is a subset of the domain of the model and require uniqueness
only there. But this is not customary, and I’m not sure it would
make a difference, as we haven’t got outer quantifiers or a
predicate true only of the things in the outer domain (‘subsists’).



Comparisons. I. Non-Modal. I

By ‘there is’ I’ll mean ‘there is in the outer domain’; by ‘exists’ I
mean ‘there is in the inner domain’. For the comparisons, assume
we add the binary quantifier to Garson’s system.

Ix [A,B] neither implies nor is implied by B(ıxA)

If there is no unique or more than one A, Ix [A,B] is false, but
B(ıxA) may be true. If no unique A exists, Ix [A,B] may be true (if
there is a unique A that is B), and B(ıxA) false.

Ix [A,B] neither implies nor is implied by λxB(ıxA)

Scope distinctions do not matter in the non-modal language of
Garson’s system: ` B(ıxA)↔ λxB(ıxA).

Thus we cannot expect a straightforward translation between
Garson’s system and mine.



Comparisons. II. Non-Modal. II

B(ıxA) ∧ ∃!ıxA does not imply Ix [A,B]

If there is an A in addition to the existing one, Ix [A,B] is false.

So: ∃!ıxA does not imply Ix [A, ∃!x ]

But: Ix [A,∃!x ] implies ∃!ıxA

Because then the unique A exists, so ıxA is that unique existing A.
For the same reason we have:

Ix [A,B] ∧ ∃!ıxA implies B(ıxA)

In the modal case B needs to be a predication.

Finally: ∃!ıxA ∧ B(ıxA) is equivalent to Ix [A ∧ ∃!x ,B]



Comparisons. III. Variations of Leibniz’ Law
In my system, Leibniz’ Law is not applicable to definite
descriptions, as they are not terms, but its effect can be mimicked:

c = ıxD,Ax
ıxD ` Ax

c ! Ix [D, c = x ], Ix [D,A] ` Ax
c

c = ıxD,Ax
c ` Ax

ıxD ! Ix [D, c = x ],Ax
c ` Ix [D,A]

ıxD = ıxE ,Ax
ıxD ` Ax

ıxE ! Ix [D, Iy [E , x = y ]], Ix [D,A] ` Ix [E ,A]

In fact, only the last is needed, because ` Ax
c ↔ Ix [x = c ,A].

! evidently does not mean ‘translates as’.

On the right of !, x may be in the scope of a modal operator in
A (because we’re talking de re of the D that is A).

In Garson’s system: For any formula A, if x is not in the scope of
� in A or if s = t ` � s = t, then s = t,Ax

s ` Ax
t .



Comparisons. IV. Universal Instantiation with Descriptions

In Garson’s system (∀E ) can be generalised:

If x is not in the scope of � in A or if t is rigid: ∀xA,∃!t ` Ax
t .

Rigidity can be weakened. It suffices that for some parameter a not
occurring in A or t, a = t ` � a = t.

If t is rigid, this is always the case: take a fresh parameter, assume
a = t, infer � a = t, eventually use (∃i) to discharge a = t.

∀xA, Ix [D,∃!x ] ` Ix [D,A] is derivable, without restrictions, as the
description is de dicto.



Comparisons. V. Rigidity. I
A term is rigid in w iff it picks out the same object in every world
accessible from w . What does rigidity mean in my system?

Ix [A,B] is about the A rigidly if the same object that is the A that
is B in w is the A in every accessible world. Thus ‘The A is
necessarily the A’ expresses the rigidity of ‘the A’ in terms of
binary quantification. Let’s restrict A to predicate letters. Then:

M,w 
v Ix [A,�Iy [A, x = y ]]: I (A,w) is a singleton {a}, and in
every accessible world w ′, I (A,w ′) = {a}.

M,w 
v �Ix [A, x = c]: the interpretation of A is the singleton
{I (c)} in every accessible world (constants are rigid).

M,w 
v �Ix [A,>]: the interpretation of A is a singleton set in
every accessible world.

Note: Ax
c → �Ax

c ,�Ix [A,>] ` �Ix [A, x = c].



Comparisons. VI. Rigidity. II

Let’s say that if M,w 
v Ix [A,�Iy [A, x = y ]], then A is rigidly
unique at w .

A version of the necessity of identity follows:

Ix [A,�Iy [A, x = y ]], Ix [A, x = c] ` �Ix [A, x = c]

If A is rigidly unique, then if the A is c , this is necessarily so.

Rigid uniqueness suffices for a version of the necessity of difference:

Ix [A,�Iy [A, x = y ]], Ix [A, x 6= c] ` �Ix [A, x 6= c]

If A is rigidly unique, then if the A is different from c , this is
necessarily so.



Comparisons. VII. Rigidity. III
In Garson’s system, scope distinction can be ignored for rigid
terms. In fact, something slightly weaker suffices. As constants are
rigid, the below is interesting only when t is a definite description.

1. For any formula B and term t, if x is not in the scope of � in B
or if for some parameter a not occurring in B or t,
a = t ` � a = t, then ` λxB(t)↔ Bx

t .

2. For any formula B and term t, if x is not in the scope of � in B
or if for some parameter a not occurring in B, t, a = t ` � a = t,
then ` λx�B(t)↔ �Bx

t and ` �Bx
t ↔ �λxB(t).

Nothing corresponds to 1. in my system, as DD always require
scope markers. But we have: ` Ix [Iy [Ax

y , x = y ],B]↔ Ix [A,B].

` λx�B(t)↔ �λxB(t) of 2. corresponds to:

Ix [A,�Iy [A, x = y ]] ` Ix [A,�B]↔ �Ix [A,B]



A Few Words on Fitting and Mendelsohn. I

I(ıxA,w) is defined in M under valuation v iff there is exactly one
x-variant v ′ of v such that M,w 
v ′ A. Then ıxA designates at w
under v and I(ıxA,w) = v ′(x). If ıxA designates at w under
valuation v , then M,w 
v λxB(ıxA) iff M,w 
v ′ B, where v ′ is
the x-variant of v such that v ′(x) = I(ıxA,w). If ıxA does not
designate at w under valuation v , then M,w 1v λxB(ıxA).

Suppose ıxA designates at w under v . Then (∗) there is a d ∈ D,
i.e. I(ıxA,w), s.th. there is exactly one x-variant v ′ of v s.th.
v ′(x) = d and M,w 
v ′ A. Then if M,w 
v λxB(ıxA), then
M,w 
v ′ B, and so M,w 
v Ix [A,B].

If ıxA does not designate at w under v , then (∗) fails, and so
M,w 1v λxB(ıxA) and also M,w 1v Ix [A,B].

So either way, M,w 
v λxB(ıxA) iff M,w 
v Ix [A,B].



A Few Words on Fitting and Mendelsohn. II
Although M,w 
v λxB(ıxA) iff M,w 
v Ix [A,B], there are
important differences between the two approaches:

(1) They use a different system of free logic, in which � ∃x∃!x : its
valid closed formulas without predicate abstracts are those of
classical logic. Thus at every world at least one object exists.

(2) Constants need not be rigid. Accordingly forming formulas
with constants requires scope distinctions, i.e. λ abstracts: where
A is a predicate letter, λxA(c) is a formula, Ax

c is not. Atomic
formulas are only those formed from predicate letters by variables
(or parameters). (Hence the valid closed formulas without
predicate abstracts also do not contain constants.)

(3) Constants may not designate. If c does not designate,
w 1v λxB(c), and so 2 λx(x = x)(c), i.e. the formula expressing
the law of identity for constants is not valid. (Officially neither is
a = a, a a parameter, as it is not a closed formula.)



A Few Words on Fitting and Mendelsohn. III
The differences of the last slide can, I think, be overcome:
(1) Add ∃x∃!x as an axiom.
(2) Restrict the language: atomic formulas are formed only with
variables/parameters, constants require the binary quantifier: if c
is a constant, A a formula, Ix [x = c,A] is a formula. (NB: x = c is
not a formula in Fitting and Mendelsohn’s system.)
(3) Restrict (∀E ), (= I ), (= E ), (RC ), (II ), (IE1), (IE2) to
parameters, except when A, F , G have the form Iy [y = x ,B].
(4) Restrict undischarged premises and conclusions of deductions
to closed formulas. (a = a, a a parameter, is permitted as premise.)
(5) Translate formulas with λ as follows:

τ(λxA(c)) = Ix [x = c ,A] and τ(λxA(ıyB)) = Iz [Ax
z ,B

y
z ], z fresh.

These are first steps towards establishing equivalence, but more
work is needed. The formula Ix [x = c , x = x ] expressing the law of
identity is not provable. It shouldn’t be if c does not designate. If
constants always designate, we may need to add it as an axiom.
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