Definite Descriptions in First-Order Temporal Setting

Andrzej Indrzejczak* Michał Zawidzki*
*University of Lodz
® michal.zawidzki@filhist.uni.lodz.pl

ExtenDD online seminar, February 29, 2024

What will be discussed in this talk?

What will be discussed in this talk?

- The logic in question will be first-order hybrid temporal logic, abbreviated as $\mathrm{FOHL}_{\iota, \lambda}^{\mathrm{P}, \mathrm{F}}$, with two types of definite descriptions (DD) involved:

What will be discussed in this talk?

- The logic in question will be first-order hybrid temporal logic, abbreviated as $\mathrm{FOHL}_{\iota, \lambda}^{\mathrm{P}, \mathrm{F}}$, with two types of definite descriptions (DD) involved:
- standard object-level DD

What will be discussed in this talk?

- The logic in question will be first-order hybrid temporal logic, abbreviated as $\mathrm{FOHL}_{\iota, \lambda}^{\mathrm{P}, \mathrm{F}}$, with two types of definite descriptions (DD) involved:
- standard object-level DD
- temporal DD.

What will be discussed in this talk?

- The logic in question will be first-order hybrid temporal logic, abbreviated as $\mathrm{FOHL}_{\iota, \lambda}^{P, F}$, with two types of definite descriptions (DD) involved:
- standard object-level DD
- temporal DD.
- The underlying approach to DD will be Russell's classic DD theory, but to avoid difficulties with scope occurring therein we will introduce the lambda operator to the language.

What will be discussed in this talk?

- The logic in question will be first-order hybrid temporal logic, abbreviated as $\mathrm{FOHL}_{\iota, \lambda}^{P, F}$, with two types of definite descriptions (DD) involved:
- standard object-level DD
- temporal DD.
- The underlying approach to DD will be Russell's classic DD theory, but to avoid difficulties with scope occurring therein we will introduce the lambda operator to the language.
- We will present a sound and complete tableau system for $\mathrm{FOHL}_{\imath, \lambda}^{P, ~}$.

What will be discussed in this talk?

- The logic in question will be first-order hybrid temporal logic, abbreviated as $\mathrm{FOHL}_{\iota, \lambda}^{P, F}$, with two types of definite descriptions (DD) involved:
- standard object-level DD
- temporal DD.
- The underlying approach to DD will be Russell's classic DD theory, but to avoid difficulties with scope occurring therein we will introduce the lambda operator to the language.
- We will present a sound and complete tableau system for $\mathrm{FOHL}_{\iota, \lambda}^{P, F}$.
- Finally, using the tableau system we will show that $\mathrm{FOHL}_{\iota, \lambda}^{\mathrm{P}, \mathrm{F}}$ enjoys Craig's interpolation property.

UNDERLYING THEORY OF DEFINITE DESCRIPTIONS

Russell's eliminativist approach

Our starting point is Russell's approach to DDs characterised by the following formula:

$$
\begin{equation*}
\psi(\omega x \varphi(x)) \stackrel{\text { def }}{=} \exists y(\forall x(\varphi(x) \leftrightarrow x=y) \wedge \psi(y)) . \tag{R}
\end{equation*}
$$

Russell's eliminativist approach

Our starting point is Russell's approach to DDs characterised by the following formula:

$$
\begin{equation*}
\psi((x \varphi(x)) \stackrel{\text { def }}{=} \exists y(\forall x(\varphi(x) \leftrightarrow x=y) \wedge \psi(y)) . \tag{R}
\end{equation*}
$$

What disadvantages does this approach carry?

Russell's eliminativist approach

Our starting point is Russell's approach to DDs characterised by the following formula:

$$
\begin{equation*}
\psi(\llcorner x \varphi(x)) \stackrel{\text { def }}{=} \exists y(\forall x(\varphi(x) \leftrightarrow x=y) \wedge \psi(y)) . \tag{R}
\end{equation*}
$$

What disadvantages does this approach carry?

1. If $\mathfrak{l x \varphi}(x)$ is improper, $\psi(\llcorner x \varphi(x))$ is automatically false.

Russell's eliminativist approach

Our starting point is Russell's approach to DDs characterised by the following formula:

$$
\begin{equation*}
\psi((x \varphi(x)) \stackrel{\text { def }}{=} \exists y(\forall x(\varphi(x) \leftrightarrow x=y) \wedge \psi(y)) . \tag{R}
\end{equation*}
$$

What disadvantages does this approach carry?

1. If $\operatorname{tx\varphi }(x)$ is improper, $\psi(\operatorname{lx\varphi }(x))$ is automatically false.
2. If ψ is valid and φ is inconsistent, we obtain a contradiction.

Russell's eliminativist approach

Our starting point is Russell's approach to DDs characterised by the following formula:

$$
\begin{equation*}
\psi(L x \varphi(x)) \stackrel{\text { def }}{=} \exists y(\forall x(\varphi(x) \leftrightarrow x=y) \wedge \psi(y)) . \tag{R}
\end{equation*}
$$

What disadvantages does this approach carry?

1. If $\mathfrak{l x \varphi}(x)$ is improper, $\psi(\llcorner x \varphi(x))$ is automatically false.
2. If ψ is valid and φ is inconsistent, we obtain a contradiction.

Example

$$
\begin{aligned}
& \psi(y):=A(y) \rightarrow A(y) \quad \varphi(x):=B(x) \wedge \neg B(x) \\
& {[A(\llcorner x(B(x) \wedge \neg B(x))) \rightarrow A(\llcorner x(B(x) \wedge \neg B(x)))] \leftrightarrow} \\
& \quad \exists y[\forall x((B(x) \wedge \neg B(x)) \leftrightarrow x=y) \wedge(A(y) \rightarrow A(y))]
\end{aligned}
$$

Introducing λ

How did we decide to overcome the second disadvantage?

Introducing λ

How did we decide to overcome the second disadvantage?

We introduced the λ-operator to the language and

Introducing λ

How did we decide to overcome the second disadvantage?

We introduced the λ-operator to the language and
(a) restricted predication of DDs to predicate abstracts of the form $\lambda x \psi$,

Introducing λ

How did we decide to overcome the second disadvantage?

We introduced the λ-operator to the language and
(a) restricted predication of DDs to predicate abstracts of the form $\lambda x \psi$,
(b) modified (R) accordingly:

$$
(\lambda x \psi)(\llcorner y \varphi) \leftrightarrow \exists x(\forall y(\varphi \leftrightarrow y=x) \wedge \psi) .
$$

Example

Consider the following sentence:
'The oldest daughter of Anne got married to some businessman and is the richest woman in the family (of Anne).'

Example

Consider the following sentence:
'The oldest daughter of Anne got married to some businessman and is the richest woman in the family (of Anne).'
Let:
d_{1} : 'the oldest daughter of Anne'

$$
\mathfrak{l x}(D(x, a) \wedge \forall y(D(y, a) \wedge y \neq x \rightarrow O(x, y)))
$$

d_{2} : the richest woman in the family

$$
\mathfrak{l x}(\forall y(F(y, a) \wedge W(y) \wedge y \neq x \rightarrow R(x, y)))
$$

Example

Consider the following sentence:
'The oldest daughter of Anne got married to some businessman and is the richest woman in the family (of Anne).'
Let:
d_{1} : 'the oldest daughter of Anne'

$$
\mathfrak{l x}(D(x, a) \wedge \forall y(D(y, a) \wedge y \neq x \rightarrow O(x, y)))
$$

d_{2} : the richest woman in the family

$$
\mathfrak{l x}(\forall y(F(y, a) \wedge W(y) \wedge y \neq x \rightarrow R(x, y)))
$$

Then (S) can be formalised as:

$$
\left(\lambda x\left(\exists y(B(y) \wedge M(x, y)) \wedge(\lambda y(x=y))\left(d_{2}\right)\right)\right)\left(d_{1}\right)
$$

FIRST-ORDER HYBRID TEMPORAL LOGIC

Hybrid logic

Hybrid logic

Hybrid logic (HL) is an extension of standard modal logic. The language of HL is given by the following grammar:

$$
\varphi:=p|i| x|\neg \varphi| \varphi \wedge \varphi|\diamond \varphi| @_{i} \varphi \mid \downarrow_{x} \varphi
$$

where p is a propositional variable, \boldsymbol{i} is a nominal and \boldsymbol{x} is a state variable.

Hybrid logic

Hybrid logic (HL) is an extension of standard modal logic. The language of HL is given by the following grammar:

$$
\varphi:=p|i| x|\neg \varphi| \varphi \wedge \varphi|\diamond \varphi| \bigotimes_{i} \varphi \mid \downarrow_{x} \varphi
$$

where p is a propositional variable, \boldsymbol{i} is a nominal and \boldsymbol{x} is a state variable.

A model of HL is an extension of Kripke model for standard modal logic such that each nominal is assigned a singleton set by the valuation function.

Hybrid logic

Hybrid logic (HL) is an extension of standard modal logic. The language of HL is given by the following grammar:

$$
\varphi:=p|i| x|\neg \varphi| \varphi \wedge \varphi|\diamond \varphi| @_{i} \varphi \mid \downarrow_{x} \varphi
$$

where p is a propositional variable, \boldsymbol{i} is a nominal and \boldsymbol{x} is a state variable.

A model of HL is an extension of Kripke model for standard modal logic such that each nominal is assigned a singleton set by the valuation function.

Moreover, we define an assignment as a function assigning to each state variable a world from the universe of a model.

Hybrid logic

Let $\mathcal{M}=\langle\mathscr{N}, \mathscr{R}, \mathscr{V}\rangle$ be a model of HL and let \mathscr{A} be an assignment. Then we have the following hybrid-specific satisfaction conditions:

Hybrid logic

Let $M=\langle\mathscr{W}, \mathscr{R}, \mathscr{V}\rangle$ be a model of HL and let \mathscr{A} be an assignment. Then we have the following hybrid-specific satisfaction conditions:

$$
M, \mathscr{A}, w \vDash i \quad \text { iff } \quad \mathscr{V}(i)=\{w\}
$$

Hybrid logic

Let $M=\langle\mathscr{W}, \mathscr{R}, \mathscr{V}\rangle$ be a model of HL and let \mathscr{A} be an assignment. Then we have the following hybrid-specific satisfaction conditions:

$$
\begin{array}{rll}
\mathcal{M}, \mathscr{A}, w \vDash \boldsymbol{i} & \text { iff } & \mathscr{V}(\boldsymbol{i})=\{w\} \\
\mathcal{M}, \mathscr{A}, w \vDash \boldsymbol{x} & \text { iff } & \mathscr{A}(\boldsymbol{x})=w
\end{array}
$$

Hybrid logic

Let $\mathcal{M}=\langle\mathscr{N}, \mathscr{R}, \mathscr{V}\rangle$ be a model of HL and let \mathscr{A} be an assignment. Then we have the following hybrid-specific satisfaction conditions:

$$
\begin{array}{rll}
\mathcal{M}, \mathscr{A}, w \models \boldsymbol{i} & \text { iff } \quad \mathscr{V}(\boldsymbol{i})=\{w\} \\
\mathcal{M}, \mathscr{A}, w \models \boldsymbol{x} & \text { iff } \quad \mathscr{A}(\boldsymbol{x})=w \\
\mathcal{M}, \mathscr{A}, w \models @_{i} \varphi & \text { iff } \quad \mathcal{M}, \mathscr{A}, v \models \varphi \quad \text { and } \quad \mathscr{V}(i)=\{v\}
\end{array}
$$

Hybrid logic

Let $\mathcal{M}=\langle\mathscr{N}, \mathscr{R}, \mathscr{V}\rangle$ be a model of HL and let \mathscr{A} be an assignment. Then we have the following hybrid-specific satisfaction conditions:

$$
\begin{array}{rll}
\mathcal{M}, \mathscr{A}, w \models \boldsymbol{i} & \text { iff } & \mathscr{V}(i)=\{w\} \\
\mathcal{M}, \mathscr{A}, w \models \boldsymbol{x} & \text { iff } & \mathscr{A}(\boldsymbol{x})=w \\
\mathcal{M}, \mathscr{A}, w \models \mathfrak{C}_{i} \varphi & \text { iff } & \mathcal{M}, \mathscr{A}, v \models \varphi \quad \text { and } \quad \mathscr{V}(i)=\{v\} \\
\mathcal{M}, \mathscr{A}, w \models \downarrow_{\boldsymbol{x}} \varphi & \text { iff } & \mathcal{M}, \mathscr{A}[\boldsymbol{x} \mapsto w], w \models \varphi,
\end{array}
$$

where $\mathscr{A}[\boldsymbol{x} \mapsto w]$ is an assignment identical to \mathscr{A} except that it assigns the world w to \boldsymbol{x}.

First-order hybrid temporal logic

$\mathrm{FOHL}_{\mathrm{L}, \lambda}^{\mathrm{P}, \mathrm{F}}$ is a hybrid* of FOL and HL , where the latter is interpreted temporally.

[^0]
First-order hybrid temporal logic

$\mathrm{FOHL}_{\mathrm{L}, \lambda}^{\mathrm{P}, \mathrm{F}}$ is a hybrid* of FOL and HL , where the latter is interpreted temporally.

Terms and formulas of $\mathrm{FOHL}_{\stackrel{\rightharpoonup}{ }, \lambda}^{\mathrm{P}, \mathrm{F}}$ are defined by the following grammars:

[^1]
First-order hybrid temporal logic

$\mathrm{FOHL}_{l, \lambda}^{\mathrm{P}, \mathrm{F}}$ is a hybrid* of FOL and HL , where the latter is interpreted temporally.

Terms and formulas of $\mathrm{FOH}_{\mathrm{L}, \lambda}^{\mathrm{P}, \mathrm{F}}$ are defined by the following grammars:

$$
\text { TERM } \ni t::=x|i| \operatorname{sx} \varphi(x)
$$

[^2]
First-order hybrid temporal logic

$\mathrm{FOH}_{l, \lambda}^{\mathrm{P}, \mathrm{F}}$ is a hybrid* of FOL and HL , where the latter is interpreted temporally.

Terms and formulas of $\mathrm{FOH}_{\mathrm{L}, \lambda}^{\mathrm{P}, \mathrm{F}}$ are defined by the following grammars:

$$
\begin{gathered}
\text { TERM } \ni t::=x|i| \mathfrak{l x} \varphi(x) \\
\text { TFOR } \ni \boldsymbol{t}::=\boldsymbol{x}|\boldsymbol{i}| \boldsymbol{x} \varphi,
\end{gathered}
$$

[^3]
First-order hybrid temporal logic

$\mathrm{FOHL}_{l, \lambda}^{\mathrm{L}, \mathrm{F}}$ is a hybrid* of FOL and HL , where the latter is interpreted temporally.

Terms and formulas of $\mathrm{FOH}_{\mathrm{L}, \lambda}^{\mathrm{P}, \mathrm{F}}$ are defined by the following grammars:

$$
\begin{gathered}
\text { TERM } \ni t::=x|i| x \varphi \varphi(x), \\
\text { TFOR } \ni \boldsymbol{t}::=\boldsymbol{x}|\boldsymbol{i}| \boldsymbol{x} \varphi, \\
\text { FOR } \ni \varphi::=\perp\left|P\left(s_{1}, \ldots, s_{n}\right)\right| s_{1}=s_{2}|\boldsymbol{t}| \neg \varphi \mid \\
\varphi \wedge \varphi|\mathrm{F} \varphi| \mathrm{P} \varphi|\exists x \varphi| \lambda x \varphi(x)(t)\left|\mathfrak{@}_{t} \varphi\right| \downarrow_{\boldsymbol{x}} \varphi^{* *},
\end{gathered}
$$

where s_{1}, \ldots, s_{n} are terms which are not DDs.

[^4]** Hybrid "counterparts" of object terms use the same symbols as the latter, but are written in bold. And so, e.g., x is an object variable, whereas x is a state variable, i is an object constant, whereas i is a nominal, etc.

$\mathrm{FOHL}_{\mathrm{L}, \lambda}^{\mathrm{P}, \mathrm{F}}$ semantics

Definition

An FOHL ${ }_{\mathrm{L}, \lambda}^{\mathrm{P}, \mathcal{F}}$ model \mathcal{M} is a tuple $\langle\mathscr{W}, \prec, \mathscr{D}, \mathscr{F}\rangle$, where:

$\mathrm{FOHL}_{\mathrm{L}, \lambda}^{\mathrm{P}, \mathrm{F}}$ semantics

Definition

An FOHL ${ }_{L, \lambda}^{\mathrm{P}, \mathrm{F}}$ model \mathcal{M} is a tuple $\langle\mathscr{W}, \prec, \mathscr{D}, \mathscr{F}\rangle$, where:

- $\mathbb{W} \neq \emptyset$ is a temporal domain (domain of time instances)

$\mathrm{FOHL}_{\mathrm{L}, \lambda}^{\mathrm{P}, \mathrm{F}}$ semantics

Definition

An FOHL ${ }_{\mathrm{L}, \lambda}^{\mathrm{P}, \mathrm{F}}$ model \mathcal{M} is a tuple $\langle\mathscr{W}, \prec, \mathscr{D}, \mathscr{F}\rangle$, where:

- $\mathscr{W} \neq \emptyset$ is a temporal domain (domain of time instances)
- $\prec \subseteq \mathscr{W} \times \mathscr{W}$ is a relation of temporal precedence

$\mathrm{FOHL}_{\mathrm{L}, \lambda}^{\mathrm{P}, \mathrm{F}}$ semantics

Definition

An FOHL ${ }_{L}^{\mathrm{P}, \mathcal{F}} \mathrm{F}$ model \mathcal{M} is a tuple $\langle\mathscr{W}, \prec, \mathscr{D}, \mathscr{F}\rangle$, where:

- $\mathscr{W} \neq \emptyset$ is a temporal domain (domain of time instances)
- $\prec \subseteq \mathscr{W} \times \mathscr{W}$ is a relation of temporal precedence
- \mathscr{D} is an object domain

$\mathrm{FOHL}_{\mathrm{L}, \mathrm{j}}^{\mathrm{P}, \mathrm{F}}$ semantics

Definition

An FOHL ${ }_{l, \lambda}^{\mathrm{P}, \mathcal{F}}$ model \mathcal{M} is a tuple $\langle\mathscr{W}, \prec, \mathscr{D}, \mathscr{F}\rangle$, where:

- $\mathscr{W} \neq \emptyset$ is a temporal domain (domain of time instances)
- $\prec \subseteq \mathscr{W} \times \mathscr{W}$ is a relation of temporal precedence
- \mathscr{D} is an object domain
- \mathscr{F} is an interpretation function, where:
- for each n-ary predicate P and $w \in \mathscr{W}$. $\mathscr{F}(P, w) \subseteq \mathscr{D}^{n}$
- for each object constant $i, \mathscr{F}(i) \in \mathscr{D}$
- for each nominal $\boldsymbol{i}, \mathscr{F}(\boldsymbol{i}) \in \mathscr{W}$.

$\mathrm{FOHL}_{\mathrm{L}, \mathrm{\lambda}}^{\mathrm{P}, \mathrm{F}}$ semantics

Definition

An FOHL ${ }_{l, \lambda}^{\mathrm{P}, \mathrm{F}}$ model \mathcal{M} is a tuple $\langle\mathscr{W}, \prec, \mathscr{D}, \mathscr{F}\rangle$, where:

- $\mathscr{W} \neq \emptyset$ is a temporal domain (domain of time instances)
- $\prec \subseteq \mathscr{W} \times \mathscr{W}$ is a relation of temporal precedence
- \mathscr{D} is an object domain
- \mathscr{F} is an interpretation function, where:
- for each n-ary predicate P and $w \in \mathscr{W}$.

$$
\mathscr{f}(P, w) \subseteq \mathscr{D}^{n}
$$

- for each object constant $i, \mathscr{F}(i) \in \mathscr{D}$
- for each nominal $i, \mathscr{F}(i) \in \mathscr{W}$.

An $\mathrm{FOH}_{l, \lambda}^{\mathrm{P}, \mathrm{F}}$ assignment \mathscr{A} is a function such that:

- for each object variable $x, \mathscr{A}(x) \in \mathscr{D}$
- for each state variable $\boldsymbol{x}, \mathscr{A}(\boldsymbol{x}) \in \mathscr{W}$.

FOHL

Below, we provide selected satisfaction conditions for $\mathrm{FOHL}_{\iota, \lambda}^{P, F}$ formulas:

$\mathrm{FOHL}_{\imath, \lambda}^{\mathrm{P}, \mathrm{F}}$ satisfaction conditions

Below, we provide selected satisfaction conditions for $\mathrm{FOHL}_{\imath, \lambda}^{P,{ }_{\mathrm{P}}}$ formulas:

$$
\begin{aligned}
M, w, \mathscr{A} \models \lambda x \varphi(t) \quad \text { iff } \quad & M, w, \mathscr{A}[x \mapsto a] \\
& \text { and } a=\mathscr{J}_{\mathscr{A}}(t)^{*}
\end{aligned}
$$

[^5]
$\mathrm{FOHL}_{\imath, \lambda}^{\mathrm{P}, \mathrm{F}}$ satisfaction conditions

Below, we provide selected satisfaction conditions for FOHL ${ }_{l, \lambda}^{\mathrm{P}, \mathrm{F}}$ formulas:

$$
\mathcal{M , w , \mathscr { A } \vDash \lambda x \varphi (t) \quad \text { iff } \begin{array} { l }
{ M , w , \mathcal { A l } [x \mapsto a] } \\
{ } \\
{ } \\
{ \text { and } a = \mathcal { J } _ { \mathscr { A l } } (t) ^ { * } }
\end{array} = \varphi}
$$

$\mathcal{M}, w, \mathscr{A} \models \lambda x \varphi(\imath y \psi)$ iff there exists $a \in \mathscr{D}$ such that $M, w, \mathcal{A}[y \mapsto a] \models \psi$ and $M, w, A[x \mapsto a] \vDash$ φ, and for any $a^{\prime} \in \mathscr{D}$, if $M, w, A\left[y \mapsto a^{\prime}\right] \models \psi$, then $a^{\prime}=a$

[^6]
FOHL

Below, we provide selected satisfaction conditions for $\mathrm{FOHL}_{\iota, \lambda}^{P, F}$ formulas:

$$
\begin{aligned}
M, w, \mathscr{A} \models \lambda x \varphi(t) \quad \text { iff } & M, w, \mathscr{A}[x \mapsto a] \models \varphi \\
& \text { and } a=\mathscr{J}_{\mathscr{A}}(t)^{*}
\end{aligned}
$$

$M, w, \mathscr{A} \models \lambda x \varphi(\imath y \psi)$ iff there exists $a \in \mathscr{D}$ such that $M, w, \mathscr{A}[y \mapsto o] \models \psi$ and $M, w, \mathscr{A}[x \quad \mapsto \quad a] \quad=$ φ, and for any $a^{\prime} \in \mathscr{D}$, if $M, w, \mathcal{A}\left[y \mapsto a^{\prime}\right] \models \psi$, then $a^{\prime}=0$

$$
\begin{aligned}
\mathcal{M}, w, \mathcal{A} \models \mathfrak{x} \varphi \text { iff } & \mathcal{M , w , \mathcal { A } [\boldsymbol { x } \mapsto} \boldsymbol{w}] \vDash \varphi \\
& \text { and for any } v \in \mathscr{W}, \text { if } \\
& M, v, \mathcal{A}[\boldsymbol{x} \mapsto v] \models \varphi, \text { then } \\
& v=w .
\end{aligned}
$$

Example

Let's consider the following $\mathrm{FOHL}_{\stackrel{i}{ }, \lambda}^{\mathrm{P}, \mathrm{F}}$ model:

Example

Let's consider the following $\mathrm{FOHL}_{\imath, \lambda}^{\mathrm{P}, \mathrm{F}}$ model:

and an assigment \mathscr{A} which maps all object variables to a_{1} and all state variables to w_{0}.

Example (cont'd)

We can make the following observations:

- the formula $\lambda x B(x)($ ly $K(y))$ ("The present king of France is bald.") is satisfied at time instances w_{1} and w_{4} by, respectively, a_{1} and a_{2}

Example (cont'd)

We can make the following observations:

- the formula $\lambda x B(x)(\operatorname{ly} K(y))$ ("The present king of France is bald.") is satisfied at time instances w_{1} and w_{4} by, respectively, a_{1} and a_{2}
- the formula $\neg \lambda x B(x)($ ıg $K(y))$ ("It is not the case that the present king of France is bald.") holds at the remaining time instances

Example (cont'd)

We can make the following observations:

- the formula $\lambda x B(x)($ ly $K(y))$ ("The present king of France is bald.") is satisfied at time instances w_{1} and w_{4} by, respectively, a_{1} and a_{2}
- the formula $\neg \lambda x B(x)($ เy $K(y)$) ("It is not the case that the present king of France is bald.") holds at the remaining time instances
- at w_{0} the formula $\lambda x \neg B(x)(เ y K(y))$ ("The present king of France is not bald.") is true, whereas at w_{2} and w_{3} it is false

Example (cont'd)

We can make the following observations:

- the formula $\lambda x B(x)(\operatorname{ly} K(y))$ ("The present king of France is bald.") is satisfied at time instances w_{1} and w_{4} by, respectively, a_{1} and a_{2}
- the formula $\neg \lambda x B(x)($ เy $K(y)$) ("It is not the case that the present king of France is bald.") holds at the remaining time instances
- at w_{0} the formula $\lambda x \neg B(x)(เ y K(y))$ ("The present king of France is not bald.") is true, whereas at w_{2} and w_{3} it is false
- at w_{0} and w_{3} the formula $\mathrm{F} \lambda x B(x)($ เy $K(y))$ ("A \dagger some point in the future the then-present king of France will be bald") holds, whereas at w_{2} it fails to hold.

TABLEAU SYSTEM

Tableu rules

We propose an internalised tableau system for $\mathrm{FOHL}_{\iota, \lambda}^{\mathrm{P}, \mathrm{F}}$, abbreviated as $\mathrm{TC}_{\text {FOHLL } \mathrm{P}, \mathrm{F}, \mathrm{A}}$
Below, we only present rules specific for $F O H L_{l, \lambda}^{\mathrm{P}, \mathrm{F}}$. For the remaining rules see, e.g., the work of Bolander and Blackburn [3].

Quantifier rules

$$
(\exists){\frac{@_{i} \exists x \varphi}{@_{i} \varphi[x / a]}}_{*} \quad(\neg \exists) \frac{\neg @_{i} \exists x \varphi}{\neg @_{i} \varphi[x / b]}
$$

Nominal rules

$$
\text { (eq) } \frac{@_{i} b=b^{\prime}}{b=b^{\prime}} \quad(\neg \mathrm{eq}) \frac{\neg \varrho_{i} b=b^{\prime}}{b \neq b^{\prime}}
$$

* a is a fresh parameter (free object variable).
${ }^{* *}$ each of b, b^{\prime} is a parameter or an object constant occurring on the branch.

Tableau rules

ı object rules

$$
\begin{aligned}
& @_{i} \lambda x \psi(เ y \varphi) \\
& @_{i} \varphi[y / b] \\
& \left(\iota_{1}^{\circ}\right) \frac{@_{i} \lambda x \psi(\iota y \varphi)}{@_{i} \varphi[y / a]} \\
& \left(\iota_{2}^{0}\right) \frac{@_{i} \varphi\left[y / b^{\prime}\right]_{* *}}{b=b^{\prime}} \\
& \bigotimes_{i} \psi[x / a] \\
& \left(\neg \iota^{0}\right) \frac{\neg \bigotimes_{i} \lambda x \psi(เ y \varphi)}{\neg @_{i} \psi[x / b]\left|\neg \bigotimes_{i} \varphi[y / b]\right| \bigotimes_{i} \varphi[y / a]}{ }^{*, * *} \\
& a \neq b
\end{aligned}
$$

[^7]
Tableau rules

ı temporal rules

$$
\begin{aligned}
& \left(\iota_{1}^{\dagger}\right) \frac{\varrho_{i}\lfloor x \varphi}{@_{i} \varphi[\boldsymbol{x} / \boldsymbol{i}]} \quad\left(\iota_{2}^{\dagger}\right) \frac{@_{i^{\prime}} \varphi\left[\boldsymbol{x} \varphi i^{\prime}\right]}{\bigotimes_{i} \boldsymbol{i}^{\prime}} \\
& \left(\neg \iota^{\dagger}\right) \frac{\neg \bigotimes_{i} \downharpoonright \boldsymbol{x} \varphi}{\neg @_{i} \varphi[\boldsymbol{x} / \boldsymbol{i}] \mid @_{j} \varphi[\boldsymbol{x} / \boldsymbol{j}]}{ }^{*} \\
& \neg @_{i} j
\end{aligned}
$$

* j is a fresh nominal.
** i^{\prime} is a nominal occurring on the branch.

Tableau rules

λ rules

$$
(\lambda) \frac{\bigotimes_{i} \lambda x \psi(b)}{\bigotimes_{i} \psi[x / b]} \quad(\neg \lambda) \frac{\neg \bigotimes_{i} \lambda x \psi(b)}{\neg \bigotimes_{i} \psi[x / b]}
$$

Other rules

$$
\text { (ref) } \frac{\bar{b}^{a}=b}{*} \quad \text { (RR) } \frac{\varphi=b^{\prime}}{\varphi\left[b / / b^{\prime}\right]} \quad \text { (NED) } \overline{a=a}
$$

* b is a parameter or an object constant occurring on the branch.
${ }^{* *} \varphi\left[b / / b^{\prime}\right]$ is a formula φ in which some occurrences of b were replaced by occurrences of a^{\prime}.
${ }^{* * *} a$ is a fresh parameter. The rule can be applied at most once in case:
- we make a non-empty domain assumption
- no other rules are applicable and there are neither parameters nor object constants on the branch.

Example

Let's consider the following argument:

Example

Let's consider the following argument:

1. At the year of their wedding Tricia and John moved to London.

Example

Let's consider the following argument:

1. At the year of their wedding Tricia and John moved to London.
2. The wedding day of Tricia and John and Brexit happened at the same year.

Example

Let's consider the following argument:

1. At the year of their wedding Tricia and John moved to London.
2. The wedding day of Tricia and John and Brexit happened at the same year.

Hence they moved to London at the year of Brexit.

Example

Let's consider the following argument:

1. At the year of their wedding Tricia and John moved to London.
2. The wedding day of Tricia and John and Brexit happened at the same year.

Hence they moved to London at the year of Brexit.

It may be formalised in a simplified form (avoiding details not relevant for the validity of this example) in the following way:
$@_{เ x W(t, j)} M(t, \dot{j}),, \quad @_{เ x W(t, j)} \mathfrak{l y} B \quad \vdash \quad @_{เ y B} M(t, \dot{j}).$,

Example (cont'd)

Below we present the proof of correctness of the above argument:

Example (cont'd)

Below we present the proof of correctness of the above argument:

$$
\begin{aligned}
& \text { 1. } \quad @_{i_{1}} @_{b x W(t, j)} M(t, \dot{j},) \\
& \text { 2. } @_{i_{1}} @_{b x W(t, j)} y B \\
& \text { 3. } \neg @_{i_{1}} @_{t y B} M(t, \dot{j},)
\end{aligned}
$$

Example (cont'd)

Below we present the proof of correctness of the above argument:

$$
\text { 1. } \begin{gathered}
@_{i_{1}} @_{เ x W(t, j)} M(t, j,) \\
\text { 2. } @_{i_{1}} @_{เ x W(t, j)} y B \\
\text { 3. } \neg @_{i_{1}} @_{เ y B} M(t, j,) \\
\mid\left(@_{t^{\dagger}}\right): 2 \\
\text { 4. } @_{i_{2} เ x} W(t, j) \\
\text { 5. } @_{i_{2}} เ y B
\end{gathered}
$$

Example (cont'd)

Below we present the proof of correctness of the above argument:

$$
\begin{aligned}
& \text { 1. } @_{i_{1}} @_{\llcorner x W(t, j)} M(t, \dot{j},) \\
& \text { 2. } @_{i_{1}} @_{\llcorner x W(t, j)} \boldsymbol{y} B \\
& \text { 3. } \neg \bigotimes_{i_{1}} @_{\text {ty } B} M(t, j,) \\
& \text { | (@ } \left.{ }^{\dagger}\right): 2 \\
& \text { 4. } \bigotimes_{i_{2}} \mathfrak{x} W(t, j) \\
& \text { 5. } \bigotimes_{i_{2}} \operatorname{ly} B \\
& \text { | (@し }{ }^{\dagger} \text {): } 1 \\
& \text { 6. } \bigotimes_{i_{3}} \imath \boldsymbol{x} W(t, j) \\
& \text { 7. } @_{i_{3}} M(t, j,)
\end{aligned}
$$

Example (cont'd)

Below we present the proof of correctness of the above argument:

$$
\begin{gathered}
\text { 1. } @_{i_{1}} @_{เ x} W(t, j) M(t, j,) \\
\text { 2. } @_{i_{1}} @_{\iota x} W(t, j) \imath y B \\
\text { 3. } \neg @_{i_{1}} @_{\iota y B} M(t, j,) \\
\mid\left(@_{\iota^{\dagger}}\right): 2 \\
\text { 4. } @_{i_{2}} เ x W(t, j) \\
\text { 5. } @_{i_{2}} \iota y B \\
\mid\left(@_{\iota}^{\dagger}\right): 1 \\
\text { 6. } @_{i_{3}} \imath x W(t, j) \\
\text { 7. } @_{i_{3}} M(t, j,)
\end{gathered}
$$

Example (cont'd)

$$
\text { 8.1. } \neg \bigotimes_{i_{3}} \text { ty } B \quad \text { 8.2. } \neg \bigotimes_{i_{3}} M(t, \dot{j},)
$$

Example (cont'd)

$$
\begin{aligned}
& \text { | (} \perp \text {): 7, } 8.2 \\
& \perp
\end{aligned}
$$

Example (cont'd)

$$
\begin{aligned}
& \left./\left(\neg \ddot{\mathrm{Q}}^{+}\right)^{+}\right): 3 \\
& \text { 8.1. } \neg \bigotimes_{i_{3}} \text { ty } B \quad \text { 8.2. } \neg \bigotimes_{i_{3}} M(t, \dot{\mathcal{j}},) \\
& \text { | (} t_{1}^{\dagger} \text {): } 6 \\
& \text { 9.1. } @_{i_{3}} W(t, j) \\
& \mid(\perp): 7,8.2 \\
& \perp
\end{aligned}
$$

Example (cont'd)

$$
\begin{aligned}
& /\left(\neg \ddot{Q}_{\iota^{+}}^{+}\right): 3 \\
& \text { 8.1. } \neg \bigotimes_{i_{3}} \mathfrak{y} B \quad \text { 8.2. } \neg \bigotimes_{i_{3}} M(t, \dot{\mathcal{j}},) \\
& 1\left(\iota_{1}^{\dagger}\right): 6 \\
& \text { 9.1. } @_{i_{3}} W(t, j) \\
& \text { I }\left(t_{2}^{t}\right): 4,9.1 \\
& \text { 10.1. } @_{i_{2}} \boldsymbol{i}_{3}
\end{aligned}
$$

Example (cont'd)

$$
\begin{aligned}
& \left./\left(\neg \ddot{\iota^{+}}\right)^{\dot{+}}\right) 3 \\
& \text { 8.1. } \neg \mathfrak{@}_{\boldsymbol{i}_{3}} \boldsymbol{y} B \quad \text { 8.2. } \neg \mathfrak{@}_{i_{3}} M(t, \dot{j},) \\
& \text { I }\left(t_{1}^{\dagger}\right): 6 \\
& \text { 9.1. } @_{i_{3}} W(t, j) \\
& \text { I }\left(t_{2}^{t}\right): 4,9.1 \\
& \text { 10.1. } \text { © }_{i_{2}} \boldsymbol{i}_{3} \\
& \text { | (nom): 5, } 10.1 \\
& \text { 11.1. } \bigotimes_{\boldsymbol{i}_{3}} \boldsymbol{y} \boldsymbol{y} B
\end{aligned}
$$

Example (cont'd)

$$
\begin{aligned}
& /\left(\neg \ddot{\iota_{1}{ }^{+}}\right): 3 \\
& \text { 8.1. } \neg \mathfrak{@}_{\boldsymbol{i}_{3}} \mathfrak{y} B \quad \text { 8.2. } \neg \mathfrak{@}_{i_{3}} M(t, \dot{j},) \\
& \text { I }\left(t_{1}^{\dagger}\right): 6 \\
& \text { 9.1. } @_{i_{3}} W(t, j) \\
& \text { I }\left(t_{2}^{t}\right): 4,9.1 \\
& \text { 10.1. } @_{i_{2}} \boldsymbol{i}_{3} \\
& \text { | (nom): 5, } 10.1 \\
& \text { 11.1. } \bigotimes_{\boldsymbol{i}_{3} \tau \boldsymbol{y} B} \\
& \text { | }(\perp): 8.1,11.1 \\
& \perp
\end{aligned}
$$

Soundness and completeness

Theorem

The tableau system $\mathrm{TC}_{\text {FOHL }}{ }^{\mathrm{PF}, \mathrm{F}}$, is sound and complete with respect to the semantics of $\mathrm{FOHL}_{\mathrm{L}, \lambda}^{\mathrm{P}, \mathrm{F}}$.

Proof: [6].

Interpolation

Preliminaries

To prove interpolation for $\mathrm{FOHL}_{\iota, \lambda}^{P, F}$ we need several auxiliary results.

Preliminaries

To prove interpolation for $\mathrm{FOHL}_{\iota, \lambda}^{P, F}$ we need several auxiliary results.

Proposition

The rule: (cut) $\overline{\varphi \mid \neg \varphi}$ is admissible in the tableau system TC FOHL $_{L, \lambda, \lambda}^{\text {P,F }}$.

Preliminaries

To prove interpolation for $\mathrm{FOHL}_{\mathrm{l}, \lambda}^{\mathrm{P}, \mathrm{F}}$ we need several auxiliary results.

Proposition

The rule: (cut) $\overline{\varphi \mid \neg \varphi}$ is admissible in the tableau system $\mathrm{TC}_{\text {FOHL } L, i, \lambda}^{\text {P.F. }}$
 following rule transformations:

$$
\begin{aligned}
& \left(\iota_{2}^{\dagger}\right) \rightsquigarrow\left(\iota_{2}^{t^{\prime}}\right) \frac{\varrho_{i}\lfloor\boldsymbol{x} \varphi}{\neg \varrho_{i^{\prime}} \varphi\left[\boldsymbol{x} / \boldsymbol{i}^{\prime}\right] \mid \varrho_{i} i^{\prime}}
\end{aligned}
$$

Proposition

Proof: We prove the proposition by showing that $\left(t_{2}^{\circ}\right)$ and $\left(\iota_{2}^{\circ}\right)$ as well as ($\left(t_{2}^{\dagger}\right)$ and $\left(t_{2}^{\dagger^{\prime}}\right)$ are interderivable.
For the former pair consider the following derivation trees:

$$
\begin{gathered}
@_{i}(\lambda x \psi)(เ y \varphi) \\
/(\operatorname{cut} \lambda \\
@_{i} \varphi[y / b] \neg @_{i} \varphi[y / b] \\
/(\mathrm{cut} \lambda \\
@_{i} \varphi\left[y / b^{\prime}\right] \neg \bigotimes_{i} \varphi\left[y / b^{\prime}\right] \\
\mid\left(\imath_{2}^{\circ}\right) \\
b=b^{\prime}
\end{gathered}
$$

The interderivability of the other pair of rules can be shown analogously.

Finding interpolant

Suppose that we have an implication $\varphi \rightarrow \psi$ that is valid in $\mathrm{FOHL}_{\mathrm{L}, \lambda}^{\mathrm{P}, \mathrm{F}}$.

Finding interpolant

Suppose that we have an implication $\varphi \rightarrow \psi$ that is valid in $\mathrm{FOHL}_{\mathrm{L}, \lambda}^{\mathrm{P}, \mathrm{F}}$.
We can use $\mathrm{TC}_{\text {FOHL }}^{\prime} \mathrm{P}, \mathrm{p}, \lambda$, to find an interpolant for $\varphi \rightarrow \psi$.

Finding interpolant

Suppose that we have an implication $\varphi \rightarrow \psi$ that is valid in $\mathrm{FOHL}_{\iota, \lambda}^{\mathrm{P}, \mathrm{F}}$.
We can use $\mathrm{TC}_{\text {FOHL }}^{\prime} \mathrm{P}, \mathrm{F}, \lambda /$ to find an interpolant for $\varphi \rightarrow \psi$.

1. From the closed $\mathrm{TC}_{\mathrm{FOH}}^{\stackrel{\mathrm{l}}{\mathrm{l}, \lambda}} \mathrm{f}$, tableau for $\neg \bigotimes_{i}(\varphi \rightarrow \psi)$, where i does not occur in $\varphi \rightarrow \psi$, we delete the root and replace $@_{i} \varphi$ with $L @_{i} \varphi$ and $@_{i} \neg \psi$ with $R @_{i} \neg \psi$.

Finding interpolant

Suppose that we have an implication $\varphi \rightarrow \psi$ that is valid in $\mathrm{FOHL}_{\iota, \lambda}^{\mathrm{P}, \mathrm{F}}$.
We can use $\mathrm{TC}_{\text {FOHL }}^{\prime} \mathrm{P}, \mathrm{F}, \lambda /$ to find an interpolant for $\varphi \rightarrow \psi$.

1. From the closed $\mathrm{TC}_{\mathrm{FOHL}}^{\prime} \mathrm{P}, \mathrm{F}, \mathrm{F}$ tableau for $\neg \bigotimes_{i}(\varphi \rightarrow \psi)$, where i does not occur in $\varphi \rightarrow \psi$, we delete the root and replace $@_{i} \varphi$ with $L @_{i} \varphi$ and $@_{i} \neg \psi$ with $R @_{i} \neg \psi$.
2. Going downwards in the tableau we assign L and R to each formula so that whenever the premise of a rule is signed with X, for $X \in\{L, R\}$, then the conclusions of the rule are signed with X .

Finding interpolant

Suppose that we have an implication $\varphi \rightarrow \psi$ that is valid in $\mathrm{FOHL}_{\mathrm{e}, \lambda}^{\mathrm{P}, \mathrm{F}}$.

We can use $\mathrm{TC}_{\text {FOHL }}^{\prime} \mathrm{P}, \mathrm{F}, \lambda /$ to find an interpolant for $\varphi \rightarrow \psi$.

1. From the closed $\mathrm{TC}_{\mathrm{FOHL}}^{\prime} \mathrm{P}, \mathrm{F}, \mathrm{F}$ tableau for $\neg \bigotimes_{i}(\varphi \rightarrow \psi)$, where i does not occur in $\varphi \rightarrow \psi$, we delete the root and replace $@_{i} \varphi$ with $L @_{i} \varphi$ and $@_{i} \neg \psi$ with $R @_{i} \neg \psi$.
2. Going downwards in the tableau we assign L and R to each formula so that whenever the premise of a rule is signed with X, for $X \in\{L, R\}$, then the conclusions of the rule are signed with X .
3. Going upwards in the tableau we assign an interpolant to a formula, each time based on the principle formulated for the applied rule $[4,2]$.

We build our interpolant-finding technique upon the methods provided by Fitting [4] and Blackburn and Marx [2].

We build our interpolant-finding technique upon the methods provided by Fitting [4] and Blackburn and Marx [2].

Example

($L \neg \iota^{\circ}$) If X_{1} is an interpolant for
$\Gamma \cup\left\{\mathrm{L} \neg \mathfrak{@}_{i} \psi[y / \mathrm{e}]\right\}, \chi_{2}$ is an interpolant for $\Gamma \cup\left\{\mathrm{L} \neg \complement_{i} \varphi[y / \mathrm{G}]\right\}$ and χ_{3} is an interpolant for $\Gamma \cup\left\{\mathrm{L} @_{i} \varphi[y / a], \mathrm{L} a \neq b\right\}$, then $\forall x\left(\chi_{1} \vee \chi_{2} \vee x_{3}\right)[\varepsilon / x]$ is an interpolant for $\Gamma \cup\left\{\mathrm{L} \neg \bigodot_{i} \lambda x \psi(\llcorner y \varphi)\}\right.$.
$\left(R \neg \iota^{\circ}\right)$ If χ_{1} is an interpolant for
$\Gamma \cup\left\{R \neg \bigotimes_{i} \psi[y / \mathcal{C}]\right\}, x_{2}$ is an interpolant for $\Gamma \cup\left\{R \neg \bigodot_{i} \varphi[y / 6]\right\}$ and χ_{3} is an interpolant for $\Gamma \cup\left\{R @_{i} \varphi[y / a], R a \neq b\right\}$, then $\exists x\left(\chi_{1} \wedge \chi_{2} \wedge \chi_{3}\right)[\theta / x]$ is an interpolant for $\Gamma \cup\left\{R \neg \mathfrak{@}_{i} \lambda x \psi(\iota y \varphi)\right\}$.

Theorem

If $\varphi \rightarrow \psi$ is FOHL $_{\llcorner, \lambda}^{\mathrm{P}, \mathrm{F}}$-valid, then there exists a formula θ such that $\varphi \rightarrow \theta$ and $\theta \rightarrow \psi$ are also $\mathrm{FOHL}_{\mathrm{l}, \lambda}^{\mathrm{P}, \mathrm{F}}$-valid and all non-logical expressions occurring in θ occur in both φ and ψ.

Proof: [6].

Beth definability

An immediate consequence of Craig's interpolation theorem for $\mathrm{FOHL}_{\iota, \lambda}^{\mathrm{L}, \mathrm{F}}$ is Beth's definability theorem:

Beth definability

An immediate consequence of Craig's interpolation theorem for $\mathrm{FOHL}_{\iota, \lambda}^{\mathrm{L}, \mathrm{F}}$ is Beth's definability theorem:

Theorem

> Let Th be a $\mathrm{FOHL}_{, ~ L, \lambda}^{\mathrm{P}, \mathrm{F}}$-theory and let ξ be a non-logical expression (that is, a predicate or constant) occurring in Th. Then ξ is implicitly definable under Th if and only if it is explicitly definable under Th.

Constant elimination

The Beth definability property allows us to check if, for a given theory Th and constant c occurring in Th, c is dispensable under Th.

Constant elimination

The Beth definability property allows us to check if, for a given theory Th and constant c occurring in Th, c is dispensable under Th.

The following two conditions are equivalent:

$$
\begin{aligned}
& \text { 1. } \mathrm{Th} \cup \mathrm{Th}^{\prime} \models c=c^{\prime} \\
& \text { 2. } \exists \psi[\operatorname{Th} \models \forall x, \bar{y}(x=c \leftrightarrow \psi(x, \bar{y}))]
\end{aligned}
$$

Th^{\prime} : the theory Th with c^{\prime} instead of c, where c^{\prime} is fresh ψ : an $\mathrm{FOHL}_{\stackrel{\rightharpoonup}{l}, \lambda}^{\mathrm{P}, \mathrm{F}}$-formula where c does not occur

Constant elimination

The Beth definability property allows us to check if, for a given theory Th and constant c occurring in Th, c is dispensable under Th.

The following two conditions are equivalent:

$$
\begin{aligned}
& \text { 1. } \mathrm{Th} \cup \mathrm{Th}^{\prime} \models c=c^{\prime} \\
& \text { 2. } \exists \psi[\operatorname{Th} \models \forall x, \bar{y}(x=c \leftrightarrow \psi(x, \bar{y}))]
\end{aligned}
$$

Th^{\prime} : the theory Th with c^{\prime} instead of c, where c^{\prime} is fresh ψ : an $\mathrm{FOHL}_{\stackrel{\rightharpoonup}{l}, \lambda}^{\mathrm{P}, \mathrm{F}}$-formula where c does not occur

To decide whether ψ exists, it thus suffices to check with $\mathrm{TC}_{\text {FOHL }}^{\mathrm{L}, \mathrm{P}, \mathrm{F}}$ if the formula

$$
\bigwedge\left(T h \cup T h^{\prime}\right) \wedge c \neq c^{\prime}
$$

is satisfiable [1].

Example

Consider a theory Th which provides characteristics of two individuals: Charles and Dana.

1. Charles is a politician.
2. Dana is a politician.
3. No one else is a politician.

Formally:

$$
\text { Th }=\{P(c), \quad P(d), \quad \forall x(P(x) \rightarrow(x=c \vee x=d))\}
$$

(+ all the formulas logically entailed by the above ones.)

Example (cont'd)

It is easy to check that d is implicitly definable in Th:

Example (cont'd)

It is easy to check that d is implicitly definable in Th:

$$
\begin{align*}
& @_{i} \forall x(P(x) \rightarrow(x=c \vee x=d)) \\
& \mathfrak{@}_{i} \forall x\left(P(x) \rightarrow\left(x=c \vee x=d^{\prime}\right)\right) \\
& @_{i} P(c) \\
& \mathfrak{@}_{i} P(d) \\
& \mathfrak{@}_{i} P\left(d^{\prime}\right) \\
& \neg \mathfrak{C}_{i} d \neq d^{\prime} \\
& 12 \times(\forall): x / d, x / d^{\prime} \\
& @_{i} P\left(d^{\prime}\right) \rightarrow\left(d^{\prime}=c \vee d^{\prime}=d\right) \\
& @_{i} P(d) \rightarrow\left(d=c \vee d=d^{\prime}\right) \\
& \neg \mathfrak{@}_{i} P\left(d^{\prime}\right) \quad(\vee) \bigotimes_{i} d^{\prime}=c \vee d^{\prime}=d \\
& (\perp) \mid \\
& \perp \\
& \neg @_{i} P(d) \xrightarrow[@_{i} d=c \vee d=d^{\prime} \stackrel{(\perp)}{\perp}(\perp)]{\perp} \\
& \\
& (\perp) \mid
\end{align*}
$$

Since Th does not specify whether Charles and Dana are the same person, the explicit definition of d is the following:

$$
\psi(x):=P(x) \wedge(x \neq c \vee \neg \exists y(y \neq x \wedge P(y))),
$$

saying that either Dana is a politician distinct from Charles or the only politician that exists. Thus, d can be replaced with

$$
\mathfrak{x}(\psi(x))
$$

in every syntactically allowed context.

Since Th does not specify whether Charles and Dana are the same person, the explicit definition of d is the following:

$$
\psi(x):=P(x) \wedge(x \neq c \vee \neg \exists y(y \neq x \wedge P(y))),
$$

saying that either Dana is a politician distinct from Charles or the only politician that exists. Thus, d can be replaced with

$$
\mathfrak{x}(\psi(x))
$$

in every syntactically allowed context.

1. If we remove $P(c)$ from Th, d will still be explicitly definable under Th with $\psi(x)$.

Since Th does not specify whether Charles and Dana are the same person, the explicit definition of d is the following:

$$
\psi(x):=P(x) \wedge(x \neq c \vee \neg \exists y(y \neq x \wedge P(y))),
$$

saying that either Dana is a politician distinct from Charles or the only politician that exists. Thus, d can be replaced with

$$
\mathfrak{x}(\psi(x))
$$

in every syntactically allowed context.

1. If we remove $P(c)$ from Th, d will still be explicitly definable under Th with $\psi(x)$.
2. If we remove $P(d)$ from Th, d will no longer be explicitly definable under Th .

References

[1] Artale, A., Mazzullo, A., Ozaki, A., \& Wolter, F. (2021). On free description logics with definite descriptions. [In:] Proc. of KR 2021, pp. 63-73.
[2] Blackburn, P. \& Marx, M. (2003). Constructive interpolation in hybrid logic. Journal of Symbolic Logic, 68(2), 463-480.
[3] Bolander T. \& Blackburn, P. (2009). Terminating tableau calculi for hybrid Logics extending K. Electronic Notes in Theoretical Computer Science 231, 21-39.
[4] Fitting, M. (1996). First-order logic and automated theorem proving. New York: Springer-Verlag.
[5] Indrzejczak, A. \& Zawidzki, M. (2023). When iota meets lambda. Synthese 201, article number 71.
[6] Indrzejczak, A. \& Zawidzki, M. (2023). Definite descriptions and hybrid tense logic. Synthese 202, article number 98.

Thank You.

Funded by the European Union (ERC, ExtenDD, project number: 101054714). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them.

Established by the European Commission

[^0]: * Pun unintended.

[^1]: * Pun unintended.

[^2]: * Pun unintended.

[^3]: * Pun unintended.

[^4]: * Pun unintended.

[^5]: * t is either an object variable or an object constant.

[^6]: * t is either an object variable or an object constant.

[^7]: * a is a fresh parameter.
 ** each of b, b^{\prime} is a parameter or an object constant occurring on the branch.

