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What will be discussed in this talk?

• The logic in question will be first-order hybrid temporal
logic, abbreviated as FOHLP,Fι,λ , with two types of
definite descriptions (DD) involved:

– standard object-level DD
– temporal DD.

• The underlying approach to DD will be Russell’s classic
DD theory, but to avoid difficulties with scope
occurring therein we will introduce the lambda
operator to the language.

• We will present a sound and complete tableau
system for FOHLP,Fι,λ .

• Finally, using the tableau system we will show that
FOHLP,Fι,λ enjoys Craig’s interpolation property.
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UNDERLYING THEORY OF
DEFINITE DESCRIPTIONS
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Russell’s eliminativist approach
Our starting point is Russell’s approach to DDs
characterised by the following formula:

ψ(ιxφ(x))
def
= ∃y(∀x(φ(x) ↔ x= y) ∧ψ(y)). (R)

What disadvantages does this approach carry?

1. If ιxφ(x) is improper, ψ(ιxφ(x)) is automatically false.
2. If ψ is valid and φ is inconsistent, we obtain a

contradiction.

Example

ψ(y) := A(y) → A(y) φ(x) := B(x) ∧ ¬B(x)

[ A
(
ιx( B(x) ∧ ¬B(x) )

)
→ A

(
ιx( B(x) ∧ ¬B(x) )

)
] ↔

∃y[∀x
(
(B(x) ∧ ¬B(x)) ↔ x= y

)
∧
(
A(y) → A(y)

)
]
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Introducing λ

How did we decide to overcome the second
disadvantage?

We introduced the λ-operator to the language and

(a) restricted predication of DDs to predicate abstracts of
the form λxψ,

(b) modified (R) accordingly:

(λxψ)(ιyφ) ↔ ∃x(∀y(φ↔ y = x) ∧ψ). (Rλ)
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Example

Consider the following sentence:
‘The oldest daughter of Anne got married
to some businessman and is the richest
woman in the family (of Anne).’

(S)

Let:
d1 : ‘the oldest daughter of Anne’

ιx(D(x,a) ∧ ∀y(D(y,a) ∧ y ̸= x→ O(x, y)))

d2 : the richest woman in the family

ιx(∀y(F(y,a) ∧W (y) ∧ y ̸= x→ R(x, y)))

Then (S) can be formalised as:(
λx(∃y(B(y) ∧M(x, y)) ∧ (λy(x= y))( d2 ))

)
( d1 )
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FIRST-ORDER
HYBRID TEMPORAL LOGIC
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Hybrid logic

Hybrid logic (HL) is an extension of standard modal logic.
The language of HL is given by the following grammar:

φ := p | i | x | ¬φ | φ ∧φ | ♢φ | @iφ | ↓xφ

where p is a propositional variable, i is a nominal and x is
a state variable.

A model of HL is an extension of Kripke model for standard
modal logic such that each nominal is assigned a
singleton set by the valuation function.

Moreover, we define an assignment as a function
assigning to each state variable a world from the universe
of a model.
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Hybrid logic

Let M= ⟨W,R, V⟩ be a model of HL and let Abe an
assignment. Then we have the following hybrid-specific
satisfaction conditions:

M,A,w |= i iff V(i) = {w}
M,A,w |= x iff A(x) = w

M,A,w |= @iφ iff M,A, v |= φ and V(i) = {v}
M,A,w |= ↓xφ iff M,A[x 7→ w],w |= φ,

where A[x 7→ w] is an assignment identical to Aexcept
that it assigns the world w to x.
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First-order hybrid temporal logic
FOHLP,Fι,λ is a hybrid* of FOL and HL, where the latter is
interpreted temporally.

Terms and formulas of FOHLP,Fι,λ are defined by the following
grammars:

TERM ∋ t ::= x | i | ιxφ(x),

TFOR ∋ t ::= x | i | ιxφ,
FOR ∋ φ ::= ⊥ | P(s1, . . . ,sn) | s1 = s2 | t | ¬φ |

φ ∧φ | Fφ | Pφ | ∃xφ | λxφ(x)(t) | @tφ | ↓xφ**,

where s1, . . . ,sn are terms which are not DDs.

* Pun unintended.

** Hybrid “counterparts” of object terms use the same symbols as the latter, but
are written in bold. And so, e.g., x is an object variable, whereas x is a state
variable, i is an object constant, whereas i is a nominal, etc.
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FOHLP,Fι,λ semantics
Definition

An FOHLP,Fι,λ model M is a tuple ⟨W,≺, D,I⟩, where:

• W ̸= ∅ is a temporal domain (domain of time
instances)

• ≺⊆ W× W is a relation of temporal
precedence

• D is an object domain
• I is an interpretation function, where:

– for each n-ary predicate P and w ∈ W,
I(P,w) ⊆ Dn

– for each object constant i, I(i) ∈ D

– for each nominal i, I(i) ∈ W.

An FOHLP,Fι,λ assignment A is a function such that:
• for each object variable x, A(x) ∈ D

• for each state variable x, A(x) ∈ W.



10/34

FOHLP,Fι,λ semantics
Definition

An FOHLP,Fι,λ model M is a tuple ⟨W,≺, D,I⟩, where:
• W ̸= ∅ is a temporal domain (domain of time
instances)

• ≺⊆ W× W is a relation of temporal
precedence

• D is an object domain
• I is an interpretation function, where:

– for each n-ary predicate P and w ∈ W,
I(P,w) ⊆ Dn

– for each object constant i, I(i) ∈ D

– for each nominal i, I(i) ∈ W.

An FOHLP,Fι,λ assignment A is a function such that:
• for each object variable x, A(x) ∈ D

• for each state variable x, A(x) ∈ W.



10/34

FOHLP,Fι,λ semantics
Definition

An FOHLP,Fι,λ model M is a tuple ⟨W,≺, D,I⟩, where:
• W ̸= ∅ is a temporal domain (domain of time
instances)

• ≺⊆ W× W is a relation of temporal
precedence

• D is an object domain
• I is an interpretation function, where:

– for each n-ary predicate P and w ∈ W,
I(P,w) ⊆ Dn

– for each object constant i, I(i) ∈ D

– for each nominal i, I(i) ∈ W.

An FOHLP,Fι,λ assignment A is a function such that:
• for each object variable x, A(x) ∈ D

• for each state variable x, A(x) ∈ W.



10/34

FOHLP,Fι,λ semantics
Definition

An FOHLP,Fι,λ model M is a tuple ⟨W,≺, D,I⟩, where:
• W ̸= ∅ is a temporal domain (domain of time
instances)

• ≺⊆ W× W is a relation of temporal
precedence

• D is an object domain

• I is an interpretation function, where:
– for each n-ary predicate P and w ∈ W,

I(P,w) ⊆ Dn

– for each object constant i, I(i) ∈ D

– for each nominal i, I(i) ∈ W.

An FOHLP,Fι,λ assignment A is a function such that:
• for each object variable x, A(x) ∈ D

• for each state variable x, A(x) ∈ W.



10/34

FOHLP,Fι,λ semantics
Definition

An FOHLP,Fι,λ model M is a tuple ⟨W,≺, D,I⟩, where:
• W ̸= ∅ is a temporal domain (domain of time
instances)

• ≺⊆ W× W is a relation of temporal
precedence

• D is an object domain
• I is an interpretation function, where:

– for each n-ary predicate P and w ∈ W,
I(P,w) ⊆ Dn

– for each object constant i, I(i) ∈ D

– for each nominal i, I(i) ∈ W.

An FOHLP,Fι,λ assignment A is a function such that:
• for each object variable x, A(x) ∈ D

• for each state variable x, A(x) ∈ W.



10/34

FOHLP,Fι,λ semantics
Definition

An FOHLP,Fι,λ model M is a tuple ⟨W,≺, D,I⟩, where:
• W ̸= ∅ is a temporal domain (domain of time
instances)

• ≺⊆ W× W is a relation of temporal
precedence

• D is an object domain
• I is an interpretation function, where:

– for each n-ary predicate P and w ∈ W,
I(P,w) ⊆ Dn

– for each object constant i, I(i) ∈ D

– for each nominal i, I(i) ∈ W.

An FOHLP,Fι,λ assignment A is a function such that:
• for each object variable x, A(x) ∈ D

• for each state variable x, A(x) ∈ W.



11/34

FOHLP,Fι,λ satisfaction conditions
Below, we provide selected satisfaction conditions for
FOHLP,Fι,λ formulas:

M,w,A |= λxφ(t) iff M,w,A[x 7→ o] |= φ
and o = IA(t)

*

M,w,A |= λxφ(ıyψ) iff there exists o ∈ D such
that M,w,A[y 7→ o] |= ψ

and M,w,A[x 7→ o] |=
φ, and for any o′ ∈ D, if
M,w,A[y 7→ o′] |= ψ, then
o′ = o

M,w,A |= ιxφ iff M,w,A[x 7→ w] |= φ

and for any v ∈ W, if
M, v,A[x 7→ v] |= φ, then
v = w.

* t is either an object variable or an object constant.
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Example

Let’s consider the following FOHLP,Fι,λ model:

o1 o2

w0

o1 o2

w2

o1 o2

w3

o1 o2

w4

o1 o2

w1

object o is the present king of France (K (o))
object o is bald (B(o))

andanassigmentAwhichmapsall object variables
to o1 and all state variables to w0.
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Example (cont’d)

We can make the following observations:
• the formula λxB(x)(ιyK (y)) (“The present king
of France is bald.”) is satisfied at time instances
w1 and w4 by, respectively, o1 and o2

• the formula ¬λxB(x)(ιyK (y)) (“It is not the case
that the present king of France is bald.”) holds
at the remaining time instances

• at w0 the formula λx¬B(x)(ιyK (y)) (“The
present king of France is not bald.”) is true,
whereas at w2 and w3 it is false

• at w0 and w3 the formula FλxB(x)(ιyK (y)) (“At
some point in the future the then-present king
of France will be bald”) holds, whereas at w2 it
fails to hold.
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TABLEAU SYSTEM
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Tableu rules
We propose an internalised tableau system for FOHLP,Fι,λ ,
abbreviated as TCFOHLP,Fι,λ

.

Below, we only present rules specific for FOHLP,Fι,λ . For the
remaining rules see, e.g., the work of Bolander and
Blackburn [3].

Quantifier rules

(∃) @i∃xφ
@iφ[x/a]

* (¬∃) ¬@i∃xφ
¬@iφ[x/b]

**

Nominal rules

(eq) @ib = b′

b = b′
** (¬eq) ¬@ib = b′

b ̸= b′
**

* a is a fresh parameter (free object variable).

** each of b, b′ is a parameter or an object constant occurring on the branch.
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Tableau rules

ι object rules

(ιo1 )
@iλxψ(ιyφ)

@iφ[y/a]
@iψ[x/a]

* (ιo2 )

@iλxψ(ιyφ)
@iφ[y/b]
@iφ[y/b

′]

b = b′
**

(¬ιo) ¬@iλxψ(ιyφ)

¬@iψ[x/b] | ¬@iφ[y/b] | @iφ[y/a]
a ̸= b

*,**

* a is a fresh parameter.

** each of b, b′ is a parameter or an object constant occurring on the branch.
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Tableau rules

ι temporal rules

(ιt1)
@iιxφ

@iφ[x/i]
(ιt2)

@iιxφ

@i′φ[x/i′]

@ii
′

(¬ιt) ¬@iιxφ

¬@iφ[x/i] | @jφ[x/j]
¬@ij

*

(@ιt)
@i@ιxφψ
@jıxφ
@jψ

* (¬@ιt) ¬@i@ιxφψ

¬@i′ιxφ | ¬@i′ψ
**

* j is a fresh nominal.

** i′ is a nominal occurring on the branch.
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Tableau rules

λ rules

(λ)
@iλxψ(b)

@iψ[x/b]
(¬λ) ¬@iλxψ(b)

¬@iψ[x/b]

Other rules

(ref)
b = b

* (RR)
φ(b)
b = b′

φ[b//b′]
** (NED)

a= a
***

* b is a parameter or an object constant occurring on the branch.
** φ[b//b′] is a formula φ in which some occurrences of bwere replaced by
occurrences of b′.
*** a is a fresh parameter. The rule can be applied at most once in case:

• we make a non-empty domain assumption
• no other rules are applicable and there are neither parameters nor object

constants on the branch.
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Example

Let’s consider the following argument:

1. At the year of their wedding Tricia and
John moved to London.

2. The wedding day of Tricia and John
and Brexit happened at the same year.

Hence they moved to London at the year of
Brexit.

It may be formalised in a simplified form (avoiding
details not relevant for the validity of this example)
in the following way:

@ιxW (t,j)M(t,j, ), @ιxW (t,j)ιyB ⊢ @ιyBM(t,j, ).
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Example (cont’d)

Below we present the proof of correctness of the
above argument:

1. @i1@ιxW (t,j)M(t,j, )

2. @i1@ιxW (t,j)ıyB
3. ¬@i1@ιyBM(t,j, )

4. @i2ιxW (t,j)

5. @i2ιyB

6. @i3ıxW (t,j)

7. @i3M(t,j, )
. . .

(@ιt): 2

(@ιt): 1
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Example (cont’d)

· · ·

8.1. ¬@i3ιyB

9.1. @i3W (t,j)

10.1. @i2 i3

11.1. @i3ıyB

⊥

8.2. ¬@i3M(t,j, )

⊥

(¬@ιt): 3

(⊥): 7, 8.2(ιt1): 6

(ιt2): 4, 9.1

(nom): 5, 10.1

(⊥): 8.1, 11.1
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Soundness and completeness

Theorem

The tableau system TCFOHLP,Fι,λ

is sound and complete

with respect to the semantics of FOHLP,Fι,λ .

Proof: [6]. ■
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Interpolation
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Preliminaries
To prove interpolation for FOHLP,Fι,λ we need several
auxiliary results.

Proposition

The rule: (cut)
φ | ¬φ

is admissible in the tableau
system TCFOHLP,Fι,λ

.

Let TC′
FOHLP,Fι,λ

be the tableau system TCFOHLP,Fι,λ

with the
following rule transformations:

(ιo2 ) ⇝ (ιo2
′)

@iλxψ(ιyφ)

¬@iφ[y/b] | ¬@iφ[y/b′] | b = b′

(ιt2) ⇝ (ιt2
′
)

@iιxφ

¬@i′φ[x/i′] | @ii
′
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Proposition

The calculi TCFOHLP,Fι,λ

and TC′
FOHLP,Fι,λ

are equivalent.

Proof: We prove the proposition by showing that (ιo2 ) and
(ιo2

′) as well as (ιt2) and (ιt2
′
) are interderivable.

For the former pair consider the following derivation trees:

@i(λxψ)(ιyφ)

@iφ[y/b] ¬@iφ[y/b]

@iφ[y/b
′] ¬@iφ[y/b

′]

b = b′

(cut)

(cut)

(ıo2 )

@iφ[y/b]
@iφ[y/b

′]
@i(λxψ)(ιyφ)

¬@iφ[y/b]¬@iφ[y/b
′] b = b′

⊥ ⊥

(ıo2
′
)

(⊥) (⊥)

The interderivability of the other pair of rules can be shown
analogously. ■
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Finding interpolant
Suppose that we have an implication φ→ ψ that is valid
in FOHLP,Fι,λ .

We can use TC′
FOHLP,Fι,λ

to find an interpolant for φ→ ψ.

1. From the closed TC′
FOHLP,Fι,λ

tableau for ¬@i(φ→ ψ),
where i does not occur in φ→ ψ, we delete the root
and replace @iφ with L@iφ and @i¬ψ with R@i¬ψ.

2. Going downwards in the tableau we assign L and R to
each formula so that whenever the premise of a rule
is signed with X, for X ∈ {L, R}, then the conclusions of
the rule are signed with X.

3. Going upwards in the tableau we assign an
interpolant to a formula, each time based on the
principle formulated for the applied rule [4, 2].
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We build our interpolant-finding technique upon the
methods provided by Fitting [4] and Blackburn and
Marx [2].

Example

(L¬ιo) If χ1 is an interpolant for
Γ ∪ {L ¬@iψ[y/b]}, χ2 is an interpolant
for Γ ∪ {L ¬@iφ[y/b]} and χ3 is an
interpolant for Γ ∪{L @iφ[y/a], L a ̸= b},
then ∀x(χ1 ∨ χ2 ∨ χ3)[b/x] is an
interpolant for Γ ∪ {L ¬@iλxψ(ιyφ)}.

(R¬ιo) If χ1 is an interpolant for
Γ ∪ {R ¬@iψ[y/b]}, χ2 is an interpolant
for Γ ∪ {R ¬@iφ[y/b]} and χ3 is an
interpolant for Γ ∪{R @iφ[y/a], R a ̸= b},
then ∃x(χ1 ∧ χ2 ∧ χ3)[b/x] is an
interpolant for Γ ∪ {R ¬@iλxψ(ιyφ)}.



27/34

We build our interpolant-finding technique upon the
methods provided by Fitting [4] and Blackburn and
Marx [2].

Example

(L¬ιo) If χ1 is an interpolant for
Γ ∪ {L ¬@iψ[y/b]}, χ2 is an interpolant
for Γ ∪ {L ¬@iφ[y/b]} and χ3 is an
interpolant for Γ ∪{L @iφ[y/a], L a ̸= b},
then ∀x(χ1 ∨ χ2 ∨ χ3)[b/x] is an
interpolant for Γ ∪ {L ¬@iλxψ(ιyφ)}.

(R¬ιo) If χ1 is an interpolant for
Γ ∪ {R ¬@iψ[y/b]}, χ2 is an interpolant
for Γ ∪ {R ¬@iφ[y/b]} and χ3 is an
interpolant for Γ ∪{R @iφ[y/a], R a ̸= b},
then ∃x(χ1 ∧ χ2 ∧ χ3)[b/x] is an
interpolant for Γ ∪ {R ¬@iλxψ(ιyφ)}.



28/34

Theorem

If φ → ψ is FOHLP,Fι,λ -valid, then there exists a formula
θ such that φ → θ and θ → ψ are also FOHLP,Fι,λ -valid
and all non-logical expressions occurring in θ occur
in both φ and ψ.

Proof: [6]. ■
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Beth definability

An immediate consequence of Craig’s interpolation
theorem for FOHLP,Fι,λ is Beth’s definability theorem:

Theorem

Let Th be a FOHLP,Fι,λ -theory and let ξ be a non-logical
expression (that is, a predicate or constant) occur-
ring in Th. Then ξ is implicitly definable under Th if
and only if it is explicitly definable under Th.
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Constant elimination
The Beth definability property allows us to check if, for a
given theory Th and constant c occurring in Th, c is
dispensable under Th.

The following two conditions are equivalent:
1. Th ∪ Th′ |= c= c′

2. ∃ψ
[
Th |= ∀x, y(x= c↔ ψ(x, y) )

]
Th′ : the theory Th with c′ instead of c, where c′ is fresh
ψ : an FOHLP,Fι,λ -formula where c does not occur

To decide whether ψ exists, it thus suffices to check with
TCFOHLP,Fι,λ

if the formula

∧
(Th ∪ Th′) ∧ c ̸= c′

is satisfiable [1].
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Example

Consider a theory Th which provides characteristics
of two individuals: Charles and Dana.
1. Charles is a politician.

2. Dana is a politician.

3. No one else is a politician.
Formally:

Th =
{
P(c), P(d), ∀x(P(x) → (x= c∨x= d))

}
(+ all the formulas logically entailed by the above
ones.)
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Example (cont’d)

It is easy to check that d is implicitly definable in Th:

@i∀x(P(x) → (x = c ∨ x = d))
@i∀x(P(x) → (x = c ∨ x = d′))

@iP(c)
@iP(d)
@iP(d′)

¬@id ̸= d′

@iP(d′) → (d′ = c ∨ d′ = d)
@iP(d) → (d = c ∨ d = d′)

¬@iP(d′) @id
′ = c∨ d′ = d

@id
′ = c @id

′ = d⊥

¬@iP(d) @id= c∨ d= d′

@id= c @id= d′

⊥

⊥

⊥

@id= d′

⊥

2× (∀) : x/d,x/d′

(∨)

(∨)

(∨)

(∨)

(⊥)

(⊥)

(⊥)

(RR)

(⊥)

(⊥)
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(∨)

(⊥)

(⊥)

(⊥)

(RR)

(⊥)

(⊥)
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Since Th does not specify whether Charles and Dana are
the same person, the explicit definition of d is the
following:

ψ(x) := P(x) ∧
(
x ̸= c∨ ¬∃y(y ̸= x∧ P(y))

)
,

saying that either Dana is a politician distinct from Charles
or the only politician that exists. Thus, d can be replaced
with

ιx(ψ(x))

in every syntactically allowed context.

1. If we remove P(c) from Th, dwill still be explicitly
definable under Th with ψ(x).

2. If we remove P(d) from Th, dwill no longer be
explicitly definable under Th.
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