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Introduction and Motivations

Non-Rigid Designators and Counting Features (NRDC)
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¢ Counting (non-trivial): equality or counting quantifiers
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First-order modal logics (FOMLs) extended with:
® Non-rigid designators: non-rigid constants and definite descriptions

¢ Counting (non-trivial): equality or counting quantifiers

Philosophical Applications
¢ Referential opacity in modal contexts (with failure of substitutivity for equality)
e.g., ‘the number of planets is necessarily greater than 7' vs. ‘8 is necessarily greater than 7’

e Descriptivist vs. direct reference theories of proper names
e.g., 'the teacher of Alexander the Great' vs. ‘Aristotle’
KR Applications
e Epistemic and temporal logics: individual symbols denoting distinct objects in
alternative conceivable scenarios or over time
® Free logics, description logics, hybrid logics, ...
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Modal extensions of decidable FO fragments are typically undecidable, e.g.:
® Monadic fragment of FO decidable
® Monadic fragment of FOMLs K,, and S5, with n > 1, undecidable

5/63



Background and Challenges

The Bad

Modal extensions of decidable FO fragments are typically undecidable, e.g.:
® Monadic fragment of FO decidable
® Monadic fragment of FOMLs K,, and S5, with n > 1, undecidable

The Good

Monodic fragments: modalities applied only to formulas with < 1 free variable
® often preserve decidability of underlying FO fragments. ..
® .. but rely on the absence of NRDC features!

5/63



Background and Challenges

The Bad

Modal extensions of decidable FO fragments are typically undecidable, e.g.:
® Monadic fragment of FO decidable
® Monadic fragment of FOMLs K,, and S5, with n > 1, undecidable

The Good

Monodic fragments: modalities applied only to formulas with < 1 free variable
® often preserve decidability of underlying FO fragments. ..
® .. but rely on the absence of NRDC features!

The Ugly
Mostly negative results on computational behaviour of fragments with NRDC features

¢ from product modal logics & fragments of FO modal/temporal logics with counting
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Investigation of decidability and complexity boundaries
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Our Contribution

Investigation of decidability and complexity boundaries
for monodic fragments with NRDC features

Ingredients
¢ equality/counting;
® non-rigid and possibly non-denoting constants

¢ definite descriptions

Dimensions
* Fragments: monodic with FO restrictions (1-var., 2-var. + counting, guarded)
® Frames: arbitrary n-frames; with n equivalence relations; with transitive clo-
sure, with or without infinite ascending chains; finite or infinite time flows
®* Domains: constant or expanding

® Decision problems: validity and global consequence

® Global consequence not reducible to validity in general, but...
¢ ..reducible on frames w/: single equivalence relation; transitive closure; or time flows
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Overview of Results

C-validity global C-consequence
frames C  dom.

1= 2 = 1= 2 =
Q- =ML, CMLL GFMLL Q- =ML, CMLL GFMLL

S5 = CcoNEXP coNEXxP 2EXP coNExXP coNExp 2EXp
S5, n>2 = NExP coNExp 2Exp undecidable
K = CcoNEXP coNExp 2EXP undecidable
C  PSpacE coNExp 2Exp 4
_ 1
Kun, LTL®) ™ =
- undecidable
Kf. LTLF®) = undecidable
*n' C decidable, Ackermann-hard
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Q~ML,, the First-Order Modal Language with NRDC

Definition (Terms and Formulas)
Q=ML, terms and formulas defined by mutual induction:
Tu=x|c|wxe
pu=P(r1,...,mm) [ 1 =72 [ 2@ | (k1 A@2) | Ix | Cap
e variables x € Var, constants c € Con, and predicates P € Pred (m-ary)

® finite set of modalities a € A

¢ definite descriptions tx.p, read as “the x such that ¢"
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Q~ML,, the First-Order Modal Language with NRDC

Definition (Terms and Formulas)
Q=ML, terms and formulas defined by mutual induction:
Tu=x|c|wxe
pu=P(r,...,Tm) [T1 =72 | 7 | (1 A 2) [ Ix @ | Cap0
e variables x € Var, constants c € Con, and predicates P € Pred (m-ary)
® finite set of modalities a € A

¢ definite descriptions tx.p, read as “the x such that ¢"

Notation

® 01V r:i=(p1 Ap2), 01— @2 =1V, 01 @2 = (01 = 02) A2 = 01)
® Vxp :=-dx—p
[ ] Dagp = _‘<>a_‘§0

e [ finite set of sentences (no free variables)
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Semantics with Partial Interpretations
Definition (Partial Interpretation with Expanding Domains)
M = (3,4, -) where:
o §=(W,{Rs}aca) frame with worlds W (# 0)) and accessibility relations R,

e A function assigning domain A, (# ) toeach w € W s.t. A, C A, when wR,v
e . function mapping each w € W to partial FO interpretation 9t(w) with:

e pPYwW) C A™ for each m-ary predicate P € Pred (total on predicates)
o MW ¢ A, for some constant symbols ¢ € Con (partial on constants)
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Semantics with Partial Interpretations
Definition (Partial Interpretation with Expanding Domains)
M = (3,4, -) where:
o §=(W,{Rs}aca) frame with worlds W (# 0)) and accessibility relations R,
e A function assigning domain A, (# ) toeach w € W s.t. A, C A, when wR,v

e . function mapping each w € W to partial FO interpretation 9t(w) with:

e pPYwW) C A™ for each m-ary predicate P € Pred (total on predicates)
o MW ¢ A, for some constant symbols ¢ € Con (partial on constants)

Definition (Designation, Total Interpretations, Constant Domains, Assignments)

e ¢ designates at w: ¢™(") is defined

total interpretation: all constants designate at all worlds
® constant domains: A, = A, forall w,v e W

® assignment at w: function a from Var to A,

e x-variant of a at w: assignment a’ at w that can differ from a only on x )
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Term Interpretation and Satisfaction

Definition (Value of Terms)

a(x), if 7=x € Var
M(w)a _ ), if 7 =c € Con and c™(") defined
a'(x), if 7= 1x. and M, w =% ¢ for exactly one x-variant o’ of a

undefined, otherwise

V.
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Term Interpretation and Satisfaction

Definition (Value of Terms)

a(x), if 7=x € Var
W), if 7= c € Con and ¢™") defined
Tﬂﬁ(w),a _ i
a'(x), if 7=1x.0 and M, w E* ¢ for exactly one x-variant o’ of a

undefined, otherwise
V.

Definition (Satisfaction Relation)

o M w =° P(ry, ..., 7) iffall 7% defined and (730 .. 7 (*)®) ¢ pT(wW)
o M,w =° 1 =7, iff both 7. ) defined and 7, )¢ = 7"}
o 9, w =% Ix ¢ iff there exists x-variant a’ with M, w = ¢

o M, w =* O, iff there exists v € W such that wR,v and 9, v =2 @
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Truth, Validity, and Global Consequence
Definition (Truth, Satisfaction)
® o true in M, M = p: p satisfied under every assignment at every world of I
® ¢ satisfied in 91: ¢ satisfied under some assignment at some world of 9t
e [ true in M, M |= I every sentence in [ is true in M
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Truth, Validity, and Global Consequence
Definition (Truth, Satisfaction)
® o true in M, M = p: p satisfied under every assignment at every world of I
® ¢ satisfied in 91: ¢ satisfied under some assignment at some world of 9t
e [ true in M, M |= I every sentence in [ is true in M

Definition (K, and S5, Frames)

e K,: class of all frames with n accessibility relations

® S5, class of frames with n equivalence relations; S5 := S5,

Definition (Validity, Satisfiability, Global Consequence)
C class of frames. Formula ¢
e C-valid: ¢ true in every interpretation 91 based on a frame § € C

e (-satisfiable: ¢ satisfied in some interpretation 9t based on a frame § € C

¢ global C-consequence of theory I: ¢ true in any interpretation 91 based on a

frame in C such that M =T

V.
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Examples

Example (Partial Interpretation with Non-Rigid Designators)

Ry

Ix(x # ¢ A C1(x = ¢))

unsatisfiable if constants are rigid
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Examples

Example (Vulcan and Venus)

® "It is conceivable that Vulcan is the planet orbiting between Sun and Mercury”:

&(vulcan = 1z.OrbitsBetween(z, sun, mercury))
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Examples
Example (Vulcan and Venus)
® "It is conceivable that Vulcan is the planet orbiting between Sun and Mercury”:
O(vulcan = 1z.OrbitsBetween(z, sun, mercury))
® “Even though such a planet does not exist”:
—3x(x = vulcan) A =3x(x = ¢z.OrbitsBetween(z, sun, mercury))

i.e., neither ‘vulcan’ nor ‘vz.OrbitsBetween(z, sun, mercury)’ designate in this world

® “lt is known of the planet orbiting between Mercury and Earth that it is Venus":

Ix(x = 1z.OrbitsBetween(z, mercury, earth) A O(x = venus))

in S5 frames, this implies that ‘venus’ is rigid
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Monodic Fragments

Definition (Monodic Fragment)
Set QMLL of monodic formulas:

® every subformula of the form <, has at most one free variable.
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Monodic Fragments

Definition (Monodic Fragment)
Set QMLL of monodic formulas:

® every subformula of the form <, has at most one free variable.

Minimal Sub-Fragment
* Q'=ML,: One-variable fragment with < 1-ary predicates (and equality)

Maximal Sub-Fragments
° CI\/ILL: Two-variable fragment with counting quantifiers and < 2-ary predicates
° GFMLL: Guarded fragment with equality
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One-Variable Fragment Q'=ML,

Definition (One-Variable Fragment Q'=ML,)
Q=ML, terms and formulas built with:

® one variable only

® predicates of arity at most one (plus equality)

® constants and definite descriptions
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One-Variable Fragment Q'=ML,

Definition (One-Variable Fragment Q'=ML,)
Q=ML, terms and formulas built with:

® one variable only

® predicates of arity at most one (plus equality)

® constants and definite descriptions

Remarks
e Underpinned by FO! with equality and constants
o All formulas trivially monodic

® Variants extensively studied as product modal logics
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Two-Variable Fragment with Counting CI\/ILL

Definition (Two-Variable Fragment with Counting CI\/ILL)
CMLL terms and formulas built with:

® two variables

® counting quantifiers IZkx, k>0

® predicates of arity at most two (including equality)

® constants and definite descriptions
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Two-Variable Fragment with Counting CI\/ILL

Definition (Two-Variable Fragment with Counting CI\/ILL)
CMLL terms and formulas built with:

® two variables

* counting quantifiers 32%x, k > 0

® predicates of arity at most two (including equality)

® constants and definite descriptions

Definition (Counting Quantifier)

M, w = I xp iff M, w =" o for at least k distinct x-variants o’

Example (Number of Planets)

o1 = 03 Planet(x), @2 = 3=%x OPlanet(x)
® Constant and expanding domains: 1 # o

® Constant but not expanding domains: ¢ = 1

A7/63



Guarded Fragment GF ML,

Definition (Guarded Fragment GFML,)

GFMLL terms and formulas built with:
¢ guarded quantifiers 3x; - - - Ixx (0 A @), where o atom with all free variables of ¢
e constants and closed definite descriptions tx.x(x), x(x) with <1 free variable x
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Guarded Fragment GFZML,

Definition (Guarded Fragment GFML,)

GFMLL terms and formulas built with:
¢ guarded quantifiers 3x; - - - Ixx (0 A @), where o atom with all free variables of ¢
e constants and closed definite descriptions tx.x(x), x(x) with <1 free variable x

Remark

Closed definite descriptions necessary for decidability even without modalities
® VxF(x,ty.F(x,y)) ensures F is a function
® guarded fragment with functionality is undecidable

3x ¢(x) can still be expressed

® equivalent to 3x ((x = x) A ¢(x)), with x = x as its guard.
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Decision Problems

Definition (Validity and Global Consequence Decision Problems)
For fragment £ and frame class C
e C-validity in L: Is ¢ valid on all interpretations based on C-frames?

¢ global C-consequence in L: Is o true in all interpretations based on C-frames that
make theory I true?

V.
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Decision Problems

Definition (Validity and Global Consequence Decision Problems)
For fragment £ and frame class C
e C-validity in L: Is ¢ valid on all interpretations based on C-frames?

¢ global C-consequence in L: Is o true in all interpretations based on C-frames that
make theory I true?

Problem Qualifiers
e total C-validity: restriction to total interpretations

® with constant domains, with expanding domains

Naming Convention

subscript ¢: both constants and definite descriptions
Fragment £ with ¢ subscript ¢: only constants

no subscript: neither constants nor definite descriptions
19/63
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Overview of Techniques

Preliminary Observations

® Show correspondence between one-variable fragment with difference/elsewhere
quantifier 3% x and our one-variable fragment with non-rigid constants
® Lift results from propositional case: “difference = nominals + universal modality”
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Overview of Techniques

Preliminary Observations

® Show correspondence between one-variable fragment with difference/elsewhere
quantifier 3% x and our one-variable fragment with non-rigid constants
® Lift results from propositional case: “difference = nominals + universal modality”
® Simplify the landscape
® Normalise and eliminate definite descriptions

® Reduce partial to total interpretations (and viceversa)
® Reduce expanding to constant domains
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Overview of Techniques

Main ldeas for Decidability

® Adapt quasimodel machinery for NRDC features
® Use multisets of types and runs to handle counting
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Main ldeas for Decidability

® Adapt quasimodel machinery for NRDC features
® Use multisets of types and runs to handle counting
® |ntroduce weak quasimodels with relaxed saturation conditions
® Avoid infinite branching of quasimodels due to counting
® Use bounded-size weak quasimodels to decide satisfiability
® 1-variable and guarded fragments: use weak quasimodels directly
® 2-variable with counting: introduce weak pre-quasimodels + (in)equalities encoding
constraints in Presburger Arithmetic with infinity
¢ Expanding domains simplify some cases:

. ) with transitive closure & no infinite chain
® validity/global consequence in fragments .
on finite temporal frames

® K,-validity in one-variable fragment
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Overview of Techniques

Main Ideas for Undecidability

¢ For global consequence on K, (n > 1) and S5, (n > 2) frames, reduce:

* undecidable products to one-variable fragment with elsewhere quantifier 3% x
® the latter to our one-variable fragment with non-rigid constants
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Overview of Techniques

Main Ideas for Undecidability

¢ For global consequence on K, (n > 1) and S5, (n > 2) frames, reduce:
* undecidable products to one-variable fragment with elsewhere quantifier 3% x
® the latter to our one-variable fragment with non-rigid constants
® For validity/global consequence with transitive closure & on temporal (infinite
with constant/expanding domains, or finite with constant domains) frames, reduce
® undecidable one-variable FOTL with counting to our one-variable fragments on
temporal (infinite or finite, resp.) frames
® the latter to one-variable fragments with transitive closure (with or without infinite
chains, resp.)
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One-Variable Fragment with Elsewhere QML

Definition (One-Variable Fragment with Elsewhere QML)
Q7ML formulas:

pu= P(x) | =p|(pAp)| Ixe|Fxp| Cap
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One-Variable Fragment with Elsewhere QML

Definition (One-Variable Fragment with Elsewhere QML)
Q7ML formulas:
pu= P(x) | =0 | (0Ag)| Ixp| Fxp| Oap

Definition (Elsewhere Quantifier)
Mw = Fxp iff M w ):“' ©, for some x-variant a’ of a at w different from a

4

23/63



Reductions Between Non-Rigid Constants and Elsewhere Quantifier

Theorem
For any class of frames C, with both constant and expanding domains
e C-validity in Q=ML and Q'*ML are mutually polytime-reducible

® same applies to global C-consequence
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Reductions Between Non-Rigid Constants and Elsewhere Quantifier

Theorem
For any class of frames C, with both constant and expanding domains
e C-validity in Q=ML and QML are mutually polytime-reducible

® same applies to global C-consequence

Proof (ldea).
* Q=ML to Q'*ML

x=c Qc(x) A ~F7x Qc(x)

e QML to Q=ML, (global C-consequence)

[ x5 THUsingly} £ 3x Pu(x) A (x = cp = 3x (=(x = cp) APy(x)))

where singly, := Vx (¢(x) = Py(x)) A Vx (Py(x) = ¥(x) A p(cy))

V
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Overview of Results for K, and S5, Global Consequence

C-validity global C-consequence
frames C  dom.

1= 2 = 1= 2 =
Q=ML, C2ML, GFEML, Q=ML, CZML, GFZML,

S5,,n>2 = undecidable

undecidable
?

N
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First Undecidability Results

Theorem
For constant domains:
¢ global K,-consequence with n > 1 in Q=ML is undecidable

e global S5,-consequence with n > 2 in Q'=ML. is undecidable
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First Undecidability Results

Theorem
For constant domains:
¢ global K,-consequence with n > 1 in Q=ML is undecidable

e global S5,-consequence with n > 2 in Q=ML is undecidable

Proof (ldea).

From undecidability of product modal logic K, x Diff, with K, extending K with universal
modality u, and Diff propositional modal logic of elsewhere
* Reduce from K, x Diff-validity to Q'*ML global K,-consequence

® product world ~ domain object at a world
b <>7g ~ F#x
® &, ~ global K,-consequence

® Then, use previous reduction from Q'*ML global K ,-consequence to Q=ML

¢ Finally (for 2nd point), use known reduction from K to S5, O
26 /63



S5; and K,, with Expanding Domains?

Exception: Global S5;-consequence
The theorem does not hold for S5, since global S5-consequence reduces to S5-validity:

Mess ¢ iff O/\T — ¢ is S5-valid
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S5; and K,, with Expanding Domains?

Exception: Global S5;-consequence
The theorem does not hold for S5, since global S5-consequence reduces to S5-validity:

Mess ¢ iff O/\T — ¢ is S5-valid

Open Problem: Global K, ,-Consequence with Expanding Domains
® Reduction from product modal logics works only for constant domains
® S5, domains always constant (by symmetry of accessibility relation)

® Expanding domain case for global K,-consequence remains open

27/63



Simplifying the Landscape

Theorem

For L € {Q=ML,, CMLL, GFZML,, QgML.} and any class of frames C:
@ C-validity in L is polytime-reducible to C-validity in £ w/out definite descriptions
® C-validity in partial and total interpretations are mutually polytime-reducible
© C-validity with expanding domains is polytime-reducible to constant-domains

All hold also for global C-consequence in L

28/63



Simplifying the Landscape
Eliminating Definite Descriptions
Normalisation Procedure
® Replace definite descriptions tx.1)(x, y) with “atomic” ones: tx.Py(x,y)
® Add “surrogates” for definite description "bodies”: VxVy(Py(x,y) < ¥(x,y))

® |terate starting from innermost descriptions
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Simplifying the Landscape
Eliminating Definite Descriptions
Normalisation Procedure
® Replace definite descriptions tx.1)(x, y) with “atomic” ones: tx.Py(x,y)

® Add “surrogates” for definite description "bodies”: VxVy(Py(x,y) < ¥(x,

® |terate starting from innermost descriptions

Elimination of Definite Descriptions

Replace atoms a(tx.Q(x,y),T) with “Russell’s paraphrase”

® in QMLL
Ix(a(x, T) A Q(x,y) ANVX(Q(X,y) = X' = x))

® in CMLL
Ix(a(x, ) A Q(x,¥)) A TIxQ(x, y)

* in Q'=ML, and GFZML,, with ¢,y q(x) fresh constant symbol
( Cix.Q(x ) A Q( Cix.Q(x ) N VX (Q(X) — X = CLX.Q(X))

y))
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Simplifying the Landscape

From Partial to Total Interpretations, and Back

From Partial to Total
Introduce propositional letter p. for each constant ¢ to encode whether ¢ designates

P(Ti,...,Tm) ~ /\ pe; A P(T1,. .., Tm)

CiE{Tlv"'7Tm}
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Simplifying the Landscape

From Partial to Total Interpretations, and Back

From Partial to Total
Introduce propositional letter p. for each constant ¢ to encode whether ¢ designates

P(Ti,...,Tm) ~ /\ pe; A P(T1,. .., Tm)

CiE{Tlv"'7Tm}

From Total to Partial
Add “existence axioms" to ensure that each constant c designates

30/63



Simplifying the Landscape

From Expanding to Constant Domains

Reduction from Expanding to Constant Domains

® By previous two points, in £ without definite descriptions, reduce total C-validity
with expanding domains to total C-validity with constant domain

e Use well-known reduction, with a semi-rigid (monotonically increasing) “actuality
predicate” to encode expanding domains
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Enforcing Infinite Branching

Example (Infinitely Branching Interpretations with Equality or Counting)
C2-sentence (o with only infinite models:
Vx37ly P(x,y) AVx3SLz P(z,x) A 3x—3z P(z, x)
CI\/ILC-sentence forcing infinite branching
© = o A Vx OLA(X) A 0,35 x A(x)

Each element in infinite P-chain requires separate a-successor with unique A-element
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@ Introduction
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Quasimodels for QMLC

Main ldeas
® Quasistates describe worlds in interpretations
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Quasimodels for QMLC

Main ldeas
® Quasistates describe worlds in interpretations
® Runs correspond to domain elements

® Generalise basic quasimodels to handle non-rigid constants & equality/counting
® use multisets of types and runs to take care of cardinalities
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Types

Definition (Surrogates)
Surrogate @: replace modal subformulas of ¢
® monodic ,1(x) ~ unary predicate R,y (x)

® monodic <41 ~+ propositional variable pe .y,
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Types

Definition (Surrogates)
Surrogate @: replace modal subformulas of ¢
® monodic <41p(x) ~» unary predicate R,y (x)

® monodic <41 ~+ propositional variable pe .y,

Definition (Type)
Type for QMLC—sentence ©: subset t C suby(p), where for fresh variable x

subx(p) = {¢{x/y}, ~{x/y} | ¥(y) € sub(p)}
that is Boolean-saturated, i.e., for every sub-formula ¥1 A 12, =) € suby (i)
Y1 Ao € tiff i € tand Y € ¢ —petiffiy ¢t

Surrogate type t := {¢ | ¢ € t}
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Quasistates and Basic Structures

Definition (Multiset)
Set X equipped (& identified) with multiplicity function X(x) € NU {Rg}, for x € XJ
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Quasistates and Basic Structures

Definition (Multiset)
Set X equipped (& identified) with multiplicity function X(x) € NU {Rg}, for x € X}

Definition (Quasistate Candidate)

Quasistate candidate for ¢: non-empty multiset n of types for ¢ with multiplicity n(t)
¢ n realised in FO structure B: n(t) = [{b€ B | B = t[b]}|

Quasistate for ¢: realisable quasistate candidate (i.e., realised by some B)
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Quasistates and Basic Structures

Definition (Multiset)
Set X equipped (& identified) with multiplicity function X(x) € NU {Rg}, for x € X}

Definition (Quasistate Candidate)

Quasistate candidate for ¢: non-empty multiset n of types for ¢ with multiplicity n(t)
¢ n realised in FO structure B: n(t) = [{b€ B | B = t[b]}|

Quasistate for ¢: realisable quasistate candidate (i.e., realised by some B)

Definition (Basic Structure)
§ = (W, {Ra}aca) frame

q function assigning quasistate g(w) to each w € W

(3, q), where {
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Runs
Definition (Run)
Run p in (§, g): map from worlds w in upward-closed W’ C W to types p(w) € q(w):
® (r-coh) 3v € W : wR,v and ¢ € p(v) = <9 € p(w)
e (r-sat) O,¢ € p(w) = v e W : wR,yv and ¢ € p(v)
Domain of p: domp = W/ C W (upward-closed); full run: domp = W
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Runs
Definition (Run)
Run p in (§, g): map from worlds w in upward-closed W’ C W to types p(w) € q(w):
® (r-coh) 3v € W : wR,v and ¢ € p(v) = <9 € p(w)
e (r-sat) O,¢ € p(w) = v e W : wR,yv and ¢ € p(v)
Domain of p: domp = W/ C W (upward-closed); full run: domp = W

Definition (Multiset of Runs)
R multiset of runs:
R(p), if we domp,

* w-slice R,, C R, where R, (p) = {0 -
, otherwise.

R(p), if we domp and p(w)=t,

® (w,t)-slice R, + C R, where Ry, +(p) = {0 e
, otherwise.

Multiset R of runs ~ set of indexed runs &t = {(p,¢) e R x N |0 < ¢ < R(p)}
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Quasimodels

Definition (Quasimodel)

¢ (Expanding-domain) quasimodel Q = (F, q,R) for ¢:

® (3, q) basic structure for ¢
® R multiset of runs through (§, ) such that

(card) gq(w,t) = |Ruw,| for all w € W and types t for ¢
¢ Constant-domain quasimodel: R consists of full runs

e ) satisfies ¢: ¢ € t for some wy € W and t € q(wp)
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Quasimodels

Definition (Quasimodel)

¢ (Expanding-domain) quasimodel Q = (F, q,R) for ¢:

® (3, q) basic structure for ¢
® R multiset of runs through (§, ) such that

(card) gq(w,t) = |Ruw,| for all w € W and types t for ¢
¢ Constant-domain quasimodel: R consists of full runs

e ) satisfies ¢: ¢ € t for some wy € W and t € q(wp)

wWo Vo %1 V2 V3
o [ 4 o
P1 :‘/,
P2 \6
3 || \6
N
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Quasimodels and Interpretations

Lemma (Quasimodel Lemma)

For both constant and expanding domains, QMLC—sentence o satisfiable in interpre-
tation based on frame § iff there exists quasimodel satisfying ¢ based on §
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Quasimodels and Interpretations

Lemma (Quasimodel Lemma)

For both constant and expanding domains, QMLC—sentence o satisfiable in interpre-

tation based on frame § iff there exists quasimodel satisfying ¢ based on § )

Proof (ldea).
(=) Given interpretation 9 satisfying :
e types: t™)(d) 1= {4 € subx(p) | M, w = ¢[d]}
® quasistate candidates: g(w,t) := number of domain elements realizing t at w
° runs: pg(w) := t"W)(d), for d € A,
(<) Given quasimodel 9 satisfying (:
® Construct interpretation with domains A, = EJA%W

e Use bijections f,, : R,, — domain of B,, realising g(w) to define

oc()—fw( ")

.Pim()_fwl(P%) 0
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Infinite Branching Again (Recall)

Example (Infinitely Branching Interpretations with Equality or Counting)
C2-sentence (o with only infinite models:
Vx37ly P(x,y) AVx3SLz P(z,x) A 3x—3z P(z, x)
CI\/ILC-sentence forcing infinite branching
© = o A Vx OLA(X) A 0,35 x A(x)

Each element in infinite P-chain requires separate a-successor with unique A-element
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Infinite Branching Again

Infinite Branching in Quasimodels
® Standard quasimodels can require infinite branching
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Infinite Branching Again

Infinite Branching in Quasimodels

® Standard quasimodels can require infinite branching
® [nfinite Branching Example ~ infinite branching quasimodels
® type “gray circle” has Ny infinite multiplicity in wo
® multiset of runs contains Xg runs (of multiplicity 1) through type “gray circle” at wo

® by quasimodel constraints, each of Ny runs then requires a separate a-successor
wo Vo Vi V2 V3

o

P1

P2

P3
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Infinite Branching Again

Infinite Branching in Quasimodels

® Standard quasimodels can require infinite branching
® [nfinite Branching Example ~ infinite branching quasimodels
® type “gray circle” has Ny infinite multiplicity in wo
® multiset of runs contains Xg runs (of multiplicity 1) through type “gray circle” at wo

® by quasimodel constraints, each of Ny runs then requires a separate a-successor
wo Vo Vi V2 V3

o

P1

P2

P3

® Need finite representation of quasimodels for decidability
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Weak Quasimodels to the Rescue

Main ldeas

® Define weak quasimodels with weakened saturation conditions
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Weak Quasimodels to the Rescue

Main Ideas
® Define weak quasimodels with weakened saturation conditions

® Show that quasimodels can be reconstructed from bounded-size weak quasimodels
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Overview of Results for K,, and S5, Validity

C-validity global C-consequence
frames C dom.

1= 2 = 1= 2 =
Q=ML, CMLL GFMLL Q- =ML, CMLL GFMLL

S5 coNExP coNExpr 2ExP coNExpP coNExp 2Exp
S5,,n>2 = oNExp coNExp 2EXPp
coNExpP coNExp 2Exp
coNExp 2Exp

Kn

N
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One-Variable Fragment K, /S5,-Validity in Constant Domains

For K, and S5,-validity in Q'=ML. with constant domains
® guess-and-check exponential-size weak quasimodels

°* coNExpTime upper bound; matching lower bound from constant-domain prod-
ucts / one-variable K and S5 without equality and constants

Theorem
With constant domains K, and S5,-validity in Q'=ML. are coNEXPTIME-c.

® in fact, every satisfiable sentence is satisfiable in a frame of exponential size
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Guarded Fragment K,/S5,-Validity in Constant/Expanding Domains

For K, and S5,-validity in GFMLC with constant/expanding domains:
® enumerate quasimodels and check realisable quasistates in double exp. time

e 2ExpTime upper bound; matching lower bound from plain GF

Theorem
With constant/expanding domains, K, and S5,-validity in GFMLC are 2EXPTIME—C.J
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Two-Variable Fragment K, /S5,-Validity in Constant/Expanding Domains

For K, and S5,-validity in CMLL with constant/expanding domains:

® introduce weak pre-quasimodels replacing multiset of weak runs with a bounded-
from-above set of locally saturated weak runs

® encode quasistates and other constraints in decidable Presburger arithmetic
extended with infinity (Rg) and exploit NEXPTIME upper bound for C?

e coNExpTime upper bound; matching lower bound from plain C?

Theorem
With constant/expanding domains, K, and S5,-validity in CMLC are CONEXPTIME—C.J
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Decidability with Expanding Domains

Expanding vs Constant Domains
® Recall: reasoning in expanding domains can be reduced to constant domains
® However: expanding domains sometimes simpler than constant domain case

® Quasimodel and weak quasimodel constructions work for expanding domains
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Decidability with Expanding Domains

Expanding vs Constant Domains
® Recall: reasoning in expanding domains can be reduced to constant domains
® However: expanding domains sometimes simpler than constant domain case

® Quasimodel and weak quasimodel constructions work for expanding domains

Affected Fragments
Under expanding domains, life is (a bit) easier for
e validity/global conseq. in fragments with transitive closure & no infinite chains

e K,-validity in one-variable fragment
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From Validity to Global Consequence with Transitive Closure

Definition (K., and Kf,, Frames)
® Modalities A = Ap U {x}
® K.n: frames with transitive closure R, of (J,. 4 Ra (interpreting <)

e Kf.,: frames where R, has no infinite ascending chain w;R.w;, 1, for all i > 0

Lemma

For all fragments £ and C € {K.,, Kf.,}, with both constant and expanding domains,
global C-consequence in L is polytime-reducible to C-validity in L

V.
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From Validity to Global Consequence with Transitive Closure

Definition (K., and Kf,, Frames)
® Modalities A = Ap U {x}
® K.n: frames with transitive closure R, of (J,. 4 Ra (interpreting <)
e Kf.,: frames where R, has no infinite ascending chain w;R.w;, 1, for all i > 0

Lemma
For all fragments £ and C € {K.,, Kf.,}, with both constant and expanding domains,
global C-consequence in L is polytime-reducible to C-validity in L |

Proof (ldea).
¢ global C-consequence of I' iff (AT A O. AT) — ¢ C-valid for C € {Kyp, Kfin} O

4
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Overview of Results for Expanding Domains

C-validity global C-consequence
frames C dom.

1= 2 = 1= 2 =
Q =ML, CMLL GFMLL Q- =ML, CMLL GFMLL

N

PSpPACE

N

decidable
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Decidability with Transitive Closure in Expanding Domains

Theorem
With expanding domains, KF,,-validity in CMLC and GFMLC are decidable J
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Decidability with Transitive Closure in Expanding Domains

Theorem
With expanding domains, KF,,-validity in CMLC and GFMLC are decidable

Proof (ldea).

Relies on weak quasimodels and shows, using Dickson’'s Lemma, a non-primitive recursive
bound on their size O]

V.
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K,-Validity in One-Variable Fragment

Theorem
For expanding-domain models, K ,-validity in Q* =ML, is PSPACE-complete J

51/63



K,-Validity in One-Variable Fragment

Theorem
For expanding-domain models, K ,-validity in Q* =ML, is PSPACE-complete

Proof (ldea).

® Upper bound: define a non-deterministic recursive function that checks the exis-
tence of a quasimodel for a formula in polynomial space

® Lower bound: from the underlying (propositional) modal logic K, 0
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Overview

@ Introduction
@® Preliminaries

© Results

Temporal Logics

O Conclusion
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Frames for Temporal Logics

Definition (Temporal Frame Classes)
e LTL®: {(N, <)}, with standard strict linear order < (interpreting <)
o LTLF: {({0,...,n},<) | n€ N}, with < restricted to {0,...,n}
° LTL: {(N,<,S)}, with successor relation S = {(i,i + 1) | i € N (interpreting O)
o LTF®: {({0,...,n},<,S) | ne N}, with < and S restricted to {0, ...,n}
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Overview of Results for Temporal (and Transitive Closure) Logics

C-validity global C-consequence
frames C dom.

1= 2 = 1= 2 =
Q =ML, CMLL GFMLL Q- =ML, CMLL GFMLL

_ 1
K.n LTLO) ™ !
- undecidable
Kf. LTLF©) = undecidable
- - decidable, Ackermann-hard
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(Un-)Decidability of Temporal Fragments

Theorem

In Q'=LTL, and Q*=LTL® with

LTL-validity ~¥i-complete

LTLf -validity undecidable and co-r.e.
LTL-validity  undecidable and r.e.

LTLf -validity decidable but Ackermann-hard

® constant domains: {

® expanding domains: {
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(Un-)Decidability of Temporal Fragments

Theorem

In Q'=LTL, and Q*=LTL® with

LTL-validity ~¥i-complete

LTLf -validity undecidable and co-r.e.
LTL-validity  undecidable and r.e.

LTLf -validity decidable but Ackermann-hard

® constant domains: {

® expanding domains: {

Proof (ldea).

Adapt known results from products/1-variable temporal logics with difference operator
® Lower bounds: undecidable/Ackermann-hard QY¥LTL ~ QI=LTL,
* Upper bounds: Q'=LTL, ~» Q'#LTL decidable/undecidable r.e./co-r.e./in ¥} [
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From Temporal to Modal Logics with Transitive Closure

Theorem (Polytime Reduction from Temporal to Modal with Transitive Closure)
In QI=LTL,, CLTLL, GFLTLL, with both constant and expanding domains

® LTL-validity is polytime-reducible to K, ,-validity

e LTLf-validity is polytime-reducible to Kf,,-validity
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From Temporal to Modal Logics with Transitive Closure

Theorem (Polytime Reduction from Temporal to Modal with Transitive Closure)
In QI=LTL,, CLTLL, GFLTLL, with both constant and expanding domains

® LTL-validity is polytime-reducible to K, ,-validity

e LTLf-validity is polytime-reducible to Kf,,-validity

Proof (ldea).
Adapt reduction from product LTL x L to K., x L O
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From Temporal to Modal Logics with Transitive Closure

Theorem (Polytime Reduction from Temporal to Modal with Transitive Closure)
In QI=LTL,, CLTLL, GFLTLL, with both constant and expanding domains

® LTL-validity is polytime-reducible to K, ,-validity

e LTLf-validity is polytime-reducible to Kf,,-validity

Proof (ldea).
Adapt reduction from product LTL x L to K., x L O

Remark
With (un-)decidability results above, implies lower bounds for K., / Kf.,
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Decidability with Expanding Domains over Finite Traces

Theorem (Decidability on Finite Traces with Expanding Domains)
For expanding-domain models, LTLf-validity in C LTL, and GF LTL, is decidable. J
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Decidability with Expanding Domains over Finite Traces

Theorem (Decidability on Finite Traces with Expanding Domains)
For expanding-domain models, LTLf-validity in C LTL, and GF LTL, is decidable.

V.

Proof (ldea).
Reduce to Kf,,-validity with expanding domains and apply decidability result O
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Overview

O Conclusion
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Summary of Results

Recap

Established decidability and tight complexity bounds for monodic fragments with:
® non-rigid designators (non-rigid constants and definite descriptions)
® non-trivial counting (equality or counting quantifiers)
® both constant and expanding domains

¢ several classes of frames (K,, S5,, K., Kf.,, linear time)
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Summary of Results

C-validity global C-consequence
frames C  dom.

1= 2 = 1= 2 =
Q=ML, C2ML, GFEML, Q=ML, CZML, GFZML,

S5 = CcoNEXP coNEXxP 2EXP coNExXP coNExp 2EXp
S5, n>2 = NExP coNExp 2Exp undecidable
K = CcoNEXP coNExp 2EXP undecidable
C  PSpacE coNExp 2Exp 4
_ 1
Kun, LTL®) ™ =
- undecidable
Kf. LTLF®) = undecidable
*n' C decidable, Ackermann-hard
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Discussion and Future Work

Description Logic Applications
® Powerful positive results for modal/temporal DLs based on ALCOQHZO"
¢ (Temporal) ontology-mediated query answering with NRDC features

e Other expressive DLs not yet considered in modal/temporal contexts
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Discussion and Future Work

Description Logic Applications
® Powerful positive results for modal/temporal DLs based on ALCOQHZO"
¢ (Temporal) ontology-mediated query answering with NRDC features
e Other expressive DLs not yet considered in modal/temporal contexts

Other First-Order Extensions
¢ Guarded negation fragment
® Fluted fragments
® Two-variable fragment with semantically-constrained relations, e.g., transitive
or equivalence relations

Other Modal Logic Approaches
¢ Bundled fragments: restricted modality/quantifier patterns (Ix<, OVx)

® Term modal logics: modal operators indexed by non-rigid agent names
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Thank You!

Questions?
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