

Decidability in First-Order Modal Logic with Non-Rigid Constants and Definite Descriptions

Alessandro Artale¹, Christopher Hampson²
Roman Kontchakov³, **Andrea Mazzullo**¹, Frank Wolter⁴

¹Free University of Bozen-Bolzano

²King's College London

³Birkbeck, University of London

⁴University of Liverpool

ExtenDD Seminar
2025

Overview

1 Introduction

2 Preliminaries

3 Results

Related Formalisms and Reductions

Quasimodels and Weak Quasimodels

Temporal Logics

4 Conclusion

Overview

1 Introduction

2 Preliminaries

3 Results

Related Formalisms and Reductions

Quasimodels and Weak Quasimodels

Temporal Logics

4 Conclusion

Introduction and Motivations

Non-Rigid Designators and Counting Features (NRDC)

First-order modal logics (FOMLs) extended with:

- **Non-rigid designators**: non-rigid constants and definite descriptions
- **Counting** (non-trivial): equality or counting quantifiers

Introduction and Motivations

Non-Rigid Designators and Counting Features (NRDC)

First-order modal logics (FOMLs) extended with:

- **Non-rigid designators**: non-rigid constants and definite descriptions
- **Counting** (non-trivial): equality or counting quantifiers

Philosophical Applications

- **Referential opacity** in modal contexts (with failure of substitutivity for equality)
e.g., 'the number of planets is necessarily greater than 7' vs. '8 is necessarily greater than 7'
- **Descriptivist** vs. **direct reference** theories of proper names
e.g., 'the teacher of Alexander the Great' vs. 'Aristotle'

Introduction and Motivations

Non-Rigid Designators and Counting Features (NRDC)

First-order modal logics (FOMLs) extended with:

- **Non-rigid designators**: non-rigid constants and definite descriptions
- **Counting** (non-trivial): equality or counting quantifiers

Philosophical Applications

- **Referential opacity** in modal contexts (with failure of substitutivity for equality)
e.g., 'the number of planets is necessarily greater than 7' vs. '8 is necessarily greater than 7'
- **Descriptivist** vs. **direct reference** theories of proper names
e.g., 'the teacher of Alexander the Great' vs. 'Aristotle'

KR Applications

- **Epistemic** and **temporal logics**: individual symbols denoting distinct objects in alternative conceivable scenarios or over time
- **Free logics, description logics, hybrid logics, ...**

Background and Challenges

The Bad

Modal extensions of decidable FO fragments are typically **undecidable**, e.g.:

- Monadic fragment of FO **decidable**
- Monadic fragment of FOMLs **K_n** and **$S5_n$** , with $n \geq 1$, **undecidable**

Background and Challenges

The Bad

Modal extensions of decidable FO fragments are typically **undecidable**, e.g.:

- Monadic fragment of FO **decidable**
- Monadic fragment of FOMLs **K_n** and **$S5_n$** , with $n \geq 1$, **undecidable**

The Good

Monodic fragments: modalities applied only to formulas with ≤ 1 **free variable**

- often preserve decidability of underlying FO fragments...
- ... but rely on the absence of NRDC features!

Background and Challenges

The Bad

Modal extensions of decidable FO fragments are typically **undecidable**, e.g.:

- Monadic fragment of FO **decidable**
- Monadic fragment of FOMLs K_n and $S5_n$, with $n \geq 1$, **undecidable**

The Good

Monodic fragments: modalities applied only to formulas with ≤ 1 **free variable**

- often preserve decidability of underlying FO fragments...
- ... but rely on the absence of NRDC features!

The Ugly

Mostly **negative results** on computational behaviour of fragments with NRDC features

- from product modal logics & fragments of FO modal/temporal logics with counting

Our Contribution

Investigation of **decidability** and **complexity boundaries**
for **monodic fragments** with **NRDC features**

Our Contribution

Investigation of **decidability** and **complexity boundaries**
for **monodic fragments** with **NRDC features**

Ingredients

- **equality/counting**;
- **non-rigid** and possibly **non-denoting constants**
- **definite descriptions**

Our Contribution

Investigation of **decidability** and **complexity boundaries**
for **monodic** fragments with **NRDC** features

Ingredients

- **equality/counting**;
- **non-rigid** and possibly **non-denoting constants**
- **definite descriptions**

Dimensions

- **Fragments: monodic** with **FO restrictions** (1-var., 2-var. + counting, guarded)

Our Contribution

Investigation of **decidability** and **complexity boundaries**
for **monodic** fragments with **NRDC** features

Ingredients

- **equality/counting**;
- **non-rigid** and possibly **non-denoting constants**
- **definite descriptions**

Dimensions

- **Fragments:** **monodic** with **FO restrictions** (1-var., 2-var. + counting, guarded)
- **Frames:** **arbitrary n -frames**; with n **equivalence relations**; with **transitive closure**, with or without **infinite ascending chains**; finite or infinite **time flows**

Our Contribution

Investigation of **decidability** and **complexity boundaries**
for **monodic** fragments with **NRDC** features

Ingredients

- **equality/counting**;
- **non-rigid** and possibly **non-denoting constants**
- **definite descriptions**

Dimensions

- **Fragments:** **monodic** with **FO restrictions** (1-var., 2-var. + counting, guarded)
- **Frames:** **arbitrary n -frames**; with n **equivalence relations**; with **transitive closure**, with or without **infinite ascending chains**; finite or infinite **time flows**
- **Domains:** **constant** or **expanding**

Our Contribution

Investigation of **decidability** and **complexity boundaries**
for **monodic** fragments with **NRDC** features

Ingredients

- **equality/counting**;
- **non-rigid** and possibly **non-denoting constants**
- **definite descriptions**

Dimensions

- **Fragments:** **monodic** with **FO restrictions** (1-var., 2-var. + counting, guarded)
- **Frames:** **arbitrary n -frames**; with n **equivalence relations**; with **transitive closure**, with or without **infinite ascending chains**; finite or infinite **time flows**
- **Domains:** **constant** or **expanding**
- **Decision problems:** **validity** and **global consequence**

Our Contribution

Investigation of **decidability** and **complexity boundaries**
for **monodic** fragments with **NRDC** features

Ingredients

- **equality/counting**;
- **non-rigid** and possibly **non-denoting constants**
- **definite descriptions**

Dimensions

- **Fragments:** **monodic** with **FO restrictions** (1-var., 2-var. + counting, guarded)
- **Frames:** **arbitrary n -frames**; with n **equivalence relations**; with **transitive closure**, with or without **infinite ascending chains**; finite or infinite **time flows**
- **Domains:** **constant** or **expanding**
- **Decision problems:** **validity** and **global consequence**
 - Global consequence **not reducible** to validity in general, but...
 - ...**reducible** on frames w/: single equivalence relation; transitive closure; or time flows

Overview of Results

frames \mathcal{C}	dom.	\mathcal{C} -validity			global \mathcal{C} -consequence		
		$Q^1 = \text{ML}_\iota$	$C_{\boxed{1}}^2 \text{ML}_\iota$	$GF_{\boxed{1}} = \text{ML}_\iota$	$Q^1 = \text{ML}_\iota$	$C_{\boxed{1}}^2 \text{ML}_\iota$	$GF_{\boxed{1}} = \text{ML}_\iota$
S5	=	coNEXP	coNEXP	2EXP	coNEXP	coNEXP	2EXP
S5_n, n ≥ 2	=	coNEXP	coNEXP	2EXP			undecidable
K_n	=	coNEXP	coNEXP	2EXP			undecidable
	⊆	PSPACE	coNEXP	2EXP			?
K_{*n}, LTL^(◊)	=				Σ_1^1		
	⊆						undecidable
Kf_{*n}, LTLf^(◊)	=						undecidable
	⊆						decidable, Ackermann-hard

Overview

1 Introduction

2 Preliminaries

3 Results

Related Formalisms and Reductions

Quasimodels and Weak Quasimodels

Temporal Logics

4 Conclusion

$Q^=ML_\iota$, the First-Order Modal Language with NRDC

Definition (Terms and Formulas)

$Q^=ML_\iota$ **terms** and **formulas** defined by mutual induction:

$$\tau ::= x \mid c \mid \iota x. \varphi$$

$$\varphi ::= P(\tau_1, \dots, \tau_m) \mid \tau_1 = \tau_2 \mid \neg \varphi \mid (\varphi_1 \wedge \varphi_2) \mid \exists x \varphi \mid \Diamond_a \varphi$$

- **variables** $x \in \text{Var}$, **constants** $c \in \text{Con}$, and **predicates** $P \in \text{Pred}$ (m -ary)
- finite set of **modalities** $a \in A$
- **definite descriptions** $\iota x. \varphi$, read as “the x such that φ ”

$Q^=ML_\iota$, the First-Order Modal Language with NRDC

Definition (Terms and Formulas)

$Q^=ML_\iota$ **terms** and **formulas** defined by mutual induction:

$$\tau ::= x \mid c \mid \iota x. \varphi$$

$$\varphi ::= P(\tau_1, \dots, \tau_m) \mid \tau_1 = \tau_2 \mid \neg \varphi \mid (\varphi_1 \wedge \varphi_2) \mid \exists x \varphi \mid \Diamond_a \varphi$$

- **variables** $x \in \text{Var}$, **constants** $c \in \text{Con}$, and **predicates** $P \in \text{Pred}$ (m -ary)
- finite set of **modalities** $a \in A$
- **definite descriptions** $\iota x. \varphi$, read as “the x such that φ ”

Notation

- $\varphi_1 \vee \varphi_2 := \neg(\neg \varphi_1 \wedge \neg \varphi_2)$, $\varphi_1 \rightarrow \varphi_2 := \neg \varphi_1 \vee \varphi_2$, $\varphi_1 \leftrightarrow \varphi_2 := (\varphi_1 \rightarrow \varphi_2) \wedge (\varphi_2 \rightarrow \varphi_1)$
- $\forall x \varphi := \neg \exists x \neg \varphi$
- $\Box_a \varphi := \neg \Diamond_a \neg \varphi$
- Γ finite set of sentences (no free variables)

Semantics with Partial Interpretations

Definition (Partial Interpretation with Expanding Domains)

$\mathfrak{M} = (\mathfrak{F}, \Delta, \cdot)$ where:

- $\mathfrak{F} = (W, \{R_a\}_{a \in A})$ **frame** with worlds W ($\neq \emptyset$) and accessibility relations R_a
- Δ function assigning **domain** Δ_w ($\neq \emptyset$) to each $w \in W$ s.t. $\Delta_w \subseteq \Delta_v$ when $wR_a v$
- \cdot function mapping each $w \in W$ to **partial FO interpretation** $\mathfrak{M}(w)$ with:
 - $P^{\mathfrak{M}(w)} \subseteq \Delta_w^m$, for each m -ary predicate $P \in \text{Pred}$ (total on predicates)
 - $c^{\mathfrak{M}(w)} \in \Delta_w$, for **some constant** symbols $c \in \text{Con}$ (**partial** on constants)

Semantics with Partial Interpretations

Definition (Partial Interpretation with Expanding Domains)

$\mathfrak{M} = (\mathfrak{F}, \Delta, \cdot)$ where:

- $\mathfrak{F} = (W, \{R_a\}_{a \in A})$ **frame** with worlds W ($\neq \emptyset$) and accessibility relations R_a
- Δ function assigning **domain** Δ_w ($\neq \emptyset$) to each $w \in W$ s.t. $\Delta_w \subseteq \Delta_v$ when $w R_a v$
- \cdot function mapping each $w \in W$ to **partial FO interpretation** $\mathfrak{M}(w)$ with:
 - $P^{\mathfrak{M}(w)} \subseteq \Delta_w^m$, for each m -ary predicate $P \in \text{Pred}$ (total on predicates)
 - $c^{\mathfrak{M}(w)} \in \Delta_w$, for **some constant** symbols $c \in \text{Con}$ (**partial** on constants)

Definition (Designation, Total Interpretations, Constant Domains, Assignments)

- c **designates at** w : $c^{\mathfrak{M}(w)}$ is defined
- **total interpretation**: all constants designate at all worlds
- **constant domains**: $\Delta_w = \Delta_v$ for all $w, v \in W$
- **assignment at** w : function α from Var to Δ_w
- **x -variant** of α at w : assignment α' at w that can differ from α only on x

Term Interpretation and Satisfaction

Definition (Value of Terms)

$$\tau^{\mathfrak{M}(w), \alpha} = \begin{cases} \alpha(x), & \text{if } \tau = x \in \text{Var} \\ c^{\mathfrak{M}(w)}, & \text{if } \tau = c \in \text{Con} \text{ and } c^{\mathfrak{M}(w)} \text{ defined} \\ \alpha'(x), & \text{if } \tau = \iota x. \varphi \text{ and } \mathfrak{M}, w \models^{\alpha'} \varphi \text{ for exactly one } x\text{-variant } \alpha' \text{ of } \alpha \\ \text{undefined}, & \text{otherwise} \end{cases}$$

Term Interpretation and Satisfaction

Definition (Value of Terms)

$$\tau^{\mathfrak{M}(w), \alpha} = \begin{cases} \alpha(x), & \text{if } \tau = x \in \text{Var} \\ c^{\mathfrak{M}(w)}, & \text{if } \tau = c \in \text{Con} \text{ and } c^{\mathfrak{M}(w)} \text{ defined} \\ \alpha'(x), & \text{if } \tau = \iota x. \varphi \text{ and } \mathfrak{M}, w \models^{\alpha'} \varphi \text{ for exactly one } x\text{-variant } \alpha' \text{ of } \alpha \\ \text{undefined}, & \text{otherwise} \end{cases}$$

Definition (Satisfaction Relation)

- $\mathfrak{M}, w \models^{\alpha} P(\tau_1, \dots, \tau_m)$ iff all $\tau_i^{\mathfrak{M}(w), \alpha}$ defined and $(\tau_1^{\mathfrak{M}(w), \alpha}, \dots, \tau_m^{\mathfrak{M}(w), \alpha}) \in P^{\mathfrak{M}(w)}$
- $\mathfrak{M}, w \models^{\alpha} \tau_1 = \tau_2$ iff both $\tau_i^{\mathfrak{M}(w), \alpha}$ defined and $\tau_1^{\mathfrak{M}(w), \alpha} = \tau_2^{\mathfrak{M}(w), \alpha}$
- $\mathfrak{M}, w \models^{\alpha} \exists x \varphi$ iff there exists x -variant α' with $\mathfrak{M}, w \models^{\alpha'} \varphi$
- $\mathfrak{M}, w \models^{\alpha} \Diamond_a \varphi$ iff there exists $v \in W$ such that $wR_a v$ and $\mathfrak{M}, v \models^{\alpha} \varphi$

Truth, Validity, and Global Consequence

Definition (Truth, Satisfaction)

- φ **true in \mathfrak{M}** , $\mathfrak{M} \models \varphi$: φ satisfied under every assignment at every world of \mathfrak{M}
- φ **satisfied in \mathfrak{M}** : φ satisfied under some assignment at some world of \mathfrak{M}
- Γ **true in \mathfrak{M}** , $\mathfrak{M} \models \Gamma$: every sentence in Γ is true in \mathfrak{M}

Truth, Validity, and Global Consequence

Definition (Truth, Satisfaction)

- φ **true in \mathfrak{M}** , $\mathfrak{M} \models \varphi$: φ satisfied under every assignment at every world of \mathfrak{M}
- φ **satisfied in \mathfrak{M}** : φ satisfied under some assignment at some world of \mathfrak{M}
- Γ **true in \mathfrak{M}** , $\mathfrak{M} \models \Gamma$: every sentence in Γ is true in \mathfrak{M}

Definition (K_n and $S5_n$ Frames)

- K_n : class of all frames with n accessibility relations
- $S5_n$: class of frames with n equivalence relations; $S5 := S5_1$

Truth, Validity, and Global Consequence

Definition (Truth, Satisfaction)

- φ **true in \mathfrak{M}** , $\mathfrak{M} \models \varphi$: φ satisfied under every assignment at every world of \mathfrak{M}
- φ **satisfied in \mathfrak{M}** : φ satisfied under some assignment at some world of \mathfrak{M}
- Γ **true in \mathfrak{M}** , $\mathfrak{M} \models \Gamma$: every sentence in Γ is true in \mathfrak{M}

Definition (\mathbf{K}_n and $\mathbf{S5}_n$ Frames)

- \mathbf{K}_n : class of all frames with n accessibility relations
- $\mathbf{S5}_n$: class of frames with n equivalence relations; $\mathbf{S5} := \mathbf{S5}_1$

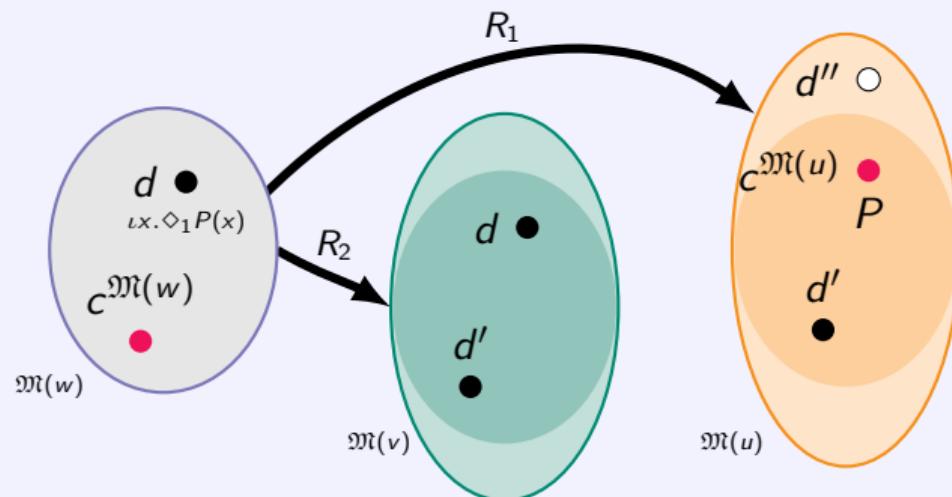
Definition (Validity, Satisfiability, Global Consequence)

\mathcal{C} class of frames. Formula φ

- **\mathcal{C} -valid**: φ true in every interpretation \mathfrak{M} based on a frame $\mathfrak{F} \in \mathcal{C}$
- **\mathcal{C} -satisfiable**: φ satisfied in some interpretation \mathfrak{M} based on a frame $\mathfrak{F} \in \mathcal{C}$
- **global \mathcal{C} -consequence of theory Γ** : φ true in any interpretation \mathfrak{M} based on a frame in \mathcal{C} such that $\mathfrak{M} \models \Gamma$

Examples

Example (Partial Interpretation with Non-Rigid Designators)



$$\exists x(x \neq c \wedge \diamond_1(x = c))$$

unsatisfiable if constants are rigid

Examples

Example (Vulcan and Venus)

- “It is conceivable *that* Vulcan is the planet orbiting between Sun and Mercury”:

$$\diamond(vulcan = \iota z.\text{OrbitsBetween}(z, \text{sun}, \text{mercury}))$$

Examples

Example (Vulcan and Venus)

- “It is conceivable *that* Vulcan is the planet orbiting between Sun and Mercury”:

$$\Diamond(\text{vulcan} = \iota z. \text{OrbitsBetween}(z, \text{sun}, \text{mercury}))$$

- “Even though such a planet does not exist”:

$$\neg \exists x(x = \text{vulcan}) \wedge \neg \exists x(x = \iota z. \text{OrbitsBetween}(z, \text{sun}, \text{mercury}))$$

i.e., neither ‘vulcan’ nor ‘ $\iota z. \text{OrbitsBetween}(z, \text{sun}, \text{mercury})$ ’ designate in this world

Examples

Example (Vulcan and Venus)

- “It is conceivable *that* Vulcan is the planet orbiting between Sun and Mercury”:

$$\Diamond(\text{vulcan} = \iota z. \text{OrbitsBetween}(z, \text{sun}, \text{mercury}))$$

- “Even though such a planet does not exist”:

$$\neg \exists x(x = \text{vulcan}) \wedge \neg \exists x(x = \iota z. \text{OrbitsBetween}(z, \text{sun}, \text{mercury}))$$

i.e., neither ‘vulcan’ nor ‘ $\iota z. \text{OrbitsBetween}(z, \text{sun}, \text{mercury})$ ’ designate in this world

- “It is known *of* the planet orbiting between Mercury and Earth that it is Venus”:

$$\exists x(x = \iota z. \text{OrbitsBetween}(z, \text{mercury}, \text{earth}) \wedge \Box(x = \text{venus}))$$

in **S5** frames, this implies that ‘venus’ is rigid

Monodic Fragments

Definition (Monodic Fragment)

Set $Q \equiv \text{ML}_1$ of **monodic** formulas:

- every subformula of the form $\Diamond_a \psi$ has **at most one free variable**.

Monodic Fragments

Definition (Monodic Fragment)

Set $Q^=_{\boxed{1}} \text{ML}_\iota$ of **monodic** formulas:

- every subformula of the form $\Diamond_a \psi$ has **at most one free variable**.

Minimal Sub-Fragments

- $Q^1= \text{ML}_\iota$: **One-variable** fragment with ≤ 1 -ary predicates (and equality)

Maximal Sub-Fragments

- $C^2_{\boxed{1}} \text{ML}_\iota$: **Two-variable** fragment with **counting** quantifiers and ≤ 2 -ary predicates
- $GF^=_{\boxed{1}} \text{ML}_\iota$: **Guarded** fragment with equality

One-Variable Fragment $Q^1 = \text{ML}_\iota$

Definition (One-Variable Fragment $Q^1 = \text{ML}_\iota$)

$Q^1 = \text{ML}_\iota$ **terms** and **formulas** built with:

- **one variable** only
- predicates of **arity at most one** (plus equality)
- constants and definite descriptions

One-Variable Fragment $Q^1=ML_\iota$

Definition (One-Variable Fragment $Q^1=ML_\iota$)

$Q^1=ML_\iota$ **terms** and **formulas** built with:

- **one variable** only
- predicates of **arity at most one** (plus equality)
- constants and definite descriptions

Remarks

- Underpinned by FO^1 with equality and constants
- All formulas trivially monodic
- Variants extensively studied as product modal logics

Two-Variable Fragment with Counting $C^2_{\boxed{1}} \text{ML}_\iota$

Definition (Two-Variable Fragment with Counting $C^2_{\boxed{1}} \text{ML}_\iota$)

$C^2_{\boxed{1}} \text{ML}_\iota$ **terms** and **formulas** built with:

- **two variables**
- **counting quantifiers** $\exists^{\geq k} x$, $k \geq 0$
- predicates of **arity at most two** (including equality)
- constants and definite descriptions

Two-Variable Fragment with Counting $C^2_{\boxed{1}} \text{ML}_\iota$

Definition (Two-Variable Fragment with Counting $C^2_{\boxed{1}} \text{ML}_\iota$)

$C^2_{\boxed{1}} \text{ML}_\iota$ **terms** and **formulas** built with:

- **two variables**
- **counting quantifiers** $\exists^{\geq k} x, k \geq 0$
- predicates of **arity at most two** (including equality)
- constants and definite descriptions

Definition (Counting Quantifier)

$\mathfrak{M}, w \models^{\mathfrak{a}} \exists^{\geq k} x \varphi \quad \text{iff} \quad \mathfrak{M}, w \models^{\mathfrak{a}'} \varphi$ for at least k distinct x -variants \mathfrak{a}'

Two-Variable Fragment with Counting $C^2_{\boxed{1}} \text{ML}_\iota$

Definition (Two-Variable Fragment with Counting $C^2_{\boxed{1}} \text{ML}_\iota$)

$C^2_{\boxed{1}} \text{ML}_\iota$ **terms** and **formulas** built with:

- **two variables**
- **counting quantifiers** $\exists^{\geq k} x, k \geq 0$
- predicates of **arity at most two** (including equality)
- constants and definite descriptions

Definition (Counting Quantifier)

$\mathfrak{M}, w \models^{\mathfrak{a}} \exists^{\geq k} x \varphi$ iff $\mathfrak{M}, w \models^{\mathfrak{a}'} \varphi$ for at least k distinct x -variants \mathfrak{a}'

Example (Number of Planets)

$$\varphi_1 = \Diamond \exists^{\leq 9} x \text{Planet}(x), \quad \varphi_2 = \exists^{\leq 9} x \Diamond \text{Planet}(x)$$

- Constant and expanding domains: $\varphi_1 \not\Rightarrow \varphi_2$
- Constant but not expanding domains: $\varphi_2 \Rightarrow \varphi_1$

Guarded Fragment $GF_{\boxed{1}}^= ML_\iota$

Definition (Guarded Fragment $GF_{\boxed{1}}^= ML_\iota$)

$GF_{\boxed{1}}^= ML_\iota$ **terms** and **formulas** built with:

- **guarded quantifiers** $\exists x_1 \dots \exists x_k (\alpha \wedge \varphi)$, where α atom with all free variables of φ
- constants and **closed** definite descriptions $\iota x. \chi(x)$, $\chi(x)$ with ≤ 1 free variable x

Guarded Fragment $GF_{\boxed{1}}^= ML_\iota$

Definition (Guarded Fragment $GF_{\boxed{1}}^= ML_\iota$)

$GF_{\boxed{1}}^= ML_\iota$ **terms** and **formulas** built with:

- **guarded quantifiers** $\exists x_1 \dots \exists x_k (\alpha \wedge \varphi)$, where α atom with all free variables of φ
- constants and **closed** definite descriptions $\iota x. \chi(x)$, $\chi(x)$ with ≤ 1 free variable x

Remark

Closed definite descriptions necessary for decidability even without modalities

- $\forall x F(x, \iota y. F(x, y))$ ensures F is a **function**
- guarded fragment with **functionality** is **undecidable**

Guarded Fragment $GF_{\boxed{1}}^= ML_\iota$

Definition (Guarded Fragment $GF_{\boxed{1}}^= ML_\iota$)

$GF_{\boxed{1}}^= ML_\iota$ **terms** and **formulas** built with:

- **guarded quantifiers** $\exists x_1 \dots \exists x_k (\alpha \wedge \varphi)$, where α atom with all free variables of φ
- constants and **closed** definite descriptions $\iota x. \chi(x)$, $\chi(x)$ with ≤ 1 free variable x

Remark

Closed definite descriptions necessary for decidability even without modalities

- $\forall x F(x, \iota y. F(x, y))$ ensures F is a **function**
- guarded fragment with **functionality** is **undecidable**

$\exists x \varphi(x)$ can still be expressed

- equivalent to $\exists x ((x = x) \wedge \varphi(x))$, with $x = x$ as its guard.

Decision Problems

Definition (Validity and Global Consequence Decision Problems)

For fragment \mathcal{L} and frame class \mathcal{C}

- **\mathcal{C} -validity in \mathcal{L} :** Is φ valid on all interpretations based on \mathcal{C} -frames?
- **global \mathcal{C} -consequence in \mathcal{L} :** Is φ true in all interpretations based on \mathcal{C} -frames that make theory Γ true?

Decision Problems

Definition (Validity and Global Consequence Decision Problems)

For fragment \mathcal{L} and frame class \mathcal{C}

- **\mathcal{C} -validity in \mathcal{L}** : Is φ valid on all interpretations based on \mathcal{C} -frames?
- **global \mathcal{C} -consequence in \mathcal{L}** : Is φ true in all interpretations based on \mathcal{C} -frames that make theory Γ true?

Problem Qualifiers

- **total \mathcal{C} -validity**: restriction to total interpretations
- with **constant** domains, with **expanding** domains

Decision Problems

Definition (Validity and Global Consequence Decision Problems)

For fragment \mathcal{L} and frame class \mathcal{C}

- **\mathcal{C} -validity in \mathcal{L}** : Is φ valid on all interpretations based on \mathcal{C} -frames?
- **global \mathcal{C} -consequence in \mathcal{L}** : Is φ true in all interpretations based on \mathcal{C} -frames that make theory Γ true?

Problem Qualifiers

- **total \mathcal{C} -validity**: restriction to total interpretations
- with **constant** domains, with **expanding** domains

Naming Convention

Fragment \mathcal{L} with $\left\{ \begin{array}{l} \text{subscript } \iota: \text{both constants and definite descriptions} \\ \text{subscript } c: \text{only constants} \\ \text{no subscript: neither constants nor definite descriptions} \end{array} \right.$

Overview

1 Introduction

2 Preliminaries

3 Results

Related Formalisms and Reductions

Quasimodels and Weak Quasimodels

Temporal Logics

4 Conclusion

Overview of Techniques

Preliminary Observations

- Show correspondence between one-variable fragment with **difference/elsewhere** quantifier $\exists \neq x$ and our one-variable fragment with **non-rigid constants**
 - Lift results from propositional case: “**difference** \equiv **nominals** + **universal modality**”

Overview of Techniques

Preliminary Observations

- Show correspondence between one-variable fragment with **difference/elsewhere** quantifier $\exists \neq x$ and our one-variable fragment with **non-rigid constants**
 - Lift results from propositional case: “**difference** \equiv **nominals** + **universal modality**”
- Simplify the landscape
 - Normalise and **eliminate definite descriptions**
 - **Reduce partial** to **total** interpretations (and **viceversa**)
 - **Reduce expanding** to **constant** domains

Overview of Techniques

Main Ideas for Decidability

- Adapt **quasimodel** machinery for NRDC features
 - Use **multisets** of types and runs to handle counting

Overview of Techniques

Main Ideas for Decidability

- Adapt **quasimodel** machinery for NRDC features
 - Use **multisets** of types and runs to handle counting
- Introduce **weak quasimodels** with relaxed saturation conditions
 - Avoid infinite branching of quasimodels due to counting

Overview of Techniques

Main Ideas for Decidability

- Adapt **quasimodel** machinery for NRDC features
 - Use **multisets** of types and runs to handle counting
- Introduce **weak quasimodels** with relaxed saturation conditions
 - Avoid infinite branching of quasimodels due to counting
- Use **bounded-size** weak quasimodels to decide satisfiability
 - 1-variable and guarded fragments: use weak quasimodels directly
 - 2-variable with counting: introduce weak pre-quasimodels + (in)equalities encoding constraints in Presburger Arithmetic with infinity

Overview of Techniques

Main Ideas for Decidability

- Adapt **quasimodel** machinery for NRDC features
 - Use **multisets** of types and runs to handle counting
- Introduce **weak quasimodels** with relaxed saturation conditions
 - Avoid infinite branching of quasimodels due to counting
- Use **bounded-size** weak quasimodels to decide satisfiability
 - 1-variable and guarded fragments: use weak quasimodels directly
 - 2-variable with counting: introduce weak pre-quasimodels + (in)equalities encoding constraints in Presburger Arithmetic with infinity
- **Expanding domains** simplify some cases:
 - validity/global consequence in fragments
 - K_n -validity in one-variable fragment
 - with transitive closure & no infinite chain on finite temporal frames

Overview of Techniques

Main Ideas for Undecidability

- For global consequence on \mathbf{K}_n ($n \geq 1$) and $\mathbf{S5}_n$ ($n \geq 2$) frames, reduce:
 - **undecidable products** to one-variable fragment with **elsewhere quantifier** $\exists \neq x$
 - the latter to our one-variable fragment with **non-rigid constants**

Overview of Techniques

Main Ideas for Undecidability

- For global consequence on K_n ($n \geq 1$) and $S5_n$ ($n \geq 2$) frames, reduce:
 - **undecidable products** to one-variable fragment with **elsewhere quantifier** $\exists \neq x$
 - the latter to our one-variable fragment with **non-rigid constants**
- For validity/global consequence with **transitive closure** & on **temporal** (infinite with constant/expanding domains, or finite with constant domains) frames, reduce
 - **undecidable one-variable FOTL with counting** to our one-variable fragments on temporal (infinite or finite, resp.) frames
 - the latter to one-variable fragments with **transitive closure** (with or without infinite chains, resp.)

Overview

1 Introduction

2 Preliminaries

3 Results

Related Formalisms and Reductions

Quasimodels and Weak Quasimodels

Temporal Logics

4 Conclusion

One-Variable Fragment with Elsewhere $Q^{1\neq}ML$

Definition (One-Variable Fragment with Elsewhere $Q^{1\neq}ML$)

$Q^{1\neq}ML$ formulas:

$$\varphi ::= P(x) \mid \neg\varphi \mid (\varphi \wedge \varphi) \mid \exists x \varphi \mid \exists^{\neq} x \varphi \mid \diamond_a \varphi$$

One-Variable Fragment with Elsewhere Q^{1≠ML}

Definition (One-Variable Fragment with Elsewhere Q^{1≠ML})

Q^{1≠ML} formulas:

$$\varphi ::= P(x) \mid \neg\varphi \mid (\varphi \wedge \varphi) \mid \exists x \varphi \mid \exists^{\neq} x \varphi \mid \Diamond_a \varphi$$

Definition (Elsewhere Quantifier)

$\mathfrak{M}, w \models^{\mathfrak{a}} \exists^{\neq} x \varphi$ iff $\mathfrak{M}, w \models^{\mathfrak{a}'} \varphi$, for some x -variant \mathfrak{a}' of \mathfrak{a} at w **different from \mathfrak{a}**

Reductions Between Non-Rigid Constants and Elsewhere Quantifier

Theorem

For any class of frames \mathcal{C} , with both constant and expanding domains

- \mathcal{C} -validity in $\mathbf{Q}^1 = \mathbf{ML}_c$ and $\mathbf{Q}^1 \neq \mathbf{ML}$ are mutually polytime-reducible
- same applies to global \mathcal{C} -consequence

Reductions Between Non-Rigid Constants and Elsewhere Quantifier

Theorem

For any class of frames \mathcal{C} , with both constant and expanding domains

- \mathcal{C} -validity in $\mathbf{Q}^1 = \mathbf{ML}_c$ and $\mathbf{Q}^1 \neq \mathbf{ML}$ are mutually polytime-reducible
- same applies to global \mathcal{C} -consequence

Proof (Idea).

- $\mathbf{Q}^1 = \mathbf{ML}_c$ to $\mathbf{Q}^1 \neq \mathbf{ML}$

$$x = c \quad \stackrel{\dagger}{\rightsquigarrow} \quad Q_c(x) \wedge \neg \exists^{\neq} x Q_c(x)$$

- $\mathbf{Q}^1 \neq \mathbf{ML}$ to $\mathbf{Q}^1 = \mathbf{ML}_c$ (global \mathcal{C} -consequence)

$$\Gamma \models \exists^{\neq} x \psi \quad \stackrel{\ddagger}{\rightsquigarrow} \quad \Gamma^{\ddagger} \cup \{\text{singl}_\psi\} \models \exists x P_\psi(x) \wedge (x = c_\psi \rightarrow \exists x (\neg(x = c_\psi) \wedge P_\psi(x)))$$

$$\text{where } \text{singl}_\psi := \forall x (\psi(x) \rightarrow P_\psi(x)) \wedge \forall x (P_\psi(x) \rightarrow \psi(x) \wedge \psi(c_\psi))$$

□

Overview of Results for \mathbf{K}_n and $\mathbf{S5}_n$ Global Consequence

frames \mathcal{C}	dom.	\mathcal{C} -validity			global \mathcal{C} -consequence		
		$Q^1 = \text{ML}_\iota$	$C^2_{\boxed{1}} \text{ML}_\iota$	$GF_{\boxed{1}} = \text{ML}_\iota$	$Q^1 = \text{ML}_\iota$	$C^2_{\boxed{1}} \text{ML}_\iota$	$GF_{\boxed{1}} = \text{ML}_\iota$
$\mathbf{S5}$	$=$	coNEXP	coNEXP	2EXP	coNEXP	coNEXP	2EXP
$\mathbf{S5}_n, n \geq 2$	$=$	coNEXP	coNEXP	2EXP			undecidable
\mathbf{K}_n	$=$	coNEXP	coNEXP	2EXP			undecidable
	\subseteq	PSPACE	coNEXP	2EXP			?
$\mathbf{K}_{*n}, \mathbf{LTL}^{(\diamond)}$	$=$				Σ_1^1		
	\subseteq				undecidable		
$\mathbf{Kf}_{*n}, \mathbf{LTLf}^{(\diamond)}$	$=$				undecidable		
	\subseteq				decidable, Ackermann-hard		

First Undecidability Results

Theorem

For **constant** domains:

- **global K_n -consequence** with $n \geq 1$ in $Q^{1=}\text{ML}_c$ is **undecidable**
- **global $S5_n$ -consequence** with $n \geq 2$ in $Q^{1=}\text{ML}_c$ is **undecidable**

First Undecidability Results

Theorem

For **constant domains**:

- **global K_n -consequence with $n \geq 1$ in $Q^{1\neq}ML_c$ is undecidable**
- **global $S5_n$ -consequence with $n \geq 2$ in $Q^{1\neq}ML_c$ is undecidable**

Proof (Idea).

From undecidability of product modal logic $K_u \times \mathbf{Diff}$, with K_u extending K with universal modality u , and \mathbf{Diff} propositional modal logic of elsewhere

- Reduce from $K_u \times \mathbf{Diff}$ -validity to $Q^{1\neq}ML$ global K_n -consequence
 - product world \sim domain object at a world
 - $\Diamond_{\neq} \sim \exists^{\neq} x$
 - $\Diamond_u \sim$ global K_n -consequence
- Then, use previous reduction from $Q^{1\neq}ML$ global K_n -consequence to $Q^{1=}ML_c$
- Finally (for 2nd point), use known reduction from K to $S5_2$

S5₁ and **K_n** with Expanding Domains?

Exception: Global **S5₁**-consequence

The theorem does **not** hold for **S5**, since global **S5**-consequence reduces to **S5**-validity:

$$\Gamma \models_{S5} \varphi \quad \text{iff} \quad \Box \bigwedge \Gamma \rightarrow \varphi \text{ is } \mathbf{S5}\text{-valid}$$

S5₁ and **K_n** with Expanding Domains?

Exception: Global **S5₁**-consequence

The theorem does **not** hold for **S5**, since global **S5**-consequence reduces to **S5**-validity:

$$\Gamma \models_{S5} \varphi \quad \text{iff} \quad \square \bigwedge \Gamma \rightarrow \varphi \text{ is } \mathbf{S5}\text{-valid}$$

Open Problem: Global **K_n**-Consequence with Expanding Domains

- Reduction from product modal logics works only for constant domains
- **S5_n** domains always constant (by symmetry of accessibility relation)
- Expanding domain case for global **K_n**-consequence remains open

Simplifying the Landscape

Theorem

For $\mathcal{L} \in \{Q^1=ML_\nu, C_{\boxed{1}}^2ML_\nu, GF_{\boxed{1}}=ML_\nu, Q_{\boxed{1}}=ML_\nu\}$ and any class of frames \mathcal{C} :

- ① \mathcal{C} -validity in \mathcal{L} is polytime-reducible to \mathcal{C} -validity in \mathcal{L} w/out definite descriptions
- ② \mathcal{C} -validity in **partial** and **total** interpretations are mutually polytime-reducible
- ③ \mathcal{C} -validity with **expanding domains** is polytime-reducible to **constant-domains**

All hold also for global \mathcal{C} -consequence in \mathcal{L}

Simplifying the Landscape

Eliminating Definite Descriptions

Normalisation Procedure

- Replace definite descriptions $\iota x. \psi(x, \mathbf{y})$ with “atomic” ones: $\iota x. P_\psi(x, \mathbf{y})$
- Add “surrogates” for definite description “bodies”: $\forall x \forall \mathbf{y} (P_\psi(x, \mathbf{y}) \leftrightarrow \psi(x, \mathbf{y}))$
- Iterate starting from innermost descriptions

Simplifying the Landscape

Eliminating Definite Descriptions

Normalisation Procedure

- Replace definite descriptions $\iota x. \psi(x, \mathbf{y})$ with “atomic” ones: $\iota x. P_\psi(x, \mathbf{y})$
- Add “surrogates” for definite description “bodies”: $\forall x \forall \mathbf{y} (P_\psi(x, \mathbf{y}) \leftrightarrow \psi(x, \mathbf{y}))$
- Iterate starting from innermost descriptions

Elimination of Definite Descriptions

Replace atoms $\alpha(\iota x. Q(x, \mathbf{y}), \tau)$ with “**Russell’s paraphrase**”

- in $Q \stackrel{[1]}{=} \text{ML}_\iota$
$$\exists x (\alpha(x, \tau) \wedge Q(x, \mathbf{y}) \wedge \forall x' (Q(x', \mathbf{y}) \rightarrow x' = x))$$

Simplifying the Landscape

Eliminating Definite Descriptions

Normalisation Procedure

- Replace definite descriptions $\iota x. \psi(x, y)$ with “atomic” ones: $\iota x. P_\psi(x, y)$
- Add “surrogates” for definite description “bodies”: $\forall x \forall y (P_\psi(x, y) \leftrightarrow \psi(x, y))$
- Iterate starting from innermost descriptions

Elimination of Definite Descriptions

Replace atoms $\alpha(\iota x. Q(x, y), \tau)$ with “**Russell’s paraphrase**”

- in $Q_{\boxed{1}}^= \text{ML}_\iota$
$$\exists x (\alpha(x, \tau) \wedge Q(x, y) \wedge \forall x' (Q(x', y) \rightarrow x' = x))$$
- in $C_{\boxed{1}}^2 \text{ML}_\iota$
$$\exists x (\alpha(x, \tau) \wedge Q(x, y)) \wedge \exists^{=1} x Q(x, y)$$
- in $Q^1 = \text{ML}_\iota$ and $GF_{\boxed{1}}^= \text{ML}_\iota$, with $c_{\iota x. Q(x)}$ fresh constant symbol
$$\alpha(c_{\iota x. Q(x)}, \tau) \wedge Q(c_{\iota x. Q(x)}) \wedge \forall x (Q(x) \rightarrow x = c_{\iota x. Q(x)})$$

Simplifying the Landscape

From Partial to Total Interpretations, and Back

From Partial to Total

Introduce **propositional letter** p_c for each constant c to encode **whether c designates**

$$P(\tau_1, \dots, \tau_m) \quad \sim \quad \bigwedge_{c_i \in \{\tau_1, \dots, \tau_m\}} p_{c_i} \wedge P(\tau_1, \dots, \tau_m)$$

Simplifying the Landscape

From Partial to Total Interpretations, and Back

From Partial to Total

Introduce **propositional letter** p_c for each constant c to encode **whether c designates**

$$P(\tau_1, \dots, \tau_m) \quad \sim \quad \bigwedge_{c_i \in \{\tau_1, \dots, \tau_m\}} p_{c_i} \wedge P(\tau_1, \dots, \tau_m)$$

From Total to Partial

Add “**existence axioms**” to ensure that **each constant c designates**

$$\exists x(x = c)$$

Simplifying the Landscape

From Expanding to Constant Domains

Reduction from Expanding to Constant Domains

- By previous two points, in \mathcal{L} *without* definite descriptions, reduce *total* \mathcal{C} -validity with expanding domains to *total* \mathcal{C} -validity with constant domain
- Use well-known reduction, with a semi-rigid (monotonically increasing) “**actuality predicate**” to encode expanding domains

Enforcing Infinite Branching

Example (Infinitely Branching Interpretations with Equality or Counting)

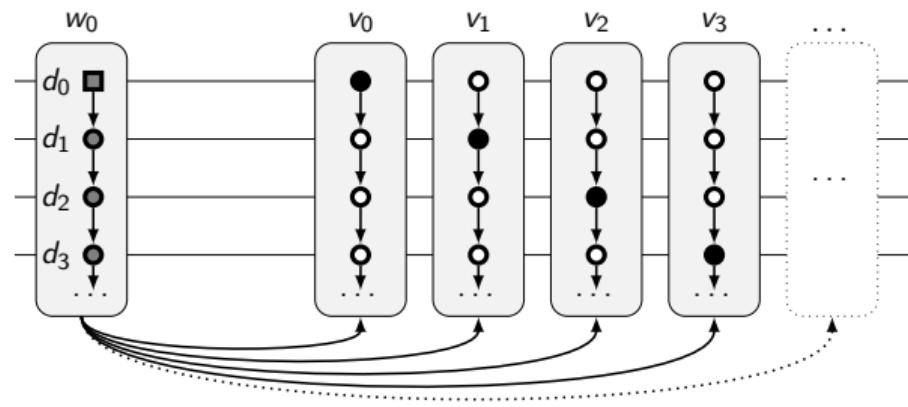
C^2 -sentence φ_0 with only infinite models:

$$\forall x \exists^{=1} y P(x, y) \wedge \forall x \exists^{\leq 1} z P(z, x) \wedge \exists x \neg \exists z P(z, x)$$

$C^2_{\boxed{1}}$ ML_c -sentence forcing infinite branching

$$\varphi = \varphi_0 \wedge \forall x \diamond_a A(x) \wedge \square_a \exists^{\leq 1} x A(x)$$

Each element in infinite P -chain requires separate a -successor with unique A -element



Overview

1 Introduction

2 Preliminaries

3 Results

Related Formalisms and Reductions

Quasimodels and Weak Quasimodels

Temporal Logics

4 Conclusion

Quasimodels for $Q \equiv \text{ML}_c$

Main Ideas

- **Quasistates** describe worlds in interpretations

Quasimodels for $Q \equiv \text{ML}_c$ 1

Main Ideas

- **Quasistates** describe worlds in interpretations
- **Runs** correspond to domain elements

Quasimodels for $Q \equiv \text{ML}_c$ [1]

Main Ideas

- **Quasistates** describe worlds in interpretations
- **Runs** correspond to domain elements
- Generalise basic quasimodels to handle **non-rigid constants & equality/counting**
 - use **multisets** of types and runs to take care of cardinalities

Definition (Surrogates)

Surrogate $\bar{\varphi}$: replace modal subformulas of φ

- monodic $\Diamond_a \psi(x) \rightsquigarrow$ unary predicate $R_{\Diamond_a \psi}(x)$
- monodic $\Diamond_a \psi \rightsquigarrow$ propositional variable $p_{\Diamond_a \psi}$

Types

Definition (Surrogates)

Surrogate $\bar{\varphi}$: replace modal subformulas of φ

- monodic $\Diamond_a \psi(x) \rightsquigarrow$ unary predicate $R_{\Diamond_a \psi}(x)$
- monodic $\Diamond_a \psi \rightsquigarrow$ propositional variable $p_{\Diamond_a \psi}$

Definition (Type)

Type for QML_c -sentence φ : subset $t \subseteq \text{sub}_x(\varphi)$, where for fresh variable x

$$\text{sub}_x(\varphi) = \{\psi\{x/y\}, \neg\psi\{x/y\} \mid \psi(y) \in \text{sub}(\varphi)\}$$

that is Boolean-saturated, i.e., for every sub-formula $\psi_1 \wedge \psi_2, \neg\psi \in \text{sub}_x(\varphi)$

$$\psi_1 \wedge \psi_2 \in t \text{ iff } \psi_1 \in t \text{ and } \psi_2 \in t; \quad \neg\psi \in t \text{ iff } \psi \notin t$$

Surrogate type $\bar{t} := \{\bar{\psi} \mid \psi \in t\}$

Quasistates and Basic Structures

Definition (Multiset)

Set X equipped (& identified) with **multiplicity function** $X(x) \in \mathbb{N} \cup \{\aleph_0\}$, for $x \in X$

Quasistates and Basic Structures

Definition (Multiset)

Set X equipped (& identified) with **multiplicity function** $X(x) \in \mathbb{N} \cup \{\aleph_0\}$, for $x \in X$

Definition (Quasistate Candidate)

Quasistate candidate for φ : non-empty multiset n of types for φ with multiplicity $n(t)$

- **n realised** in FO structure \mathfrak{B} : $n(t) = |\{b \in \mathfrak{B} \mid \mathfrak{B} \models \bar{t}[b]\}|$

Quasistate for φ : **realisable** quasistate candidate (i.e., realised by some \mathfrak{B})

Quasistates and Basic Structures

Definition (Multiset)

Set X equipped (& identified) with **multiplicity function** $X(x) \in \mathbb{N} \cup \{\aleph_0\}$, for $x \in X$

Definition (Quasistate Candidate)

Quasistate candidate for φ : non-empty multiset n of types for φ with multiplicity $n(t)$

- **n realised** in FO structure \mathfrak{B} : $n(t) = |\{b \in \mathfrak{B} \mid \mathfrak{B} \models \bar{t}[b]\}|$

Quasistate for φ : **realisable** quasistate candidate (i.e., realised by some \mathfrak{B})

Definition (Basic Structure)

(\mathfrak{F}, q) , where $\begin{cases} \mathfrak{F} = (W, \{R_a\}_{a \in A}) \text{ frame} \\ q \text{ function assigning quasistate } q(w) \text{ to each } w \in W \end{cases}$

Definition (Run)

Run ρ in $(\mathfrak{F}, \mathbf{q})$: map from worlds w in upward-closed $W' \subseteq W$ to types $\rho(w) \in \mathbf{q}(w)$:

- **(r-coh)** $\exists v \in W : wR_a v$ and $\psi \in \rho(v) \Rightarrow \Diamond_a \psi \in \rho(w)$
- **(r-sat)** $\Diamond_a \psi \in \rho(w) \Rightarrow \exists v \in W : wR_a v$ and $\psi \in \rho(v)$

Domain of ρ : $\text{dom} \rho = W' \subseteq W$ (upward-closed); **full run**: $\text{dom} \rho = W$

Runs

Definition (Run)

Run ρ in $(\mathfrak{F}, \mathbf{q})$: map from worlds w in upward-closed $W' \subseteq W$ to types $\rho(w) \in \mathbf{q}(w)$:

- **(r-coh)** $\exists v \in W : wR_a v$ and $\psi \in \rho(v) \Rightarrow \diamond_a \psi \in \rho(w)$
- **(r-sat)** $\diamond_a \psi \in \rho(w) \Rightarrow \exists v \in W : wR_a v$ and $\psi \in \rho(v)$

Domain of ρ : $\text{dom} \rho = W' \subseteq W$ (upward-closed); **full run**: $\text{dom} \rho = W$

Definition (Multiset of Runs)

\mathfrak{R} **multiset of runs**:

- **w -slice** $\mathfrak{R}_w \subseteq \mathfrak{R}$, where $\mathfrak{R}_w(\rho) = \begin{cases} \mathfrak{R}(\rho), & \text{if } w \in \text{dom} \rho, \\ 0, & \text{otherwise.} \end{cases}$
- **(w, t) -slice** $\mathfrak{R}_{w,t} \subseteq \mathfrak{R}$, where $\mathfrak{R}_{w,t}(\rho) = \begin{cases} \mathfrak{R}(\rho), & \text{if } w \in \text{dom} \rho \text{ and } \rho(w) = t, \\ 0, & \text{otherwise.} \end{cases}$

Multiset \mathfrak{R} of runs \leadsto set of **indexed runs** $\hat{\mathfrak{R}} = \{(\rho, \ell) \in \mathfrak{R} \times \mathbb{N} \mid 0 \leq \ell < \mathfrak{R}(\rho)\}$

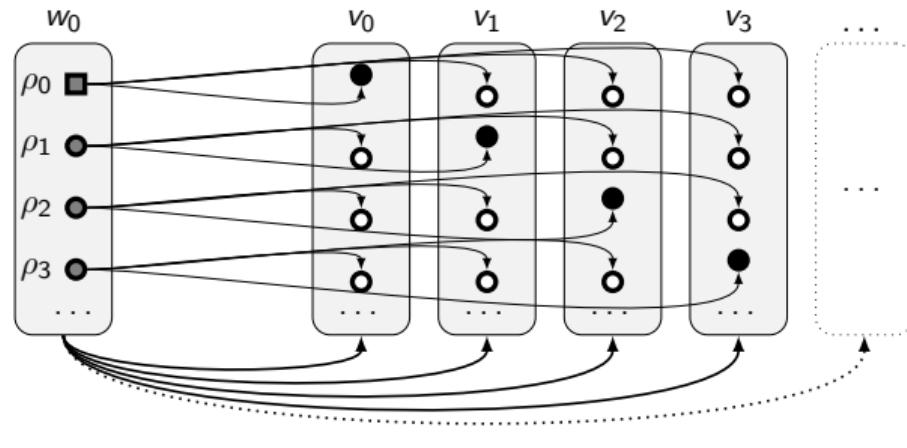
Definition (Quasimodel)

- **(Expanding-domain) quasimodel** $\mathfrak{Q} = (\mathfrak{F}, \mathfrak{q}, \mathfrak{R})$ for φ :
 - $(\mathfrak{F}, \mathfrak{q})$ basic structure for φ
 - \mathfrak{R} multiset of runs through $(\mathfrak{F}, \mathfrak{q})$ such that
(card) $\mathfrak{q}(w, t) = |\mathfrak{R}_{w,t}|$ for all $w \in W$ and types t for φ
- **Constant-domain quasimodel**: \mathfrak{R} consists of full runs
- \mathfrak{Q} **satisfies** φ : $\varphi \in t$ for some $w_0 \in W$ and $t \in \mathfrak{q}(w_0)$

Quasimodels

Definition (Quasimodel)

- **(Expanding-domain) quasimodel** $\mathfrak{Q} = (\mathfrak{F}, \mathfrak{q}, \mathfrak{R})$ for φ :
 - $(\mathfrak{F}, \mathfrak{q})$ basic structure for φ
 - \mathfrak{R} multiset of runs through $(\mathfrak{F}, \mathfrak{q})$ such that
(card) $\mathfrak{q}(w, t) = |\mathfrak{R}_{w, t}|$ for all $w \in W$ and types t for φ
- **Constant-domain quasimodel**: \mathfrak{R} consists of full runs
- \mathfrak{Q} **satisfies** φ : $\varphi \in t$ for some $w_0 \in W$ and $t \in \mathfrak{q}(w_0)$



Quasimodels and Interpretations

Lemma (Quasimodel Lemma)

For both constant and expanding domains, $Q \models_{\boxed{1}} \text{ML}_c$ -sentence φ **satisfiable** in interpretation based on frame \mathfrak{F} iff there **exists quasimodel satisfying φ based on \mathfrak{F}**

Quasimodels and Interpretations

Lemma (Quasimodel Lemma)

For both constant and expanding domains, $\mathbb{Q} \models_{\mathfrak{I}} \text{ML}_c$ -sentence φ **satisfiable** in interpretation based on frame \mathfrak{F} iff there exists **quasimodel** satisfying φ based on \mathfrak{F}

Proof (Idea).

(\Rightarrow) Given interpretation \mathfrak{M} satisfying φ :

- types: $t^{\mathfrak{M}(w)}(d) := \{\psi \in \text{sub}_x(\varphi) \mid \mathfrak{M}, w \models \psi[d]\}$
- quasistate candidates: $\mathbf{q}(w, t) :=$ number of domain elements realizing t at w
- runs: $\rho_d(w) := t^{\mathfrak{M}(w)}(d)$, for $d \in \Delta_w$

(\Leftarrow) Given quasimodel \mathfrak{Q} satisfying φ :

- Construct interpretation with domains $\Delta_w = \hat{\mathfrak{R}}_w$
- Use bijections $f_w : \hat{\mathfrak{R}}_w \rightarrow \text{domain of } \mathfrak{B}_w$ realising $\mathbf{q}(w)$ to define
 - $c^{\mathfrak{M}(w)} = f_w^{-1}(c^{\mathfrak{B}_w})$
 - $P^{\mathfrak{M}(w)} = f_w^{-1}(P^{\mathfrak{B}_w})$

Infinite Branching Again (Recall)

Example (Infinitely Branching Interpretations with Equality or Counting)

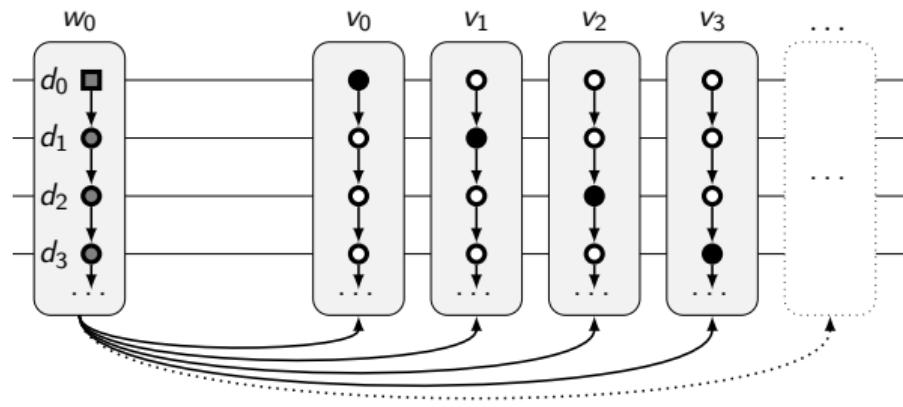
C^2 -sentence φ_0 with only infinite models:

$$\forall x \exists^{=1} y P(x, y) \wedge \forall x \exists^{\leq 1} z P(z, x) \wedge \exists x \neg \exists z P(z, x)$$

$C^2_{\boxed{1}}$ ML_c -sentence forcing infinite branching

$$\varphi = \varphi_0 \wedge \forall x \diamond_a A(x) \wedge \Box_a \exists^{\leq 1} x A(x)$$

Each element in infinite P -chain requires separate a -successor with unique A -element



Infinite Branching Again

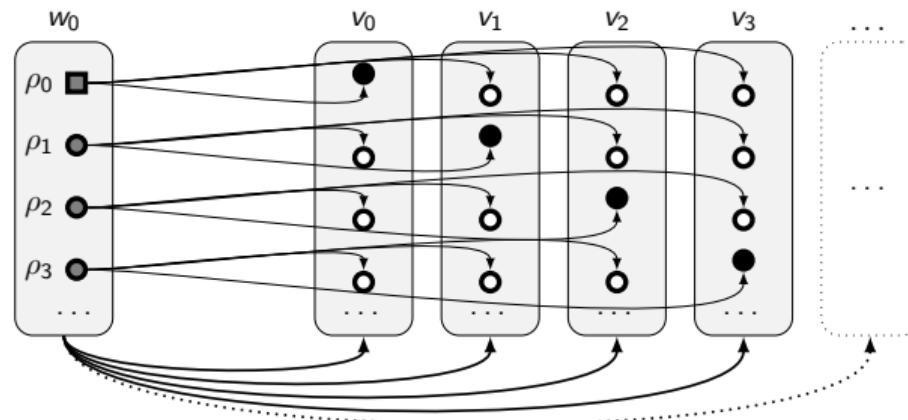
Infinite Branching in Quasimodels

- Standard quasimodels can require **infinite branching**

Infinite Branching Again

Infinite Branching in Quasimodels

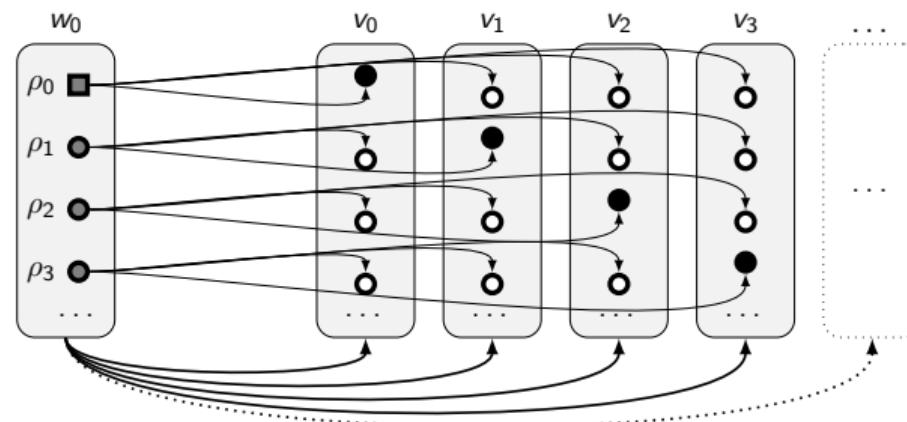
- Standard quasimodels can require **infinite branching**
 - Infinite Branching Example \leadsto infinite branching quasimodels
 - type “gray circle” has \aleph_0 infinite multiplicity in w_0
 - multiset of runs contains \aleph_0 runs (of multiplicity 1) through type “gray circle” at w_0
 - by quasimodel constraints, each of \aleph_0 runs then requires a **separate a-successor**



Infinite Branching Again

Infinite Branching in Quasimodels

- Standard quasimodels can require **infinite branching**
 - Infinite Branching Example \leadsto infinite branching quasimodels
 - type “gray circle” has \aleph_0 infinite multiplicity in w_0
 - multiset of runs contains \aleph_0 runs (of multiplicity 1) through type “gray circle” at w_0
 - by quasimodel constraints, each of \aleph_0 runs then requires a **separate a-successor**



- Need **finite representation** of quasimodels for decidability

Weak Quasimodels to the Rescue

Main Ideas

- Define **weak quasimodels** with weakened saturation conditions

Weak Quasimodels to the Rescue

Main Ideas

- Define **weak quasimodels** with weakened saturation conditions
- Show that quasimodels can be reconstructed from **bounded-size** weak quasimodels

Overview of Results for \mathbf{K}_n and $\mathbf{S5}_n$ Validity

frames \mathcal{C}	dom.	\mathcal{C} -validity			global \mathcal{C} -consequence		
		$Q^1 = \text{ML}_\iota$	$C_{\boxed{1}}^2 \text{ML}_\iota$	$GF_{\boxed{1}}^= \text{ML}_\iota$	$Q^1 = \text{ML}_\iota$	$C_{\boxed{1}}^2 \text{ML}_\iota$	$GF_{\boxed{1}}^= \text{ML}_\iota$
$\mathbf{S5}$	$=$	coNEXP	coNEXP	2EXP	coNEXP	coNEXP	2EXP
$\mathbf{S5}_n, n \geq 2$	$=$	coNEXP	coNEXP	2EXP			undecidable
\mathbf{K}_n	$=$	coNEXP	coNEXP	2EXP			undecidable
	\subseteq	PSPACE	coNEXP	2EXP			?
$\mathbf{K}_{*n}, \mathbf{LTL}^{(\diamond)}$	$=$				Σ_1^1		
	\subseteq				undecidable		
$\mathbf{Kf}_{*n}, \mathbf{LTLf}^{(\diamond)}$	$=$				undecidable		
	\subseteq				decidable, Ackermann-hard		

One-Variable Fragment $\mathbf{K}_n/\mathbf{S5}_n$ -Validity in Constant Domains

For \mathbf{K}_n and $\mathbf{S5}_n$ -validity in $Q^{1=ML_c}$ with **constant** domains

- guess-and-check **exponential-size** weak quasimodels
- **coNExpTime upper bound**; matching lower bound from constant-domain products / one-variable \mathbf{K} and $\mathbf{S5}$ without equality and constants

Theorem

With constant domains \mathbf{K}_n and $\mathbf{S5}_n$ -validity in $Q^{1=ML_c}$ are coNExpTIME-c.

- *in fact, every satisfiable sentence is satisfiable in a frame of exponential size*

Guarded Fragment $\mathbf{K}_n/\mathbf{S5}_n$ -Validity in Constant/Expanding Domains

For \mathbf{K}_n and $\mathbf{S5}_n$ -validity in $\text{GF}_{\boxed{1}}^= \text{ML}_c$ with **constant/expanding** domains:

- **enumerate quasimodels** and **check realisable** quasistates in **double exp. time**
- **2ExpTime upper bound**; matching lower bound from plain GF

Theorem

With constant/expanding domains, \mathbf{K}_n and $\mathbf{S5}_n$ -validity in $\text{GF}_{\boxed{1}}^= \text{ML}_c$ are 2EXPTIME-c.

Two-Variable Fragment $\mathbf{K}_n/\mathbf{S5}_n$ -Validity in Constant/Expanding Domains

For \mathbf{K}_n and $\mathbf{S5}_n$ -validity in $C^2_{\boxed{1}} \text{ML}_c$ with **constant/expanding** domains:

- introduce **weak pre-quasimodels** replacing multiset of weak runs with a bounded-from-above set of **locally saturated weak runs**
- encode **quasistates** and other constraints in decidable **Presburger arithmetic** extended with infinity (\aleph_0) and exploit NEXPTIME upper bound for C^2
- **coNExpTime upper bound**; matching lower bound from plain C^2

Theorem

With *constant/expanding domains*, \mathbf{K}_n and $\mathbf{S5}_n$ -validity in $C^2_{\boxed{1}} \text{ML}_c$ are coNEXPTIME-c.

Decidability with Expanding Domains

Expanding vs Constant Domains

- Recall: reasoning in **expanding** domains can be **reduced** to **constant** domains
- However: expanding domains sometimes **simpler** than constant domain case
- Quasimodel and weak quasimodel constructions work for expanding domains

Decidability with Expanding Domains

Expanding vs Constant Domains

- Recall: reasoning in **expanding** domains can be **reduced** to **constant** domains
- However: expanding domains sometimes **simpler** than constant domain case
- Quasimodel and weak quasimodel constructions work for expanding domains

Affected Fragments

Under expanding domains, life is (a bit) easier for

- validity/global conseq. in fragments with **transitive closure** & **no infinite chains**
- K_n -validity in **one-variable fragment**

From Validity to Global Consequence with Transitive Closure

Definition (\mathbf{K}_{*n} and \mathbf{Kf}_{*n} Frames)

- Modalities $A = A_0 \cup \{*\}$
- \mathbf{K}_{*n} : frames with **transitive closure** R_* of $\bigcup_{a \in A_0} R_a$ (interpreting \Diamond_*)
- \mathbf{Kf}_{*n} : frames where R_* has **no infinite ascending chain** $w_i R_* w_{i+1}$, for all $i \geq 0$

Lemma

For all fragments \mathcal{L} and $\mathcal{C} \in \{\mathbf{K}_{*n}, \mathbf{Kf}_{*n}\}$, with both constant and expanding domains, global \mathcal{C} -consequence in \mathcal{L} is polytime-reducible to \mathcal{C} -validity in \mathcal{L}

From Validity to Global Consequence with Transitive Closure

Definition (\mathbf{K}_{*n} and \mathbf{Kf}_{*n} Frames)

- Modalities $A = A_0 \cup \{*\}$
- \mathbf{K}_{*n} : frames with **transitive closure** R_* of $\bigcup_{a \in A_0} R_a$ (interpreting \diamond_*)
- \mathbf{Kf}_{*n} : frames where R_* has **no infinite ascending chain** $w_i R_* w_{i+1}$, for all $i \geq 0$

Lemma

For all fragments \mathcal{L} and $\mathcal{C} \in \{\mathbf{K}_{*n}, \mathbf{Kf}_{*n}\}$, with both constant and expanding domains, global \mathcal{C} -consequence in \mathcal{L} is polytime-reducible to \mathcal{C} -validity in \mathcal{L}

Proof (Idea).

φ global \mathcal{C} -consequence of Γ iff $(\bigwedge \Gamma \wedge \square_* \bigwedge \Gamma) \rightarrow \varphi$ \mathcal{C} -valid for $\mathcal{C} \in \{\mathbf{K}_{*n}, \mathbf{Kf}_{*n}\}$

□

Overview of Results for Expanding Domains

frames \mathcal{C}	dom.	\mathcal{C} -validity			global \mathcal{C} -consequence		
		$Q^1 = \text{ML}_\iota$	$C_{\boxed{1}}^2 \text{ML}_\iota$	$GF_{\boxed{1}}^= \text{ML}_\iota$	$Q^1 = \text{ML}_\iota$	$C_{\boxed{1}}^2 \text{ML}_\iota$	$GF_{\boxed{1}}^= \text{ML}_\iota$
$S5$	$=$	coNEXP	coNEXP	2EXP	coNEXP	coNEXP	2EXP
$S5_n, n \geq 2$	$=$	coNEXP	coNEXP	2EXP			undecidable
K_n	$=$	coNEXP	coNEXP	2EXP			undecidable
	\subseteq	PSPACE	coNEXP	2EXP			?
$K_{*n}, \text{LTL}^{(\diamond)}$	$=$				Σ_1^1		
	\subseteq				undecidable		
$Kf_{*n}, \text{LTLf}^{(\diamond)}$	$=$				undecidable		
	\subseteq				decidable, Ackermann-hard		

Decidability with Transitive Closure in Expanding Domains

Theorem

*With expanding domains, \mathbf{Kf}_{*n} -validity in $\mathcal{C}_{\square}^2 \text{ML}_c$ and $\text{GF}_{\square}^{\equiv} \text{ML}_c$ are decidable*

Decidability with Transitive Closure in Expanding Domains

Theorem

With expanding domains, \mathbf{Kf}_{*n} -validity in $\mathcal{C}^2_{\square} \text{ML}_c$ and $\mathbf{GF}^=_{\square} \text{ML}_c$ are decidable

Proof (Idea).

Relies on weak quasimodels and shows, using Dickson's Lemma, a non-primitive recursive bound on their size

\mathbf{K}_n -Validity in One-Variable Fragment

Theorem

For expanding-domain models, \mathbf{K}_n -validity in $\mathbf{Q}^1 = \mathbf{ML}_c$ is PSPACE-complete

\mathbf{K}_n -Validity in One-Variable Fragment

Theorem

For expanding-domain models, \mathbf{K}_n -validity in $\mathbf{Q}^1 = \mathbf{ML}_c$ is PSPACE-complete

Proof (Idea).

- Upper bound: define a non-deterministic recursive function that checks the existence of a quasimodel for a formula in polynomial space
- Lower bound: from the underlying (propositional) modal logic \mathbf{K}_n

□

Overview

1 Introduction

2 Preliminaries

3 Results

Related Formalisms and Reductions

Quasimodels and Weak Quasimodels

Temporal Logics

4 Conclusion

Definition (Temporal Frame Classes)

- \mathbf{LTL}^{\diamond} : $\{(\mathbb{N}, <)\}$, with standard **strict linear order** $<$ (interpreting \diamond)
- \mathbf{LTLf}^{\diamond} : $\{(\{0, \dots, n\}, <) \mid n \in \mathbb{N}\}$, with $<$ restricted to $\{0, \dots, n\}$
- \mathbf{LTL} : $\{(\mathbb{N}, <, S)\}$, with **successor** relation $S = \{(i, i + 1) \mid i \in \mathbb{N}\}$ (interpreting \bigcirc)
- \mathbf{LTLf}^{\diamond} : $\{(\{0, \dots, n\}, <, S) \mid n \in \mathbb{N}\}$, with $<$ and S restricted to $\{0, \dots, n\}$

Overview of Results for Temporal (and Transitive Closure) Logics

frames \mathcal{C}	dom.	\mathcal{C} -validity			global \mathcal{C} -consequence		
		$Q^1 = \text{ML}_\tau$	$C_{\boxed{1}}^2 \text{ML}_\tau$	$GF_{\boxed{1}}^= \text{ML}_\tau$	$Q^1 = \text{ML}_\tau$	$C_{\boxed{1}}^2 \text{ML}_\tau$	$GF_{\boxed{1}}^= \text{ML}_\tau$
$S5$	$=$	coNEXP	coNEXP	2EXP	coNEXP	coNEXP	2EXP
$S5_n, n \geq 2$	$=$	coNEXP	coNEXP	2EXP			undecidable
K_n	$=$	coNEXP	coNEXP	2EXP			undecidable
	\subseteq	PSPACE	coNEXP	2EXP			?
$K_{*n}, \text{LTL}^{(\diamond)}$	$=$				Σ_1^1		
	\subseteq						undecidable
$Kf_{*n}, \text{LTL}f^{(\diamond)}$	$=$						undecidable
	\subseteq						decidable, Ackermann-hard

(Un-)Decidability of Temporal Fragments

Theorem

In $Q^1 = \text{LTL}_\iota$ and $Q^1 = \text{LTL}_\iota^\diamond$ with

- **constant domains:** $\begin{cases} \text{LTL}-\text{validity} & \Sigma_1^1\text{-complete} \\ \text{LTLf}-\text{validity} & \text{undecidable and co-r.e.} \end{cases}$
- **expanding domains:** $\begin{cases} \text{LTL}-\text{validity} & \text{undecidable and r.e.} \\ \text{LTLf}-\text{validity} & \text{decidable but Ackermann-hard} \end{cases}$

(Un-)Decidability of Temporal Fragments

Theorem

In $Q^1 = \text{LTL}_\iota$ and $Q^1 = \text{LTL}_\iota^\diamond$ with

- **constant domains:** $\begin{cases} \text{LTL}\text{-validity} & \Sigma_1^1\text{-complete} \\ \text{LTLf}\text{-validity} & \text{undecidable and co-r.e.} \end{cases}$
- **expanding domains:** $\begin{cases} \text{LTL}\text{-validity} & \text{undecidable and r.e.} \\ \text{LTLf}\text{-validity} & \text{decidable but Ackermann-hard} \end{cases}$

Proof (Idea).

Adapt known results from products/1-variable temporal logics with difference operator

- Lower bounds: undecidable/Ackermann-hard $Q^1 \neq \text{LTL} \rightsquigarrow Q^1 = \text{LTL}_\iota$
- Upper bounds: $Q^1 = \text{LTL}_\iota \rightsquigarrow Q^1 \neq \text{LTL}$ decidable/undecidable r.e./co-r.e./in Σ_1^1 □

From Temporal to Modal Logics with Transitive Closure

Theorem (Polytime Reduction from Temporal to Modal with Transitive Closure)

In $Q^1 = \text{LTL}_\iota$, $C_{\boxed{1}}^2 \text{LTL}_\iota$, $GF_{\boxed{1}} \text{LTL}_\iota$, with both constant and expanding domains

- LTL -validity is polytime-reducible to \mathbf{K}_{*n} -validity
- LTLf -validity is polytime-reducible to \mathbf{Kf}_{*n} -validity

From Temporal to Modal Logics with Transitive Closure

Theorem (Polytime Reduction from Temporal to Modal with Transitive Closure)

In $Q^1 = \text{LTL}_\iota$, $C_{\boxed{1}}^2 \text{LTL}_\iota$, $GF_{\boxed{1}} \text{LTL}_\iota$, with both constant and expanding domains

- LTL -validity is polytime-reducible to \mathbf{K}_{*n} -validity
- LTLf -validity is polytime-reducible to \mathbf{Kf}_{*n} -validity

Proof (Idea).

Adapt reduction from product $\text{LTL} \times L$ to $\mathbf{K}_{*n} \times L$

From Temporal to Modal Logics with Transitive Closure

Theorem (Polytime Reduction from Temporal to Modal with Transitive Closure)

In $Q^1 = \text{LTL}_\iota$, $C_{\boxed{1}}^2 \text{LTL}_\iota$, $GF_{\boxed{1}} \text{LTL}_\iota$, with both constant and expanding domains

- LTL -validity is polytime-reducible to \mathbf{K}_{*n} -validity
- LTLf -validity is polytime-reducible to \mathbf{Kf}_{*n} -validity

Proof (Idea).

Adapt reduction from product $\text{LTL} \times L$ to $\mathbf{K}_{*n} \times L$

Remark

With (un-)decidability results above, implies lower bounds for \mathbf{K}_{*n} / \mathbf{Kf}_{*n}

Decidability with Expanding Domains over Finite Traces

Theorem (Decidability on Finite Traces with Expanding Domains)

For expanding-domain models, \mathbf{LTLf} -validity in $\mathbb{C}_1^2 \text{LTL}_\iota$ and $\text{GF}_1^= \text{LTL}_\iota$ is decidable.

Decidability with Expanding Domains over Finite Traces

Theorem (Decidability on Finite Traces with Expanding Domains)

For expanding-domain models, \mathbf{LTLf} -validity in $C^2_{\boxed{1}} \mathbf{LTL}_t$ and $GF^=_{\boxed{1}} \mathbf{LTL}_t$ is decidable.

Proof (Idea).

Reduce to \mathbf{Kf}_{*n} -validity with expanding domains and apply decidability result

Overview

1 Introduction

2 Preliminaries

3 Results

Related Formalisms and Reductions

Quasimodels and Weak Quasimodels

Temporal Logics

4 Conclusion

Summary of Results

Recap

Established **decidability** and **tight complexity bounds** for monodic fragments with:

- non-rigid designators (non-rigid constants and definite descriptions)
- non-trivial counting (equality or counting quantifiers)
- both constant and expanding domains
- several classes of frames (K_n , $S5_n$, K_{*n} , Kf_{*n} , linear time)

Summary of Results

frames \mathcal{C}	dom.	\mathcal{C} -validity			global \mathcal{C} -consequence		
		$Q^1 = \text{ML}_\iota$	$C_{\boxed{1}}^2 \text{ML}_\iota$	$GF_{\boxed{1}} \text{ML}_\iota$	$Q^1 = \text{ML}_\iota$	$C_{\boxed{1}}^2 \text{ML}_\iota$	$GF_{\boxed{1}} \text{ML}_\iota$
S5	=	coNEXP	coNEXP	2EXP	coNEXP	coNEXP	2EXP
S5_n, n ≥ 2	=	coNEXP	coNEXP	2EXP			undecidable
K_n	=	coNEXP	coNEXP	2EXP			undecidable
	⊆	PSPACE	coNEXP	2EXP			?
K_{*n}, LTL^(◊)	=				Σ_1^1		
	⊆						undecidable
Kf_{*n}, LTLf^(◊)	=						undecidable
	⊆						decidable, Ackermann-hard

Discussion and Future Work

Description Logic Applications

- Powerful positive results for modal/temporal **DLs based on $\mathcal{ALCQHIO}^u$**
- **(Temporal) ontology-mediated query answering** with NRDC features
- **Other expressive DLs** not yet considered in modal/temporal contexts

Discussion and Future Work

Description Logic Applications

- Powerful positive results for modal/temporal **DLs based on $\mathcal{ALCQHIO}^u$**
- **(Temporal) ontology-mediated query answering** with NRDC features
- **Other expressive DLs** not yet considered in modal/temporal contexts

Other First-Order Extensions

- **Guarded negation fragment**
- **Fluted fragments**
- **Two-variable fragment** with **semantically-constrained relations**, e.g., transitive or equivalence relations

Discussion and Future Work

Description Logic Applications

- Powerful positive results for modal/temporal **DLs based on $\mathcal{ALCQHIO}^u$**
- **(Temporal) ontology-mediated query answering** with NRDC features
- **Other expressive DLs** not yet considered in modal/temporal contexts

Other First-Order Extensions

- **Guarded negation fragment**
- **Fluted fragments**
- **Two-variable fragment** with **semantically-constrained relations**, e.g., transitive or equivalence relations

Other Modal Logic Approaches

- **Bundled fragments**: restricted modality/quantifier patterns ($\exists x\Diamond, \Diamond\forall x$)
- **Term modal logics**: modal operators indexed by non-rigid agent names

Some of Our Papers

Check Other References Therein!

[AHKMW-ArXiv25] A. Artale, C. Hampson, R. Kontchakov, A. Mazzullo, F. Wolter: Decidability in First-Order Modal Logic with Non-Rigid Constants and Definite Descriptions. <https://arxiv.org/abs/2509.08165>. ArXiv 2025

[AKMW-KR24] A. Artale, R. Kontchakov, A. Mazzullo, F. Wolter: Non-Rigid Designators in Modal and Temporal Free Description Logics. KR 2024

[AMOW-KR21] Artale, A., Mazzullo, A., Ozaki, A., Wolter, F.: On Free Description Logics with Definite Descriptions. KR21.

Thank You!

Questions?