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Introduction and Motivations

Non-Rigid Designators and Counting Features (NRDC)

First-order modal logics (FOMLs) extended with:

• Non-rigid designators: non-rigid constants and definite descriptions

• Counting (non-trivial): equality or counting quantifiers

Philosophical Applications

• Referential opacity in modal contexts (with failure of substitutivity for equality)
e.g., ‘the number of planets is necessarily greater than 7’ vs. ‘8 is necessarily greater than 7’

• Descriptivist vs. direct reference theories of proper names
e.g., ‘the teacher of Alexander the Great’ vs. ‘Aristotle’

KR Applications

• Epistemic and temporal logics: individual symbols denoting distinct objects in
alternative conceivable scenarios or over time

• Free logics, description logics, hybrid logics, . . .
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Background and Challenges

The Bad

Modal extensions of decidable FO fragments are typically undecidable, e.g.:

• Monadic fragment of FO decidable

• Monadic fragment of FOMLs Kn and S5n, with n ≥ 1, undecidable

The Good

Monodic fragments: modalities applied only to formulas with ≤ 1 free variable

• often preserve decidability of underlying FO fragments. . .

• . . . but rely on the absence of NRDC features!

The Ugly

Mostly negative results on computational behaviour of fragments with NRDC features

• from product modal logics & fragments of FO modal/temporal logics with counting
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Our Contribution

Investigation of decidability and complexity boundaries
for monodic fragments with NRDC features

Ingredients

• equality/counting;

• non-rigid and possibly non-denoting constants

• definite descriptions

Dimensions
• Fragments: monodic with FO restrictions (1-var., 2-var. + counting, guarded)

• Frames: arbitrary n-frames; with n equivalence relations; with transitive clo-
sure, with or without infinite ascending chains; finite or infinite time flows

• Domains: constant or expanding
• Decision problems: validity and global consequence

• Global consequence not reducible to validity in general, but...
• ...reducible on frames w/: single equivalence relation; transitive closure; or time flows
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Overview of Results

frames C dom.
C-validity global C-consequence

Q1=MLι C2
21 MLι GF=

21 MLι Q1=MLι C2
21 MLι GF=

21 MLι

S5 = coNExp coNExp 2Exp coNExp coNExp 2Exp

S5n, n ≥ 2 = coNExp coNExp 2Exp undecidable

Kn
= coNExp coNExp 2Exp undecidable

⊆ PSpace coNExp 2Exp ?

K∗n, LTL(3) = Σ1
1

⊆ undecidable

Kf∗n, LTLf (3) = undecidable

⊆ decidable, Ackermann-hard
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Q=MLι, the First-Order Modal Language with NRDC

Definition (Terms and Formulas)

Q=MLι terms and formulas defined by mutual induction:

τ ::= x | c | ιx .ϕ
ϕ ::= P(τ1, . . . , τm) | τ1 = τ2 | ¬ϕ | (ϕ1 ∧ ϕ2) | ∃x ϕ | 3aϕ

• variables x ∈ Var, constants c ∈ Con, and predicates P ∈ Pred (m-ary)

• finite set of modalities a ∈ A

• definite descriptions ιx .ϕ, read as “the x such that ϕ”

Notation
• ϕ1 ∨ ϕ2 := ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 → ϕ2 := ¬ϕ1 ∨ ϕ2, ϕ1 ↔ ϕ2 := (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)

• ∀x ϕ := ¬∃x ¬ϕ
• 2aϕ := ¬3a¬ϕ
• Γ finite set of sentences (no free variables)
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Semantics with Partial Interpretations

Definition (Partial Interpretation with Expanding Domains)

M = (F,∆, ·) where:

• F = (W , {Ra}a∈A) frame with worlds W (6= ∅) and accessibility relations Ra

• ∆ function assigning domain ∆w ( 6= ∅) to each w ∈W s.t. ∆w ⊆ ∆v when wRav
• · function mapping each w ∈W to partial FO interpretation M(w) with:

• PM(w) ⊆ ∆m
w , for each m-ary predicate P ∈ Pred (total on predicates)

• cM(w) ∈ ∆w , for some constant symbols c ∈ Con (partial on constants)

Definition (Designation, Total Interpretations, Constant Domains, Assignments)

• c designates at w : cM(w) is defined

• total interpretation: all constants designate at all worlds

• constant domains: ∆w = ∆v for all w , v ∈W

• assignment at w : function a from Var to ∆w

• x-variant of a at w : assignment a′ at w that can differ from a only on x
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Term Interpretation and Satisfaction

Definition (Value of Terms)

τM(w),a =


a(x), if τ = x ∈ Var

cM(w), if τ = c ∈ Con and cM(w) defined

a′(x), if τ = ιx .ϕ and M,w |=a′ ϕ for exactly one x-variant a′ of a

undefined, otherwise

Definition (Satisfaction Relation)

• M,w |=a P(τ1, . . . , τm) iff all τ
M(w),a
i defined and (τ

M(w),a
1 , . . . , τ

M(w),a
m ) ∈ PM(w)

• M,w |=a τ1 = τ2 iff both τ
M(w),a
i defined and τ

M(w),a
1 = τ

M(w),a
2

• M,w |=a ∃x ϕ iff there exists x-variant a′ with M,w |=a′ ϕ

• M,w |=a 3aϕ iff there exists v ∈W such that wRav and M, v |=a ϕ
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Truth, Validity, and Global Consequence
Definition (Truth, Satisfaction)

• ϕ true in M, M |= ϕ: ϕ satisfied under every assignment at every world of M

• ϕ satisfied in M: ϕ satisfied under some assignment at some world of M

• Γ true in M, M |= Γ: every sentence in Γ is true in M

Definition (Kn and S5n Frames)

• Kn: class of all frames with n accessibility relations

• S5n: class of frames with n equivalence relations; S5 := S51

Definition (Validity, Satisfiability, Global Consequence)

C class of frames. Formula ϕ

• C-valid: ϕ true in every interpretation M based on a frame F ∈ C
• C-satisfiable: ϕ satisfied in some interpretation M based on a frame F ∈ C
• global C-consequence of theory Γ: ϕ true in any interpretation M based on a

frame in C such that M |= Γ
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Examples

Example (Partial Interpretation with Non-Rigid Designators)

R2

R1

M(w)

M(v) M(u)

ιx.31P(x)

d

cM(w)

d

d ′
d ′

d ′′

P
cM(u)

∃x(x 6= c ∧31(x = c))

unsatisfiable if constants are rigid
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Examples

Example (Vulcan and Venus)

• “It is conceivable that Vulcan is the planet orbiting between Sun and Mercury”:

3(vulcan = ιz .OrbitsBetween(z , sun,mercury))

• “Even though such a planet does not exist”:

¬∃x(x = vulcan) ∧ ¬∃x(x = ιz .OrbitsBetween(z , sun,mercury))

i.e., neither ‘vulcan’ nor ‘ιz .OrbitsBetween(z , sun,mercury)’ designate in this world

• “It is known of the planet orbiting between Mercury and Earth that it is Venus”:

∃x(x = ιz .OrbitsBetween(z ,mercury, earth) ∧2(x = venus))

in S5 frames, this implies that ‘venus’ is rigid
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Monodic Fragments

Definition (Monodic Fragment)

Set Q=
21 MLι of monodic formulas:

• every subformula of the form 3aψ has at most one free variable.

Minimal Sub-Fragment

• Q1=MLι: One-variable fragment with ≤ 1-ary predicates (and equality)

Maximal Sub-Fragments

• C2
21 MLι: Two-variable fragment with counting quantifiers and ≤ 2-ary predicates

• GF=
21 MLι: Guarded fragment with equality
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One-Variable Fragment Q1=MLι

Definition (One-Variable Fragment Q1=MLι)

Q1=MLι terms and formulas built with:

• one variable only

• predicates of arity at most one (plus equality)

• constants and definite descriptions

Remarks

• Underpinned by FO1 with equality and constants

• All formulas trivially monodic

• Variants extensively studied as product modal logics
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Two-Variable Fragment with Counting C2
21 MLι

Definition (Two-Variable Fragment with Counting C2
21 MLι)

C2
21

MLι terms and formulas built with:

• two variables

• counting quantifiers ∃≥kx , k ≥ 0

• predicates of arity at most two (including equality)

• constants and definite descriptions

Definition (Counting Quantifier)

M,w |=a ∃≥kx ϕ iff M,w |=a′ ϕ for at least k distinct x-variants a′

Example (Number of Planets)

ϕ1 = 3∃≤9x Planet(x), ϕ2 = ∃≤9x 3Planet(x)

• Constant and expanding domains: ϕ1 6⇒ ϕ2

• Constant but not expanding domains: ϕ2 ⇒ ϕ1

17 / 63



Two-Variable Fragment with Counting C2
21 MLι

Definition (Two-Variable Fragment with Counting C2
21 MLι)

C2
21

MLι terms and formulas built with:

• two variables

• counting quantifiers ∃≥kx , k ≥ 0

• predicates of arity at most two (including equality)

• constants and definite descriptions

Definition (Counting Quantifier)

M,w |=a ∃≥kx ϕ iff M,w |=a′ ϕ for at least k distinct x-variants a′

Example (Number of Planets)

ϕ1 = 3∃≤9x Planet(x), ϕ2 = ∃≤9x 3Planet(x)

• Constant and expanding domains: ϕ1 6⇒ ϕ2

• Constant but not expanding domains: ϕ2 ⇒ ϕ1

17 / 63



Two-Variable Fragment with Counting C2
21 MLι

Definition (Two-Variable Fragment with Counting C2
21 MLι)

C2
21

MLι terms and formulas built with:

• two variables

• counting quantifiers ∃≥kx , k ≥ 0

• predicates of arity at most two (including equality)

• constants and definite descriptions

Definition (Counting Quantifier)

M,w |=a ∃≥kx ϕ iff M,w |=a′ ϕ for at least k distinct x-variants a′

Example (Number of Planets)

ϕ1 = 3∃≤9x Planet(x), ϕ2 = ∃≤9x 3Planet(x)

• Constant and expanding domains: ϕ1 6⇒ ϕ2

• Constant but not expanding domains: ϕ2 ⇒ ϕ1
17 / 63



Guarded Fragment GF=
21 MLι

Definition (Guarded Fragment GF=
21 MLι)

GF=
21

MLι terms and formulas built with:

• guarded quantifiers ∃x1 · · · ∃xk(α ∧ ϕ), where α atom with all free variables of ϕ

• constants and closed definite descriptions ιx .χ(x), χ(x) with ≤ 1 free variable x

Remark

Closed definite descriptions necessary for decidability even without modalities

• ∀xF (x , ιy .F (x , y)) ensures F is a function

• guarded fragment with functionality is undecidable

∃x ϕ(x) can still be expressed

• equivalent to ∃x ((x = x) ∧ ϕ(x)), with x = x as its guard.

18 / 63
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Decision Problems

Definition (Validity and Global Consequence Decision Problems)

For fragment L and frame class C
• C-validity in L: Is ϕ valid on all interpretations based on C-frames?

• global C-consequence in L: Is ϕ true in all interpretations based on C-frames that
make theory Γ true?

Problem Qualifiers
• total C-validity: restriction to total interpretations

• with constant domains, with expanding domains

Naming Convention

Fragment L with


subscript ι: both constants and definite descriptions

subscript c : only constants

no subscript: neither constants nor definite descriptions

19 / 63
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Overview of Techniques

Preliminary Observations

• Show correspondence between one-variable fragment with difference/elsewhere
quantifier ∃6=x and our one-variable fragment with non-rigid constants
• Lift results from propositional case: “difference ≡ nominals + universal modality”

• Simplify the landscape
• Normalise and eliminate definite descriptions
• Reduce partial to total interpretations (and viceversa)
• Reduce expanding to constant domains
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Overview of Techniques

Main Ideas for Decidability

• Adapt quasimodel machinery for NRDC features
• Use multisets of types and runs to handle counting

• Introduce weak quasimodels with relaxed saturation conditions
• Avoid infinite branching of quasimodels due to counting

• Use bounded-size weak quasimodels to decide satisfiability
• 1-variable and guarded fragments: use weak quasimodels directly
• 2-variable with counting: introduce weak pre-quasimodels + (in)equalities encoding

constraints in Presburger Arithmetic with infinity

• Expanding domains simplify some cases:

• validity/global consequence in fragments

{
with transitive closure & no infinite chain

on finite temporal frames
• Kn-validity in one-variable fragment
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Overview of Techniques

Main Ideas for Undecidability

• For global consequence on Kn (n ≥ 1) and S5n (n ≥ 2) frames, reduce:
• undecidable products to one-variable fragment with elsewhere quantifier ∃6=x
• the latter to our one-variable fragment with non-rigid constants

• For validity/global consequence with transitive closure & on temporal (infinite
with constant/expanding domains, or finite with constant domains) frames, reduce
• undecidable one-variable FOTL with counting to our one-variable fragments on

temporal (infinite or finite, resp.) frames
• the latter to one-variable fragments with transitive closure (with or without infinite

chains, resp.)
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One-Variable Fragment with Elsewhere Q16=ML

Definition (One-Variable Fragment with Elsewhere Q16=ML)

Q16=ML formulas:

ϕ ::= P(x) | ¬ϕ | (ϕ ∧ ϕ) | ∃x ϕ | ∃6=x ϕ | 3aϕ

Definition (Elsewhere Quantifier)

M,w |=a ∃6=x ϕ iff M,w |=a′ ϕ, for some x-variant a′ of a at w different from a
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Reductions Between Non-Rigid Constants and Elsewhere Quantifier

Theorem

For any class of frames C, with both constant and expanding domains

• C-validity in Q1=MLc and Q1 6=ML are mutually polytime-reducible

• same applies to global C-consequence

Proof (Idea).
• Q1=MLc to Q16=ML

x = c
†
; Qc(x) ∧ ¬∃ 6=x Qc(x)

• Q16=ML to Q1=MLc (global C-consequence)

Γ |= ∃6=x ψ ‡
; Γ‡∪{singlψ} |= ∃x Pψ(x) ∧

(
x = cψ → ∃x

(
¬(x = cψ)∧Pψ(x)

))
where singlψ := ∀x

(
ψ(x)→ Pψ(x)

)
∧ ∀x

(
Pψ(x)→ ψ(x) ∧ ψ(cψ)

)

24 / 63



Reductions Between Non-Rigid Constants and Elsewhere Quantifier

Theorem

For any class of frames C, with both constant and expanding domains

• C-validity in Q1=MLc and Q1 6=ML are mutually polytime-reducible

• same applies to global C-consequence

Proof (Idea).
• Q1=MLc to Q16=ML

x = c
†
; Qc(x) ∧ ¬∃ 6=x Qc(x)

• Q16=ML to Q1=MLc (global C-consequence)

Γ |= ∃6=x ψ ‡
; Γ‡∪{singlψ} |= ∃x Pψ(x) ∧

(
x = cψ → ∃x

(
¬(x = cψ)∧Pψ(x)

))
where singlψ := ∀x

(
ψ(x)→ Pψ(x)

)
∧ ∀x

(
Pψ(x)→ ψ(x) ∧ ψ(cψ)

)
24 / 63



Overview of Results for Kn and S5n Global Consequence

frames C dom.
C-validity global C-consequence

Q1=MLι C2
21 MLι GF=

21 MLι Q1=MLι C2
21 MLι GF=

21 MLι

S5 = coNExp coNExp 2Exp coNExp coNExp 2Exp

S5n, n ≥ 2 = coNExp coNExp 2Exp undecidable

Kn
= coNExp coNExp 2Exp undecidable

⊆ PSpace coNExp 2Exp ?

K∗n, LTL(3) = Σ1
1

⊆ undecidable

Kf∗n, LTLf (3) = undecidable

⊆ decidable, Ackermann-hard
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First Undecidability Results

Theorem

For constant domains:

• global Kn-consequence with n ≥ 1 in Q1=MLc is undecidable

• global S5n-consequence with n ≥ 2 in Q1=MLc is undecidable

Proof (Idea).

From undecidability of product modal logic Ku×Diff, with Ku extending K with universal
modality u, and Diff propositional modal logic of elsewhere
• Reduce from Ku ×Diff-validity to Q16=ML global Kn-consequence

• product world ; domain object at a world
• 36= ; ∃6=x
• 3u ; global Kn-consequence

• Then, use previous reduction from Q16=ML global Kn-consequence to Q1=MLc

• Finally (for 2nd point), use known reduction from K to S52
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S51 and Kn with Expanding Domains?

Exception: Global S51-consequence

The theorem does not hold for S5, since global S5-consequence reduces to S5-validity:

Γ |=S5 ϕ iff 2
∧

Γ→ ϕ is S5-valid

Open Problem: Global Kn-Consequence with Expanding Domains

• Reduction from product modal logics works only for constant domains

• S5n domains always constant (by symmetry of accessibility relation)

• Expanding domain case for global Kn-consequence remains open
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Simplifying the Landscape

Theorem

For L ∈ {Q1=MLι,C
2
21 MLι,GF=

21 MLι,Q
=
21 MLι} and any class of frames C:

1 C-validity in L is polytime-reducible to C-validity in L w/out definite descriptions

2 C-validity in partial and total interpretations are mutually polytime-reducible

3 C-validity with expanding domains is polytime-reducible to constant-domains

All hold also for global C-consequence in L
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Simplifying the Landscape
Eliminating Definite Descriptions

Normalisation Procedure
• Replace definite descriptions ιx .ψ(x , y) with “atomic” ones: ιx .Pψ(x , y)

• Add “surrogates” for definite description “bodies”: ∀x∀y(Pψ(x , y)↔ ψ(x , y))

• Iterate starting from innermost descriptions

Elimination of Definite Descriptions

Replace atoms α(ιx .Q(x , y), τ ) with “Russell’s paraphrase”

• in Q=
21 MLι

∃x(α(x , τ ) ∧ Q(x , y) ∧ ∀x ′(Q(x ′, y)→ x ′ = x))

• in C2
21 MLι

∃x(α(x , τ ) ∧ Q(x , y)) ∧ ∃=1xQ(x , y)

• in Q1=MLι and GF=
21 MLι, with cιx .Q(x) fresh constant symbol

α(cιx .Q(x), τ ) ∧ Q(cιx .Q(x)) ∧ ∀x
(
Q(x)→ x = cιx .Q(x)

)
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Simplifying the Landscape
From Partial to Total Interpretations, and Back

From Partial to Total

Introduce propositional letter pc for each constant c to encode whether c designates

P(τ1, . . . , τm) ;
∧

ci∈{τ1,...,τm}

pci ∧ P(τ1, . . . , τm)

From Total to Partial

Add “existence axioms” to ensure that each constant c designates

∃x(x = c)

30 / 63



Simplifying the Landscape
From Partial to Total Interpretations, and Back

From Partial to Total

Introduce propositional letter pc for each constant c to encode whether c designates

P(τ1, . . . , τm) ;
∧

ci∈{τ1,...,τm}

pci ∧ P(τ1, . . . , τm)

From Total to Partial

Add “existence axioms” to ensure that each constant c designates

∃x(x = c)

30 / 63



Simplifying the Landscape
From Expanding to Constant Domains

Reduction from Expanding to Constant Domains

• By previous two points, in L without definite descriptions, reduce total C-validity
with expanding domains to total C-validity with constant domain

• Use well-known reduction, with a semi-rigid (monotonically increasing) “actuality
predicate” to encode expanding domains
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Enforcing Infinite Branching

Example (Infinitely Branching Interpretations with Equality or Counting)

C2-sentence ϕ0 with only infinite models:

∀x∃=1y P(x , y) ∧ ∀x∃≤1z P(z , x) ∧ ∃x¬∃z P(z , x)

C2
21 MLc -sentence forcing infinite branching

ϕ = ϕ0 ∧ ∀x 3aA(x) ∧2a∃≤1x A(x)

Each element in infinite P-chain requires separate a-successor with unique A-element

w0

d0

d1

d2

d3
. . .

v0 v1 v2 v3

. . .

. . .

. . . . . . . . . . . .
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Quasimodels for Q=
21 MLc

Main Ideas
• Quasistates describe worlds in interpretations

• Runs correspond to domain elements
• Generalise basic quasimodels to handle non-rigid constants & equality/counting

• use multisets of types and runs to take care of cardinalities
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Types

Definition (Surrogates)

Surrogate ϕ: replace modal subformulas of ϕ

• monodic 3aψ(x) ; unary predicate R3aψ(x)

• monodic 3aψ ; propositional variable p3aψ

Definition (Type)

Type for Q=
21 MLc -sentence ϕ: subset t ⊆ subx(ϕ), where for fresh variable x

subx(ϕ) = {ψ{x/y},¬ψ{x/y} | ψ(y) ∈ sub(ϕ)}

that is Boolean-saturated, i.e., for every sub-formula ψ1 ∧ ψ2,¬ψ ∈ subx(ϕ)

ψ1 ∧ ψ2 ∈ t iff ψ1 ∈ t and ψ2 ∈ t; ¬ψ ∈ t iff ψ /∈ t

Surrogate type t := {ψ | ψ ∈ t}

35 / 63



Types

Definition (Surrogates)

Surrogate ϕ: replace modal subformulas of ϕ

• monodic 3aψ(x) ; unary predicate R3aψ(x)

• monodic 3aψ ; propositional variable p3aψ

Definition (Type)

Type for Q=
21 MLc -sentence ϕ: subset t ⊆ subx(ϕ), where for fresh variable x

subx(ϕ) = {ψ{x/y},¬ψ{x/y} | ψ(y) ∈ sub(ϕ)}

that is Boolean-saturated, i.e., for every sub-formula ψ1 ∧ ψ2,¬ψ ∈ subx(ϕ)

ψ1 ∧ ψ2 ∈ t iff ψ1 ∈ t and ψ2 ∈ t; ¬ψ ∈ t iff ψ /∈ t

Surrogate type t := {ψ | ψ ∈ t}
35 / 63



Quasistates and Basic Structures

Definition (Multiset)

Set X equipped (& identified) with multiplicity function X (x) ∈ N ∪ {ℵ0}, for x ∈ X

Definition (Quasistate Candidate)

Quasistate candidate for ϕ: non-empty multiset n of types for ϕ with multiplicity n(t)

• n realised in FO structure B: n(t) = |{b ∈ B | B |= t[b]}|
Quasistate for ϕ: realisable quasistate candidate (i.e., realised by some B)

Definition (Basic Structure)

(F,q), where

{
F = (W , {Ra}a∈A) frame

q function assigning quasistate q(w) to each w ∈W
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Runs

Definition (Run)

Run ρ in (F,q): map from worlds w in upward-closed W ′ ⊆W to types ρ(w) ∈ q(w):

• (r-coh) ∃v ∈W : wRav and ψ ∈ ρ(v) ⇒ 3aψ ∈ ρ(w)

• (r-sat) 3aψ ∈ ρ(w) ⇒ ∃v ∈W : wRav and ψ ∈ ρ(v)

Domain of ρ: domρ = W ′ ⊆W (upward-closed); full run: domρ = W

Definition (Multiset of Runs)

R multiset of runs:

• w-slice Rw ⊆ R, where Rw (ρ) =

{
R(ρ), if w ∈ domρ,

0, otherwise.

• (w , t)-slice Rw ,t ⊆ R, where Rw ,t(ρ) =

{
R(ρ), if w ∈ domρ and ρ(w) = t,

0, otherwise.

Multiset R of runs ; set of indexed runs R̂ = {(ρ, `) ∈ R× N | 0 ≤ ` < R(ρ)}
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Quasimodels

Definition (Quasimodel)

• (Expanding-domain) quasimodel Q = (F,q,R) for ϕ:
• (F,q) basic structure for ϕ
• R multiset of runs through (F,q) such that

(card) q(w , t) = |Rw,t | for all w ∈W and types t for ϕ

• Constant-domain quasimodel: R consists of full runs

• Q satisfies ϕ: ϕ ∈ t for some w0 ∈W and t ∈ q(w0)

w0

ρ0

ρ1

ρ2

ρ3

. . .

v0 v1 v2 v3

. . .

. . .

. . . . . . . . . . . .
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Quasimodels and Interpretations

Lemma (Quasimodel Lemma)

For both constant and expanding domains, Q=
21 MLc -sentence ϕ satisfiable in interpre-

tation based on frame F iff there exists quasimodel satisfying ϕ based on F

Proof (Idea).

(⇒) Given interpretation M satisfying ϕ:

• types: tM(w)(d) := {ψ ∈ subx(ϕ) |M,w |= ψ[d ]}
• quasistate candidates: q(w , t) := number of domain elements realizing t at w

• runs: ρd(w) := tM(w)(d), for d ∈ ∆w

(⇐) Given quasimodel Q satisfying ϕ:

• Construct interpretation with domains ∆w = R̂w

• Use bijections fw : R̂w → domain of Bw realising q(w) to define
• cM(w) = f −1

w (cBw )
• PM(w) = f −1

w (PBw )
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Infinite Branching Again (Recall)

Example (Infinitely Branching Interpretations with Equality or Counting)

C2-sentence ϕ0 with only infinite models:

∀x∃=1y P(x , y) ∧ ∀x∃≤1z P(z , x) ∧ ∃x¬∃z P(z , x)

C2
21 MLc -sentence forcing infinite branching

ϕ = ϕ0 ∧ ∀x 3aA(x) ∧2a∃≤1x A(x)

Each element in infinite P-chain requires separate a-successor with unique A-element

w0

d0

d1

d2

d3
. . .

v0 v1 v2 v3

. . .

. . .

. . . . . . . . . . . .
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Infinite Branching Again

Infinite Branching in Quasimodels

• Standard quasimodels can require infinite branching

• Infinite Branching Example ; infinite branching quasimodels
• type “gray circle” has ℵ0 infinite multiplicity in w0

• multiset of runs contains ℵ0 runs (of multiplicity 1) through type “gray circle” at w0

• by quasimodel constraints, each of ℵ0 runs then requires a separate a-successor
w0

ρ0

ρ1

ρ2

ρ3

. . .

v0 v1 v2 v3

. . .

. . .

. . . . . . . . . . . .

• Need finite representation of quasimodels for decidability
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Weak Quasimodels to the Rescue

Main Ideas
• Define weak quasimodels with weakened saturation conditions

• Show that quasimodels can be reconstructed from bounded-size weak quasimodels
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Overview of Results for Kn and S5n Validity

frames C dom.
C-validity global C-consequence

Q1=MLι C2
21 MLι GF=

21 MLι Q1=MLι C2
21 MLι GF=

21 MLι

S5 = coNExp coNExp 2Exp coNExp coNExp 2Exp

S5n, n ≥ 2 = coNExp coNExp 2Exp undecidable

Kn
= coNExp coNExp 2Exp undecidable

⊆ PSpace coNExp 2Exp ?

K∗n, LTL(3) = Σ1
1

⊆ undecidable

Kf∗n, LTLf (3) = undecidable

⊆ decidable, Ackermann-hard
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One-Variable Fragment Kn/S5n-Validity in Constant Domains

For Kn and S5n-validity in Q1=MLc with constant domains

• guess-and-check exponential-size weak quasimodels

• coNExpTime upper bound; matching lower bound from constant-domain prod-
ucts / one-variable K and S5 without equality and constants

Theorem

With constant domains Kn and S5n-validity in Q1=MLc are coNExpTime-c.

• in fact, every satisfiable sentence is satisfiable in a frame of exponential size
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Guarded Fragment Kn/S5n-Validity in Constant/Expanding Domains

For Kn and S5n-validity in GF=
21 MLc with constant/expanding domains:

• enumerate quasimodels and check realisable quasistates in double exp. time

• 2ExpTime upper bound; matching lower bound from plain GF

Theorem

With constant/expanding domains, Kn and S5n-validity in GF=
21 MLc are 2ExpTime-c.
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Two-Variable Fragment Kn/S5n-Validity in Constant/Expanding Domains

For Kn and S5n-validity in C2
21 MLι with constant/expanding domains:

• introduce weak pre-quasimodels replacing multiset of weak runs with a bounded-
from-above set of locally saturated weak runs

• encode quasistates and other constraints in decidable Presburger arithmetic
extended with infinity (ℵ0) and exploit NExpTime upper bound for C2

• coNExpTime upper bound; matching lower bound from plain C2

Theorem

With constant/expanding domains, Kn and S5n-validity in C2
21 MLc are coNExpTime-c.
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Decidability with Expanding Domains

Expanding vs Constant Domains

• Recall: reasoning in expanding domains can be reduced to constant domains

• However: expanding domains sometimes simpler than constant domain case

• Quasimodel and weak quasimodel constructions work for expanding domains

Affected Fragments

Under expanding domains, life is (a bit) easier for

• validity/global conseq. in fragments with transitive closure & no infinite chains

• Kn-validity in one-variable fragment
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From Validity to Global Consequence with Transitive Closure

Definition (K∗n and Kf∗n Frames)

• Modalities A = A0 ∪ {∗}
• K∗n: frames with transitive closure R∗ of

⋃
a∈A0

Ra (interpreting 3∗)
• Kf∗n: frames where R∗ has no infinite ascending chain wiR∗wi+1, for all i ≥ 0

Lemma

For all fragments L and C ∈ {K∗n,Kf∗n}, with both constant and expanding domains,
global C-consequence in L is polytime-reducible to C-validity in L

Proof (Idea).

ϕ global C-consequence of Γ iff (
∧

Γ ∧2∗
∧

Γ)→ ϕ C-valid for C ∈ {K∗n,Kf∗n}
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Overview of Results for Expanding Domains

frames C dom.
C-validity global C-consequence

Q1=MLι C2
21 MLι GF=

21 MLι Q1=MLι C2
21 MLι GF=

21 MLι

S5 = coNExp coNExp 2Exp coNExp coNExp 2Exp

S5n, n ≥ 2 = coNExp coNExp 2Exp undecidable

Kn
= coNExp coNExp 2Exp undecidable

⊆ PSpace coNExp 2Exp ?

K∗n, LTL(3) = Σ1
1

⊆ undecidable

Kf∗n, LTLf (3) = undecidable

⊆ decidable, Ackermann-hard
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Decidability with Transitive Closure in Expanding Domains

Theorem

With expanding domains, Kf∗n-validity in C2
21 MLc and GF=

21 MLc are decidable

Proof (Idea).

Relies on weak quasimodels and shows, using Dickson’s Lemma, a non-primitive recursive
bound on their size
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Kn-Validity in One-Variable Fragment

Theorem

For expanding-domain models, Kn-validity in Q1=MLc is PSpace-complete

Proof (Idea).

• Upper bound: define a non-deterministic recursive function that checks the exis-
tence of a quasimodel for a formula in polynomial space

• Lower bound: from the underlying (propositional) modal logic Kn
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Overview

1 Introduction

2 Preliminaries

3 Results
Related Formalisms and Reductions
Quasimodels and Weak Quasimodels
Temporal Logics

4 Conclusion
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Frames for Temporal Logics

Definition (Temporal Frame Classes)

• LTL3: {(N, <)}, with standard strict linear order < (interpreting 3)

• LTLf 3: { ({0, . . . , n}, <) | n ∈ N }, with < restricted to {0, . . . , n}
• LTL: {(N, <,S)}, with successor relation S = {(i , i + 1) | i ∈ N (interpreting ©)

• LTLf 3: { ({0, . . . , n}, <,S) | n ∈ N }, with < and S restricted to {0, . . . , n}
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Overview of Results for Temporal (and Transitive Closure) Logics

frames C dom.
C-validity global C-consequence

Q1=MLι C2
21 MLι GF=

21 MLι Q1=MLι C2
21 MLι GF=

21 MLι

S5 = coNExp coNExp 2Exp coNExp coNExp 2Exp

S5n, n ≥ 2 = coNExp coNExp 2Exp undecidable

Kn
= coNExp coNExp 2Exp undecidable

⊆ PSpace coNExp 2Exp ?

K∗n, LTL(3) = Σ1
1

⊆ undecidable

Kf∗n, LTLf (3) = undecidable

⊆ decidable, Ackermann-hard
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(Un-)Decidability of Temporal Fragments

Theorem

In Q1=LTLι and Q1=LTL3ι with

• constant domains:

{
LTL-validity Σ1

1-complete

LTLf -validity undecidable and co-r.e.

• expanding domains:

{
LTL-validity undecidable and r.e.

LTLf -validity decidable but Ackermann-hard

Proof (Idea).

Adapt known results from products/1-variable temporal logics with difference operator

• Lower bounds: undecidable/Ackermann-hard Q16=LTL ; Q1=LTLι
• Upper bounds: Q1=LTLι ; Q16=LTL decidable/undecidable r.e./co-r.e./in Σ1

1
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From Temporal to Modal Logics with Transitive Closure

Theorem (Polytime Reduction from Temporal to Modal with Transitive Closure)

In Q1=LTLι, C2
21 LTLι, GF=

21 LTLι, with both constant and expanding domains

• LTL-validity is polytime-reducible to K∗n-validity

• LTLf -validity is polytime-reducible to Kf∗n-validity

Proof (Idea).

Adapt reduction from product LTL× L to K∗n × L

Remark

With (un-)decidability results above, implies lower bounds for K∗n / Kf∗n
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Decidability with Expanding Domains over Finite Traces

Theorem (Decidability on Finite Traces with Expanding Domains)

For expanding-domain models, LTLf -validity in C2
21 LTLι and GF=

21 LTLι is decidable.

Proof (Idea).

Reduce to Kf∗n-validity with expanding domains and apply decidability result
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Summary of Results

Recap

Established decidability and tight complexity bounds for monodic fragments with:

• non-rigid designators (non-rigid constants and definite descriptions)

• non-trivial counting (equality or counting quantifiers)

• both constant and expanding domains

• several classes of frames (Kn, S5n, K∗n, Kf∗n, linear time)
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Summary of Results

frames C dom.
C-validity global C-consequence

Q1=MLι C2
21 MLι GF=

21 MLι Q1=MLι C2
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S5 = coNExp coNExp 2Exp coNExp coNExp 2Exp
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Kn
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⊆ undecidable

Kf∗n, LTLf (3) = undecidable

⊆ decidable, Ackermann-hard
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Discussion and Future Work

Description Logic Applications

• Powerful positive results for modal/temporal DLs based on ALCQHIOu

• (Temporal) ontology-mediated query answering with NRDC features

• Other expressive DLs not yet considered in modal/temporal contexts

Other First-Order Extensions
• Guarded negation fragment

• Fluted fragments

• Two-variable fragment with semantically-constrained relations, e.g., transitive
or equivalence relations

Other Modal Logic Approaches

• Bundled fragments: restricted modality/quantifier patterns (∃x3, 3∀x)

• Term modal logics: modal operators indexed by non-rigid agent names
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poral Free Description Logics. KR 2024
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Thank You!

Questions?
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