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Introduction

Referring expressions (REs)

Noun phrases that can refer to a single object in a context

• Individual names: ‘KR23’, ‘KR24’, ‘François-Marie Arouet’,
‘Voltaire’, ‘Clark Kent’, ‘Superman’, . . .

• Definite descriptions: ‘the next KR conference’, ‘the most
famous French thinker alive’, ‘the love interest of Lois Lane’, . . .
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Introduction

Referring expressions (REs)

Noun phrases that can refer to a single object in a context

• Serve as meaningful and flexible object descriptors in natural
languages for human communication

• Mitigate the obscurity of object identifiers in information and
knowledge base management systems

2 / 40



Introduction

Description Logics (DLs)

(Typically) decidable fragments of FOL used for knowledge rep-
resentation and reasoning tasks

Epistemic and temporal DLs

Extensions of DLs with modal operators to reason about agents’
epistemic states and temporal evolution of objects, respectively
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Motivations and Goals

REs in epistemic and temporal DLs

Syntax
nominals with individual names, {a},
and definite description terms, {ιC}

Semantics

denoting vs. non-denoting terms at a world
rigid vs. non-rigid terms across worlds

Denoting

‘KR23’, ‘the General

Chair of KR23’, . . .

Non-Denoting

‘KR19’ (did not exist), ‘the Program Chair of KR23’

(more than one), ‘the deadline extension for KR23’

(none), ‘KR24’ (does not exist yet), . . .

Rigid

‘Rhodes’, ‘PaperX ’,

‘Hanoi’, ‘PaperY ’, . . .

Non-Rigid

‘the KR location’, ‘the winner of Best Paper Award

at KR’, . . .
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Motivations and Goals

Satisfiability in epistemic and temporal DLs with REs

Study decidability and complexity of satisfiability problems

• Temporal settings: reasoning about dynamic values

• Epistemic settings: reasoning about (un)known identities

N.B.
Undecidability is round the corner!

• Minsky machine encoding via non-rigid designa-
tion/counting up to one and temporal structures
interactions

• Decidability regained on epistemic structures (via quasi-
models, similarly to product S5× S5)
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Free DLs with Definite Descriptions - The Non-Modal Case
[AMOW20], [AMOW21]

Languages

• Extend standard languages to include both individual names
a and definite descriptions ιC (‘the C ’) as terms

• Generalise classical semantics with partial interpretations:
total on concept/role names and partial on individual names
; Free logic semantics for non-denoting terms [B02, NKR20]

Reasoning tasks

• Ontology satisfiability and entailment

• (L,LR) RE existence: given a pair of logics (L,LR), decide,
for a background L ontology O, an individual name a, and
a signature Σ, whether there exists an RE LR(Σ) concept
that describes a under O, i.e., such that O |= {a} ≡ C
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Free Description Logics - Syntax ALCOι
u

Definition (Terms, Concepts, Axioms)

• Terms: τ ::= a | ιC
• Concepts: C ::= A | {τ} | ¬C | C u C | ∃r .C | ∃u.C
• Axioms: C v C | C (τ) | r(τ, τ)

• Ontology: finite set of axioms

Ontology Example

{kr19} v ⊥ >(kr21) {kr20} u {kr21} v ⊥

{kr20} t {kr21} ≡ KRConf u ∃hasLoc.VirtualLoc u ∀hasLoc.VirtualLoc

∃isProgramChairOf.{kr20}(ι∃isGeneralChairOf.{kr21})

∃isProgramChairOf.{kr21} v ¬{ι∃isProgramChairOf.{kr21}}

∃isProgramChairOf.{kr21} v ∃reportsTo.{ι∃isGeneralChairOf.{kr21}}
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Free Description Logics - Syntax ELOι
u

Definition (Terms, Concepts, Axioms)

• Terms: τ ::= a | ιC
• Concepts: C ::= > | ⊥ | A | {τ} | C u C | ∃r .C | ∃u.C
• Axioms: C v C | C (τ) | r(τ, τ)

• Ontology: finite set of axioms

Ontology Example

{kr19} v ⊥ >(kr21) {kr20} u {kr21} v ⊥

{kr21} v KRConf u ∃hasLoc.VirtualLoc

∃isProgramChairOf.{kr20}(ι∃isGeneralChairOf.{kr21})

∃isProgramChairOf.{kr21} v ∃reportsTo.{ι∃isGeneralChairOf.{kr21}}
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Free Description Logics - Semantics I

Definition (Partial interpretation)

I = (∆I , ·I), with ∆I 6= ∅ (domain of I), and ·I function mapping

• concept names A to AI ⊆ ∆I

• role names r to rI ⊆ ∆I ×∆I

• universal role u to uI = ∆I ×∆I

• individual names a in a subset of individual names to aI ∈∆I

Definition (Total interpretation)

I is a total interpretation interpretation when ·I is defined as
above, except that it maps every a ∈ NI to an element of ∆I
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Free Description Logics - Semantics II

Definition (Value of a term)

τI is aI , if τ = a, while for τ = ιC :

(ιC)I =

{
d , if CI = {d}, for some d ∈ ∆I

undefined, otherwise

τ denotes in I iff τI = d , for a d ∈ ∆I

Definition (Extension of a concept)

Extension CI of a concept C in I:

¬CI = ∆I \ CI (C u D)I = CI ∩ DI

(∃r .C )I = {d ∈ ∆I | there exists e ∈ CI : (d , e) ∈ rI}
(∃u.C )I = {d ∈ ∆I | there exists e ∈ CI : (d , e) ∈ uI}

{τ}I =

{
{τI}, if τ denotes in I
∅, otherwise
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First Observations

Remark 1

τ denotes in a partial interpretation I iff I |= > v ∃u.{τ}

Remark 2

Satisfiability on total interpretations can be polynomial-time re-
duced to satisfiability on partial interpretations

For each individual name a in O, add conjuncts > v ∃u.{a}

Remark 3

Assertions, i.e., C (τ) or r(τ, τ ′), are syntactic sugar
• C (τ) ; > v ∃u.{τ}, {τ} v C

• r(τ1, τ2) ; > v ∃u.{τ1}, {τ1} v ∃r .{τ2}
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Reasoning in ALCOι
u

Remark

Concept inclusions (CIs) C v D assumed, w.l.o.g. for satisfiability,
to be in normal form, that is, of the form: E v F , with E ,F ALC
concepts, {τ} v A, or A v {τ}, with A concept name and τ either
individual name or of the form ιB, with B concept name

Remove the ι: Reduce ALCOιu to ALCOu ontology satisfiability

• {ιB}† = B u ∀u.(B ⇒ {aιB}),

• {b}† = Ab u ∀u.(Ab ⇒ {ab}),

• ({τ}vA)†/(Av{τ})† = ({τ}†vA)/(Av{τ}†), and
{τ}+v∀u.({aτ} ⇒ {τ}+), where {ιB}+ = B, {b}+ = Ab

Theorem
ALCOιu ontology satisfiability (on partial and total interpreta-
tions) is ExpTime-complete
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Reasoning in ELOι
u

Adapt the completion algorithm for ELO ontologies [BBL05]

• add to classification graph a copy of each concept name in O
• remove it only if the concept has 1 element in any model of O

Theorem

Entailment in ELOιu (on partial and total interpretations) is
PTime-complete

13 / 40



ALCOι
u Bisimulations and Expressive Power

Definition (ALCOιu(Σ) bisimulation)

Z ⊆ ∆I ×∆J ALCOιu(Σ) bisimulation between I and J
(bisim) Z ALCO(Σ) bisimulation

(total) ∆I domain and ∆J range of Z

(ι) ∃d ′ ∈ ∆I s.t. d 6= d ′ and (I, d) ∼ALCOΣ (I, d ′) ⇔
∃e ′ ∈ ∆J s.t. e ′ 6= e and (J , e) ∼ALCOΣ (J , e ′)

Definition (FOL standard translation)

πx(A) = A(x) πx(¬C) = ¬πx(C) πx(C u D) = (πx(C) ∧ πx(D))

πx(∃r .C) = ∃y(r(x , y) ∧ πy (C)) πx(∃u.C) = ∃xπx(C)

πx({a}) = x = a

πx({ιC}) = ∃xπx(C) ∧ ∀x∀y(πx(C) ∧ πy (C)→ x = y) ∧ ∀y(πy (C)→ x = y)
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ALCOι
u Bisimulations and Expressive Power

Theorem

For a signature Σ and an FOL formula ϕ(x) such that Σϕ(x) ⊆ Σ,
the following are equivalent, on partial interpretations a:

1 there exists an ALCOιu(Σ) concept C such that πx(C ) is logi-
cally equivalent to ϕ(x)

2 ϕ(x) is invariant under ∼ALCOι
u

Σ

aFOL partial interpretation semantics naturally extends the DL one above

ALCOιu is the fragment of FOL on partial interpretations that
is invariant under ALCOιu-bisimulations
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Referring Expression Existence

Definition ((L,LR) RE existence)

Given a pair (L,LR) of logics, decide, for an L ontology O, an
individual name a, and a signature Σ, whether there exists an
LR(Σ) concept C such that O |= {a} ≡ C

L RE existence, if L = LR
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Referring Expression Existence
Theorem

On partial and total interpretations:

1 (ALCOιu,FO) RE existence is ExpTime-complete

2 (ELOιu,FO) RE existence is in PTime

3 ALCOιu RE existence is 2ExpTime-complete

4 (ALCOιu, ELOιu) RE existence is undecidable

5 ELOιu RE existence is in PTime, for individuals that denote
w.r.t. the ontology

1.-2. FO projective Beth definability property on total/partial ints. + ALCOι
u

ExpTime/ELOι
u PTime reasoning upper bound

3. Bisimulation-based characterisation of ALCOι
u RE existence + mosaic-

based technique (upper bound) / exponential-space bounded Alternating
Turing Machines (lower bound) [AJMOW21]

4. Undecidability proof for CQ inseparability of ALC KBs [BLRWZ19]

5. ELOu(Σ) REs existence + simulation-based characterisation of ELOu RE
existence
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Excursus – Free DLs with Dual-Domain Semantics

Definition (ALCOι∗ [NKR20])
• ALCOι∗ concepts

ALCOι concepts + T (existing objects)

• ALCOι∗ formulas

ϕ ::= C v D | C (τ) | r(τ1, τ2) | τ1 = τ2 | ¬(ϕ) | (ϕ ∧ ϕ)
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Excursus – Free DLs with Dual-Domain Semantics

Definition (Dual-domain interpretation)

I = (∆I , dI , ·I )
• ∆I non-empty set, outer domain of I

• dI ⊂ ∆I (possibly empty) set, inner domain of I

• ·I (standard) interpretation function in ∆I

(ιC )I =

{
d , if dI ∩ C I = {d} TI = dI , {τ}I = {τ I},
dιC , with dιC ∈ ∆I \ dI (∃r .C)I = {d ∈ ∆I |

arbitrary, otherwise ∃e ∈ dI ∩ C I : (d , e) ∈ r I}

Definition (Positive (+) and negative (−) semantics)

I |=+ C (τ) iff τ I ∈ C I

I |=− C (τ) iff τ I ∈ dI and τ I ∈ C I

19 / 40



Excursus – Free DLs with Dual-Domain Semantics

Theorem

ALCOι∗ formula satisfiability on dual domain interpretations
under positive or negative semantics is polynomial time reducible
to ALCOιu ontology satisfiability on partial interpretations
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Epistemic & Temporal Extensions of Free DLs
[AM23]

Syntax

Extensions of standard DLs with both RE and modal constructors

• Individual names a and definite descriptions ιC (‘the C ’)
both terms of the language

• Modal and temporal operators representing knowl-
edge/belief states and temporal evolution

Semantics
Modal structures of partial interpretations that are total on con-
cept/role names and partial on individual names

• Epistemic structures: equivalence classes of partial inter-
pretations

• Temporal structures: (finite or infinite) sequences of partial
interpretations
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Epistemic Free DL Language

Definition (Terms, Concepts, Axioms)

S5ALCOι
u

• Terms: τ ::= a | ιC
• Concepts: C ::= A | {τ} | ¬C | C u C | ∃r .C | ∃u.C | 3C
• Axiomsa: C v C | C (τ) | r(τ, τ)

• Formulasa: Boolean and modal axiom combinations

aAssertions and formulas are syntactic sugar due to universal role u

3C ;“objects that are (epistemically) conceivable as C”

¬3¬C := 2C ;“objects that are known to be C”

22 / 40
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Temporal Free DL Language

Definition (Terms, Concepts, Axioms)

LTLALCOι
u

• Terms: τ ::= a | ιC
• Concepts: C ::= A | {τ} | ¬C | C u C | ∃r .C | ∃u.C | C U C
• Axiomsa: C v C | C (τ) | r(τ, τ)

• Formulasa: Boolean and modal axiom combinations

aAssertions and formulas are syntactic sugar due to universal role u

⊥ U C := ©C ;“objects that tomorrow will be C”

> U C := 3C ;“objects that will eventually be C”

¬3¬C := 2C ;“objects that will always be C”

+ “reflexive” (i.e., including the present) operators 3+, 2+
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Temporal Free DL Language
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Epistemic Free DL Semantics

Definition (Epistemic frame)

F = (W ,∼), with:

• W non-empty set of worlds

• ∼ ⊆W ×W equivalence relation on W

Definition (Partial epistemic interpretation)

M = (F,∆, I), with:

• F epistemic frame of M

• ∆ non-empty domain of M (constant domain assumption)

• I function mapping each w ∈W to partial interpretation Iw
M is a total epistemic interpretation iff every Iw is total
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Denotation and Rigidity

Definition (Denoting individual name)

An individual name a ∈ NI:

• denotes in Iw iff aIw is defined

• denotes in M iff a denotes in Iw , for some w ∈W

• is a ghost in M iff a does not denote in M

Definition (Rigid designator assumption)

M = (F,∆, I), with F = (W ,∼), satisfies the rigid designator
assumption (RDA) iff, for every individual name a ∈ NI and every
world w , v ∈W , the following condition holds:

aIw is defined ⇒ aIw = aIv , i.e., a is a rigid designator
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Epistemic Interpretation of Terms and Concepts

Definition (Value of a term in a world)

τIw is aIw , if τ = a, while for τ = ιC :

(ιC )Iw =

{
d , if CIw = {d}, for some d ∈ ∆

undefined, otherwise

τ denotes in Iw iff τIw is defined

Definition (Extension & satisfaction of a concept in a world)

CIw given as usual, with the following additions:

3CIw = {d ∈ ∆ | ∃v ∈W ,w ∼ v : d ∈ CIv },

{τ}Iw =

{
{τIw}, if τ denotes in Iw ,
∅, otherwise

C is satisfied at w of M if CIw 6= ∅.
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Epistemic Formula (Partial) Satisfiability

Definition (S5ALCOι
u

formula satisfaction)

S5ALCOι
u

formula ϕ satisfaction at w of M, M,w |= ϕ:

• M,w |= C (τ) iff τ denotes in Iw & τIw ∈ CIw ,

• M,w |= r(τ1, τ2) iff τ1, τ2 denotes in Iw & (τIw1 , τIw2 ) ∈ rIw ,

• M,w |= C v D iff CIw ⊆ DIw ,

• M,w |= 3ψ iff ∃v ∈W ,w ∼ v : M, v |= ψ,

• + usual Boolean clauses

Definition (S5ALCOι
u

partial/total satisfiability)

An S5ALCOι
u

formula ϕ is:

• satisfied in M if there is a world w in M such that M,w |= ϕ

• partial (resp., total) satisfiable if there is a partial (total)
modal interpretation M such that ϕ is satisfied in M
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Temporal Free DL Semantics

Definition (Temporal frame & Partial temporal interpretation)

• F = (N, <): N set of natural numbers; < linear order on N
• M = (F,∆, I), as in epistemic case
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Temporal Interpretation of Concepts and Formulas

Definition (LTLALCOι
u

concept & formula satisfaction)

The value of an LTLALCOι
u

term τ , the extension of an LTLALCOι
u

concept C , and the satisfaction of a LTLALCOι
u

formula ϕ at
instant t of partial temporal interpretation M = (F,∆, I), are
defined similarly to the epistemic case, with the clauses:

(C U D)It = {d ∈ ∆ | ∃u > t : d ∈ DIu & ∀v ∈ (t, u) : d ∈ CIv }
M, t |= ϕ U ψ iff ∃u > t : M, u |= ψ & ∀v ∈ (t, u) : M, v |= ϕ

Definition (LTLALCOι
u

partial/total satisfiability)

An LTLALCOι
u

formula ϕ/concept C is partial (resp., total) satis-
fiable iff ϕ/C is satisfied at instant 0 in some partial (resp., total)
temporal interpretation M
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Partial vs. Total Interpretations

Remarks

• Dropping the RDA is the most general assumption: rigid
designators can be enforced by the CI:

3+{a} v 2+{a}

• Partial interpretations generalise the total (standard) ones:
individual names can be forced to denote at some/every world

> v 3+∃u.{a} / > v 2+∃u.{a}

• Interesting satisfiability phenomena without the RDA, e.g.

({a} v 2C ) ∧3({a} v ¬C )

is satisfiable without the RDA (when a is interpreted differ-
ently across worlds) and unsatisfiable with the RDA
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Epistemic Scenario

Example

Characters

• Clark (clark), Lois (lois), Superman (superman)

• 2 (“Lois knows”)

Story

• In the actual scenario, Clark is Superman, but for Lois there is an
epistemically conceivable alternative in which he is not

M,w |= {clark} ≡ {superman} & M, v 6|= {clark} ≡ {superman}
• Lois knows that Superman is the hero that saves her

M,w |= 2({superman} ≡ {ι(Hero u ∃saves.{lois})})
• Lois loves who she knows to be the hero that saves her

M,w |= {lois} v ∃loves.2{ι(Hero u ∃saves.{lois})}
• Lois actually loves Clark without even realising it

M,w |= {lois} v ∃loves.{clark} ∧ ¬2({lois} v ∃loves.{clark})
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Temporal Scenario

Example

Characters
• KR Conference (kr), KR23, KR24 (kr23, kr24), a Program Chair

of KR (∃isPrgChr.{kr}), the General Chair of KR (ι∃isGenChr.{kr}),
a PC Member of KR (∃isPCMbr.{kr}), the Proceedings of KR23
(ι∃isProcOf.{kr23}), . . .

• © (“next year”), 3+ (“now or eventually”), 2+ (“now and forever”), . . .

Story
• KR24 is a rigid designator

M, t |= 3+{kr24} v 2+{kr24}

• KR24 is the upcoming KR Conference, but there will be more (hopefully)

M, t |= ∃u.{kr24} ∧ {kr24} v ©{kr} & M, t 6|= 3+{kr} v ©{kr}

• However, KR24 will never come back (as the current KR conference)

M, t |= 2+({kr24} v ©2¬{kr})

• Whoever is a Program Chair of KR always becomes either the General
Chair or a PC Member of KR next year

M, t |= 2+(∃isPrgChr.{kr} v {ι∃isGenChr.©{kr}} t ∃isPCMbr.©{kr})
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Reasoning in Epistemic Free DLs

• It is known that without definite descriptions (ιC ) the logic
S5ALCOu is NExpTime-complete (see [GKWZ03])

• We proved that the addition of definite descriptions does not
increase the complexity, even without RDA [AM23].

Theorem

Partial S5ALCOι
u

satisfiability without RDA is NExpTime-
complete

• Decidability proof based on a non-deterministic procedure
guessing quasimodels of exponential size (by adapting the
the proof for S5× S5 in [GKWZ03])
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Reasoning in Temporal Free DLs

• It is known that without definite descriptions (ιC ) and with
nominals under the RDA the logic LTLALCOu is ExpSpace-
complete (see [GKWZ03])

• We proved that the logic becomes undecidable by either adding
nominals without RDA or definite descriptions [AM23]

Theorem

The following are undecidable:

• total (hence partial) LTLALCOu satisfiability without RDA

• total (hence partial) LTLALCOι
u

satisfiability with RDA

• Undecidability proof based on 2-counter Minsky machine
encoding via non-rigid individual names/definite descrip-
tions (for +1/0-test & -1 register operations) and time
points (for computation steps)
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Ongoing Work

Epistemic Free DLs

• Decidability and complexity results for multi-modal cases:
Kn,KD45n,S5n

• Undecidability results for universal modality 2u , common
knowledge C , or subsumption under global ontology

Theorem (unpublished)

1 Let L ∈ {Kn,KD45n,S5n}, with n ≥ 1. Then satisfiability
without the RDA in LALCOι

u
is NExpTime-complete

2 Let L ∈ {Kn
2u ,KD45m

2u ,S5m
2u }, with n ≥ 1 and m ≥ 2. Then

satisfiability without the RDA in LALCOι
u

is undecidable

3 Let L ∈ {KD45m
C ,S5m

C }, with m ≥ 2. Then satisfiability with-
out the RDA in LALCOι

u
is undecidable

4 Subsumption under global ontology without the RDA in
KALCOι

u
is undecidable
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Ongoing Work

Temporal Free DLs

• Results on reasoning both over finite (LTLf ) and over infinite
(LTL) traces, and with box (2) and next (©) operators only

• Without the RDA, undecidability is pervasive, already af-
fecting LTLALCO satisfiability and LTLELO subsumption
with global axioms alone

Theorem (unpublished)

The following problems are undecidable:

1 LTLf
ALCO satisfiability without the RDA

2 LTLALCO satisfiability without the RDA (even with global ax-
ioms alone)

3 LTLf
ELO subsumption without the RDA

4 LTLELO subsumption without the RDA (even with global ax-
ioms alone).
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Future Work

• Epistemic Free DLs
• Less expressive epistemic DLs, based e.g. on ELOι

u
• Connections with recent standpoint DLs for multi-perspective

knowledge representation
• Non-normal modal DLs with definite descriptions, to avoid

logical omniscience of normal systems

• Temporal Free DLs
• Tame undecidability: further restrictions on temporal or DL

operators? (e.g., temporal operators on formulas only)

• RE existence (+ related interpolation & definability proper-
ties) in modal extensions of free DLs with definite descriptions
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Questions

Thank you
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