Characterizing Lipschitz continuity through modes of convergence for measurable functions

Nuno J. Alves

Joint work with João Paulos

46th Summer Symposium in Real Analysis University of Łódź, 17.06.2024

Contents

1 Motivation

2 Modes of convergence

3 Characterizing Lipschitz continuity

Motivation:

From convergence in relative entropy to convergence almost everywhere

Let (X, \mathbb{X}, μ) be a measure space.

Let p>1 and consider the function $H:[0,\infty)\to[0,\infty)$ given by

$$H(f) = f^p$$

Define the relative entropy of H as

$$H(g|f) = H(g) - H(f) - H'(f)(g - f)$$

Let $f_n, f: X \to \mathbb{R}$ be measurable.

Question

$$\int_{Y} H(f_n|f) d\mu \to 0 \quad \stackrel{?}{\Rightarrow} \quad \exists \text{ subsequence } (f_{k_n}) \text{ that converges to } f \text{ a.e.}$$

Question:
$$\int_{Y} H(f_n|f) d\mu \to 0 \stackrel{?}{\Rightarrow} \exists \text{ subsequence } (f_{k_n}) \text{ that converges to } f \text{ a.e.}$$

This is trivial in the case p=2, since for $H(f)=f^2$ the relative entropy is

$$H(g|f) = H(g) - H(f) - H'(f)(g - f)$$

= $(g - f)^2$

and so

$$\int_{Y} H(f_n|f) \, d\mu = \|f_n - f\|_2^2$$

$$H(f) = f^p, \quad p > 1$$

 $H(g|f) = g^p - f^p - pf^{p-1}(g - f)$

Lemma (C. Lattanzio, A. E. Tzavaras, SIAM J. Math. Anal. 2013)

Let $g, f \ge 0$ and suppose that f is bounded away from zero, that is,

$$0 < \delta < f < M < \infty$$

for some δ and M. Then there exists $R \geq M+1$ and $C_1, C_2 > 0$ such that

$$H(g|f) \ge \begin{cases} C_1|g - f|^2, & \text{if } g \in [0, R] \\ C_2|g - f|^p, & \text{if } g \in (R, \infty) \end{cases}$$

Let (X, \mathbb{X}, μ) be a measure space.

Let $f_n, f: X \to [0, \infty)$ be measurable and such that f is bounded away from zero for a.e $x \in X$.

Let the set B_n be defined as

$$B_n = \{ x \in X \mid 0 \le f_n(x) \le R \}$$

where R is as in the lemma.

In these conditions one deduces that

$$\int_X H(f_n|f) \, d\mu \ge C_1 \int_{B_n} |f_n - f|^2 \, dx + C_2 \mu(B_n^c)$$

$$\int_X H(f_n|f) \, d\mu \ge C_1 \int_{B_n} |f_n - f|^2 \, dx + C_2 \mu(B_n^c)$$

Question: $\int_Y H(f_n|f) d\mu \to 0 \stackrel{?}{\Rightarrow} \exists \text{ subsequence } (f_{k_n}) \text{ that converges to } f \text{ a.e.}$

This motivates the following definition:

Definition

A sequence (f_n) of measurable functions is said to α_p -converge to a measurable function f if there exists a sequence of measurable sets (B_n) with $\mu(B_n^c) \to 0$ as $n \to \infty$ such that

$$\int_{B_n} |f_n - f|^p d\mu \to 0 \text{ as } n \to \infty.$$

Relative entropy :
$$H(g|f) = H(g) - H(f) - H'(f)(g - f)$$

Question:
$$\int_X H(f_n|f) \, d\mu \to 0 \quad \stackrel{?}{\Rightarrow} \quad \exists \text{ subsequence } (f_{k_n}) \text{ that converges to } f \text{ a.e.}$$

Assume that X is a bounded measurable subset of \mathbb{R}^d .

Theorem (A., J. Skrzeczkowski, A. E. Tzavaras, in preparation)

Let p>1 and suppose that $H:\mathbb{R}\to [0,\infty)$ is continuously differentiable, strictly convex and satisfies

$$c|\lambda|^p - c \le H(\lambda) \le c|\lambda|^p + c$$

for some constant c>0 and every $\lambda\in\mathbb{R}$. Let $u_n,u:X\to\mathbb{R}$ belong to $L^p(X)$. Then

$$\int_{Y} H(u_n|u) \, dx \to 0$$
 if and only if $u_n \to u$ in $L^p(X)$

Modes of convergence that are almost in \boldsymbol{L}_p

Let $f_n, f: X \to \mathbb{R}$ be measurable. The sequence (f_n) is said to converge to f:

 \blacksquare in L_p if

$$\int_X |f_n - f|^p d\mu \to 0 \text{ as } n \to \infty$$

in measure if

$$\forall \delta > 0 \ \mu(\{x \in X \mid |f_n(x) - f(x)| \ge \delta\}) \to 0 \text{ as } n \to \infty$$

almost uniformly if

$$\forall \delta>0 \ \exists E_\delta \in \mathbb{X} \ \text{with} \ \mu(E_\delta)<\delta \ \text{such that} \ f_n o f \ \text{uniformly on} \ E_\delta^c$$

almost everywhere if

$$\exists N \in \mathbb{X}$$
 with $\mu(N) = 0$ such that $f_n \to f$ pointwise on N^c

Definition (α_p)

A sequence (f_n) of measurable functions is said to α_p -converge to a measurable function f if there exists a sequence of measurable sets (B_n) with $\mu(B_n^c) \to 0$ as $n \to \infty$ such that

$$\int_{B_n} |f_n - f|^p \, d\mu o 0 \, ext{ as } n o \infty$$

as $n \in \infty$.

Definition (almost in L_n)

A sequence (f_n) of measurable functions is said to **converge almost in** L_p to a measurable function f if for each $\delta>0$ there exists a measurable set E_δ with $\mu(E_\delta)<\delta$ such that

$$\int_{E^c_{\bar{s}}} |f_n - f|^p \, d\mu \to 0 \text{ as } n \to \infty.$$

It is always the case that the following relations hold

$$\begin{array}{c} L_p\text{-convergence} \Rightarrow \text{convergence almost in } L_p \\ \\ \Rightarrow \alpha_p\text{-convergence} \\ \\ \Rightarrow \text{convergence in measure} \end{array}$$

Interestingly enough, none of this modes of convergence are equivalent.

Moreover, if
$$\mu(X) < \infty$$
 then

convergence a.e.
$$\Rightarrow$$
 convergence a.u.
$$\Rightarrow$$
 convergence almost in L_p
$$\Rightarrow \alpha_p\text{-convergence}$$

$$L_p\text{-convergence} \Rightarrow \text{convergence almost in } L_p$$

$$\Rightarrow \alpha_p\text{-convergence}$$

$$\Rightarrow \text{convergence in measure}$$

Example 1:

Let
$$(X, \mathbb{X}, \mu) = ([0, 1], \mathcal{B}, \mathcal{L}).$$

Let
$$f_n = n^{1/p} \chi_{[0,1/n]}$$
.

Then (f_n) converges to 0 almost in L_p (and hence α_p -converges as well) but it does not converge to 0 in L_p .

$$L_p\text{-convergence} \Rightarrow \text{convergence almost in } L_p$$

$$\Rightarrow \alpha_p\text{-convergence}$$

$$\Rightarrow \text{convergence in measure}$$

Example 2:

Let
$$(X, \mathbb{X}, \mu) = ([0, \infty), \mathcal{B}, \mathcal{L})$$

Let
$$f_n = \frac{1}{n^{1/p}}\chi_{[0,n]}$$
.

Then (f_n) converges to 0 in measure but it does not α_p -converge to 0 (nor almost in L_p).

convergence almost in $L_p \Rightarrow \alpha_p$ -convergence

Example 3:

Let
$$(X, \mathbb{X}, \mu) = ([0, 1], \mathcal{B}, \mathcal{L})$$

Consider the following sequence of measurable sets:

$$\begin{split} F_1 &= [0,1] \\ F_2 &= [0,1/2], \quad F_3 = [1/2,1] \\ F_4 &= [0,1/3], \quad F_5 = [1/3,2/3], \quad F_6 = [2/3,1], \quad \text{and so on} \end{split}$$

Let
$$f_n = \frac{1}{\mu(F_n)^{1/p}} \chi_{F_n}$$
.

Then (f_n) α_p -converges to 0, but it does not converge to 0 almost in L_p .

Convergence almost in L_p is naturally related to almost- L_p spaces.

A measurable function f is said to be almost in L_p if for each $\delta>0$ there exists a measurable set E_δ with $\mu(E_\delta)<\delta$ such that

$$\int_{E_{\delta}^{c}} |f|^{p} d\mu < \infty$$

- Bravo, O. G., & Pérez, E. A. S. Optimal range theorems for operators with p-th power factorable adjoints. *Banach Journal of Mathematical Analysis* (2012)
- Calabuig, J. M., Bravo, O. G., Juan, M. A., & Pérez, E. A. S. Representation and factorization theorems for almost- L_p -spaces. *Indagationes Mathematicae* (2019)

 $\blacksquare f_n \xrightarrow{\alpha_p} f \Leftrightarrow \exists (B_n) \subseteq X \text{ with } \mu(B_n^c) \to 0 \text{ such that }$

$$\int_{B_n} |f_n - f|^p \, d\mu \to 0$$

• $f_n \to f$ almost in $L_n \Leftrightarrow \forall \delta > 0 \; \exists E_\delta \in \mathbb{X}$ with $\mu(E_\delta) < \delta$ such that

$$\int_{E_{\mathfrak{s}}^{c}} |f_{n} - f|^{p} d\mu \to 0$$

Proposition

If (f_n) α_p -converges to f, then there exists a subsequence (f_{k_n}) that converges to f almost in L_p .

A sequence (f_n) of measurable functions is said to be:

■ α_p -Cauchy if there exists a sequence of measurable sets (B_n) with $\mu(B_n^c) \to 0$ as $n \to \infty$ such that

$$\int_{B_n \cap B_m} |f_n - f_m|^p d\mu \to 0 \text{ as } n, m \to \infty$$

■ Cauchy almost in L_p if for each $\delta>0$ there exists a measurable set E_δ with $\mu(E_\delta)<\delta$ such that

$$\int_{E_s^c} |f_n - f_m|^p d\mu \to 0 \text{ as } n, m \to \infty$$

Both notions of convergence are complete in the sense that Cauchy sequences converge (in the corresponding mode of convergence) to a limit.

Proposition

Let (f_n) , f be measurable functions. Then

$$f_n \xrightarrow{\alpha_p} f \quad \Leftrightarrow \quad egin{cases} f_n o f & ext{in measure}, \ \exists \delta > 0 \ \int_{E^c_n(\delta)} |f_n - f|^p \, d\mu o 0 & ext{as } n o \infty, \end{cases}$$

where $E_n(\delta) = \{x \in X \mid |f_n(x) - f(x)| \ge \delta\}.$

If (f_n) converges to f in measure, then the following conditions are equivalent:

- $\blacksquare \exists \delta > 0 \ \int_{E^c(\delta)} |f_n f|^p d\mu \to 0 \text{ as } n \to \infty$
- $lacksquare orall \delta > 0 \int_{E^{\omega}_{-}(\delta)} |f_{n} f|^{p} d\mu \to 0 \text{ as } n \to \infty$

Vitali Convergence Theorem

Let $(f_n) \subseteq L_p$ and f be measurable. Then (f_n) converges to f in L_p if and only if

- \bullet (f_n) converges to f in measure,
- for every $\varepsilon > 0$ there exist $E_{\varepsilon} \in \mathbb{X}$ with $\mu(E_{\varepsilon}) < \infty$ and $\delta_{\varepsilon} > 0$ such that

$$\sup_{n} \int_{E_{\varepsilon}^{c}} |f_{n}|^{p} d\mu < \varepsilon^{p}$$

and

$$\forall F \in \mathbb{X} \qquad \mu(F) < \delta_{\varepsilon} \implies \sup_{n} \int_{E_{\varepsilon} \cap F} |f_{n}|^{p} d\mu < \varepsilon^{p}$$

Vitali Convergence Theorem for $lpha_p$ -convergence and convergence almost in L_p

Let $(f_n) \subseteq L_p$ and f be measurable. Then (f_n) converges to f in L_p if and only if

- lacksquare (f_n) α_p -converges or converges almost in L_p to f,
- lacksquare for every arepsilon>0 there exists $\delta_{arepsilon}>0$ such that

$$\forall F \in \mathbb{X} \qquad \mu(F) < \delta_{\varepsilon} \implies \sup_{n} \int_{F} |f_{n}|^{p} d\mu < \varepsilon^{p}$$

Preservation of convergence under composition

Let m be a notion of convergence for sequences of measurable functions.

A function $\varphi: \mathbb{R} \to \mathbb{R}$ is said to preserve m-convergence if given a measure space (X, \mathbb{X}, μ) and a sequence (f_n) of \mathbb{X} -measurable functions that m-converges to f, then the sequence $(\varphi(f_n))$ m-converges to $\varphi(f)$.

Theorem (Bartle, Joichi, Proc. AMS 1961)

- ullet φ preserves almost everywhere convergence if and only if φ is continuous,
- $m{\varphi}$ preserves uniform convergence, almost uniform convergence or convergence in measure if and only if ϕ is uniformly continuous.

Theorem

A function $\varphi : \mathbb{R} \to \mathbb{R}$ preserves L_p -convergence, convergence almost in L_p or α_p -convergence if and only if φ is Lipschitz continuous.

Lemma

A function $\varphi: \mathbb{R} \to \mathbb{R}$ is Lipschitz continuous if and only if

$$\exists \delta > 0 \quad \exists K > 0 \quad \forall a, b \in \mathbb{R} \quad |a - b| < \delta \Rightarrow |\varphi(a) - \varphi(b)| \le K|a - b|$$

Proof of Characterization Theorem

 (\Leftarrow) Suppose that φ is Lipschitz continuous and that $f_n \to f$ in L_p . Then, there exists K>0 such that

$$\forall a, b \in \mathbb{R} \quad |\varphi(a) - \varphi(b)| \le K|a - b|$$

and

$$\int_X |f_n - f|^p d\mu \to 0 \text{ as } n \to \infty$$

Proof of Characterization Theorem

 (\Leftarrow) Suppose that φ is Lipschitz continuous and that $f_n \to f$ in L_p . Then, there exists K>0 such that

$$\forall a, b \in \mathbb{R} \quad |\varphi(a) - \varphi(b)| \le K|a - b|$$

and

$$\int_X |f_n - f|^p d\mu \to 0 \text{ as } n \to \infty$$

Thus,

$$\int_X |\varphi(f_n) - \varphi(f)|^p d\mu \le K^p \int_X |f_n - f|^p d\mu \to 0 \text{ as } n \to \infty,$$

that is,

$$\varphi(f_n) \to \varphi(f)$$
 in L_p .

In a similar fashion, if $f_n \to f$ almost in L_p or $f_n \xrightarrow{\alpha_p} f$ then $\varphi(f_n) \to \varphi(f)$ almost in L_p or $\varphi(f_n) \xrightarrow{\alpha_p} \varphi(f)$, respectively.

$$(\Rightarrow)$$

Suppose that φ is not Lipschitz continuous. According to the lemma, choose sequences $(a_n), (b_n) \subseteq \mathbb{R}$ such that, for each $n \in \mathbb{N}$,

$$0 < |a_n - b_n| < \frac{1}{n^{1/p}}, \quad |\varphi(a_n) - \varphi(b_n)| > n^{1/p}|a_n - b_n|.$$

$$(\Rightarrow)$$

Suppose that φ is not Lipschitz continuous. According to the lemma, choose sequences $(a_n), (b_n) \subseteq \mathbb{R}$ such that, for each $n \in \mathbb{N}$,

$$0 < |a_n - b_n| < \frac{1}{n^{1/p}}, \quad |\varphi(a_n) - \varphi(b_n)| > n^{1/p}|a_n - b_n|.$$

Let $(X, \mathbb{X}, \mu) = ([0, \infty), \mathcal{B}, \mathcal{L})$, define $f: X \to \mathbb{R}$ by

Let
$$(X, \mathbb{X}, \mu) = ([0, \infty), \mathcal{B}, \mathcal{L})$$
, define $f: X \to \mathbb{R}$ by
$$f(x) = \begin{cases} b_1, & \text{if } 0 \le x < \frac{1}{|a_1 - b_1|^p} \\ b_n, & \text{if } \sum_{k=1}^{n-1} \frac{1}{|a_k - b_k|^p} + \frac{n-1}{n|a_n - b_n|^p} \le x < \sum_{k=1}^n \frac{1}{|a_k - b_k|^p}, \quad n \in \mathbb{N} \setminus \{1\} \\ 0, & \text{otherwise} \end{cases}$$

and, for each $n \in \mathbb{N} \setminus \{1\}$, let $f_n : X \to \mathbb{R}$ be given by

$$f_n(x) = \begin{cases} a_n, & \text{if } \sum_{k=1}^{n-1} \frac{1}{|a_k - b_k|^p} + \frac{n-1}{n|a_n - b_n|^p} \le x < \sum_{k=1}^n \frac{1}{|a_k - b_k|^p} \\ f(x), & \text{otherwise} \end{cases}$$

It holds that

$$\int_X |f_n - f|^p d\mu = \frac{1}{n} \to 0 \text{ as } n \to \infty$$

that is, (f_n) converges to f in L_p . Hence $f_n \to f$ almost in L_p and $f_n \xrightarrow{\alpha_p} f$.

It remains to be shown that $(\varphi(f_n))$ does not α_p -converge to $\varphi(f)$ (and hence it does not converge neither almost in L_p nor in L_p).

To that end, let (B_n) be any sequence of measurable sets such that $\mu(B_n^c) \to 0$ as $n \to \infty$, set

$$I_n = \left[\sum_{k=1}^{n-1} \frac{1}{|a_k - b_k|^p} + \frac{n-1}{n|a_n - b_n|^p}, \sum_{k=1}^n \frac{1}{|a_k - b_k|^p} \right],$$

and notice that

$$\int_{B_n} |\varphi(f_n) - \varphi(f)|^p d\mu = \int_{B_n \cap I_n} |\varphi(a_n) - \varphi(b_n)|^p d\mu$$

$$> n|a_n - b_n|^p \mu(B_n \cap I_n)$$

$$= n|a_n - b_n|^p (\mu(I_n) - \mu(B_n^c \cap I_n))$$

$$= 1 - n|a_n - b_n|^p \mu(B_n^c \cap I_n).$$

Now let $N \in \mathbb{N}$ be such that $\mu(B_n^c) < 1/2$ whenever $n \geq N$. Thus, for $n \geq N$,

$$\int_{B_n} |\varphi(f_n) - \varphi(f)|^p d\mu > 1 - n|a_n - b_n|^p \mu(B_n^c \cap I_n)$$

$$> 1 - \mu(B_n^c)$$

$$> 1/2$$

therefore $(\varphi(f_n))$ does not α_p -converge to $\varphi(f)$ and the proof is complete.

Now let $N \in \mathbb{N}$ be such that $\mu(B_n^c) < 1/2$ whenever $n \geq N$. Thus, for $n \geq N$,

$$\int_{B_n} |\varphi(f_n) - \varphi(f)|^p d\mu > 1 - n|a_n - b_n|^p \mu(B_n^c \cap I_n)$$

$$> 1 - \mu(B_n^c)$$

$$> 1/2$$

therefore $(\varphi(f_n))$ does not α_p -converge to $\varphi(f)$ and the proof is complete.

A., J. Paulos, *A mode of convergence arising in diffusive relaxation*, Q. J. Math 75(1), 143–159, 2024.

Thank you