On a triangle modification of the Niemytzki plane

Wojciech Bielas

University of Silesia in Katowice

June 18, 2024

The Niemytzki plane

Let us recall that the Niemytzki plane is a topological space

$$N = \{(x,y) \in \mathbb{R}^2 \colon y \geqslant 0\},\,$$

where

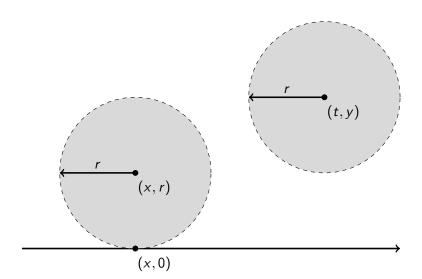
• neighbourhoods of a point $(x, y) \in N$, with y > 0, are of the form

$$D(x, y, r) = N \cap \{(z, t) \in \mathbb{R}^2 : (x - z)^2 + (y - t)^2 < r^2\},$$

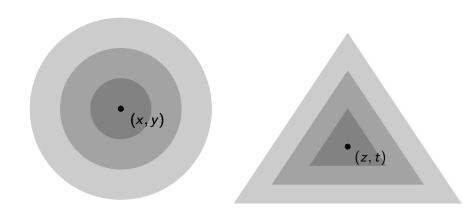
• neighbourhoods of a point $(x,0) \in N$ are of the form

$$D_0(x,r) = \{(x,0)\} \cup D(x,r,r).$$

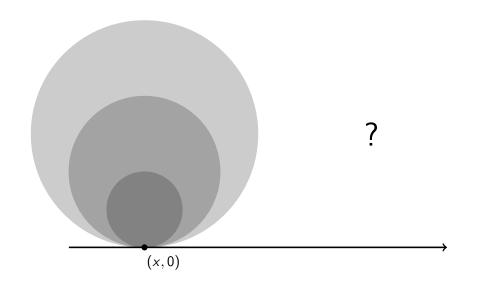
The Niemytzki plane



Base at a point (x, y) with y > 0

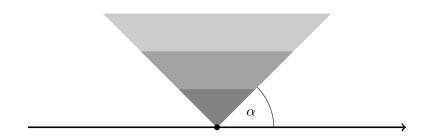


Base at a point (x,0)



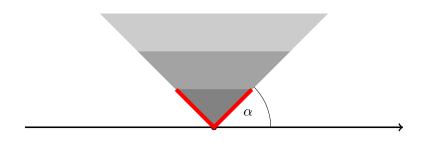
Triangles with a fixed angle α

This topology is not regular: the boundary of a smaller triangle is not contained in a bigger triangle.



Triangles with a fixed angle α

This topology is not regular: the boundary of a smaller triangle is not contained in a bigger triangle.

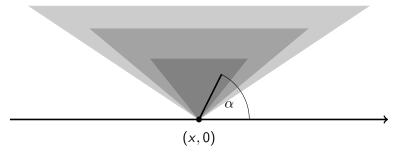


Triangles with angles $< \alpha$

We define

$$T(\beta, x, n) = \{(z, y) \in N : |(\tan \beta)(z - x)| < y < \frac{1}{n}\} \cup \{(x, 0)\},$$

where $\beta < \alpha$ and α is fixed.



Nonhomogeneity of the Niemytzki plane

- Let us observe that if $U \subseteq N$ is a neighbourhood of (x, y) with y > 0, then $U \setminus \{(x, y)\}$ contains paths which cannot be contracted to a point.
- This does not hold for points (x, 0).
- The triangle modification N_T has the same property.
- If $f: N \to N_T$ is a homeomorphism, then f(x,0) = (y,0) for a unique y and this defines a function $g: \mathbb{R} \to \mathbb{R}$, f(x,0) = (g(x),0).

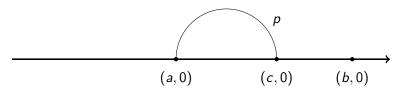


Restriction of homeomorphisms to the real line

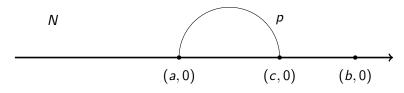
Proposition

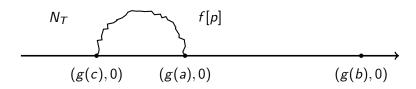
If $f: N \to N_T$ is a homeomorphism and $g: \mathbb{R} \to \mathbb{R}$ satisfies f(x,0) = (g(x),0), then there exists an open interval $(a,c) \neq \emptyset$ such that g[(a,c)] is also an open interval.

Fix $a, b \in \mathbb{R}$ such that a < b and g(a) < g(b). Assume that there is $c \in (a, b)$ such that g(c) < g(a). Let $p \subseteq N$ be an arc connecting (a, 0) and (c, 0).



Fix $a, b \in \mathbb{R}$ such that a < b and g(a) < g(b). Assume that there is $c \in (a, b)$ such that g(c) < g(a). Let $p \subseteq N$ be an arc connecting (a, 0) and (c, 0).





Points from $(a, c) \times \{0\}$ and the point (b, 0) cannot be connected by an arc disjoint from p. The same can be said about points from $(g(a), g(c)) \times \{0\}$ and the point (g(b), 0).

Proposition

If $f: N \to N_T$ is a homeomorphism and $g: \mathbb{R} \to \mathbb{R}$ satisfies f(x,0) = (g(x),0), then there exists an open interval $(a,c) \neq \emptyset$ such that g[(a,c)] is an open interval and $g|_{(a,c)}$ is monotone.

- Fix a < d < e < c and suppose that g(a) < g(e) < g(d) < g(c).
- Let p be an arc from (a,0) to (d,0) and q be an arc from (e,0) to (c,0) such that $p \cap q = \emptyset$.
- Then f[p], f[q] are disjoint arcs and $(g(a), 0), (g(d), 0) \in f[p], (g(e), 0), (g(c), 0) \in f[q]$; a contradiction.

- We start once again with a homeomorphism $f: N \to N_T$, the function g such that f(x,0) = (g(x),0) and an interval $(A,B) \subseteq \mathbb{R}$ such that $g|_{(A,B)}$ is increasing.
- For every $x \in \mathbb{R}$ there exists n_x such that

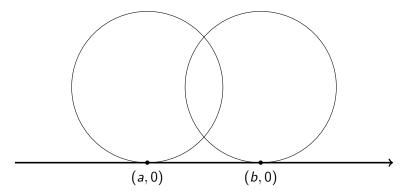
$$f[D_0(x, n_x)] \subseteq T(\frac{\alpha}{2}, g(x), 1).$$

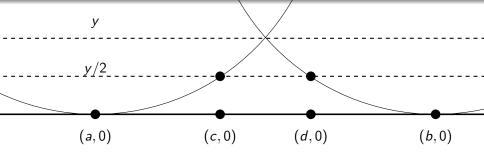
• The Baire category theorem implies that there exists a nonempty interval $(a,b)\subseteq (A,B)$ and $n\geqslant 1$ such that the set

$$G = \{x \in \mathbb{R} \colon n_x = n\}$$

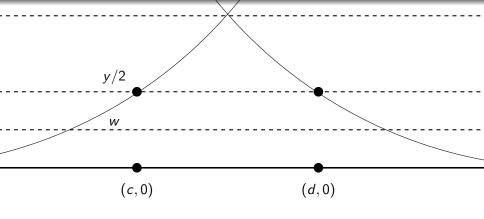
is dense in (a, b).

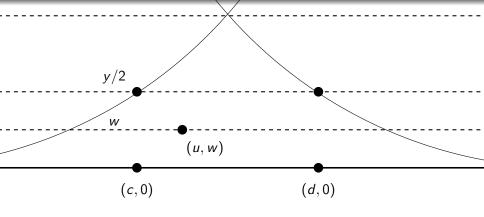
• Considering a smaller interval (a, b), we can assume that boundaries of $D_0(a, n), D_0(b, n)$ intersect in two points: $(\frac{a+b}{2}, y), (\frac{a+b}{2}, z)$, where y < z.

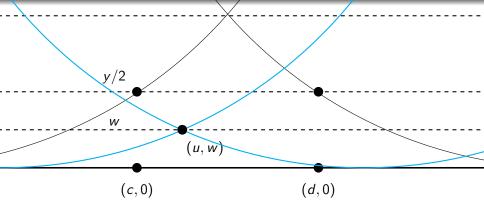


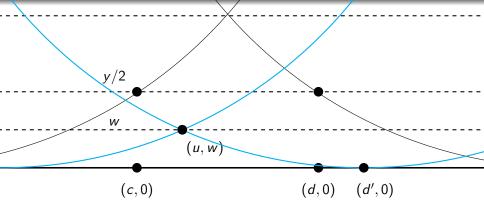


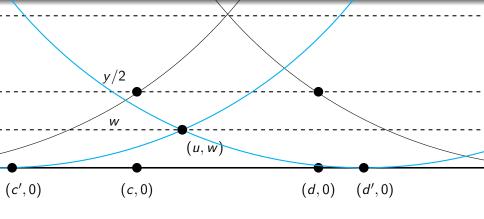
• There exist unique $a < c < \frac{a+b}{2} < d < b$ such that points $(c, \frac{y}{2}), (d, \frac{y}{2})$ belong to the boundary of $D_0(a, n) \cup D_0(b, n)$.



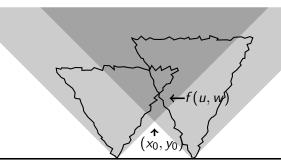








- Assume that $c' \in G$ and let $(x_m, y_m) \in D_0(c', n)$ be such that $(x_m, y_m) \to (u, w)$.
- Then $f(x_m, y_m) \in f[D_0(c', n)] \subseteq T(\frac{\alpha}{2}, g(c'), 1)$ and $f(u, w) \in \operatorname{cl} T(\frac{\alpha}{2}, g(c'), 1)$.
- Similarly, if $d' \in G$, then $f(u, w) \in \operatorname{cl} T(\frac{\alpha}{2}, g(d'), 1)$.
- If $f(u, w) = (f_1(u, w), f_2(u, w))$, then $y_0 \le f_2(u, w)$.



• We have $x_0 = \frac{g(c') + g(d')}{2}$ and

$$y_0 = (\tan \frac{\alpha}{2})(x_0 - g(c')) = (\tan \frac{\alpha}{2})(\frac{g(c') + g(d')}{2} - g(c')),$$

hence

$$\left(\tan\frac{\alpha}{2}\right)\frac{g(u)-g(c')}{2}\leqslant \left(\tan\frac{\alpha}{2}\right)\frac{g(d')-g(c')}{2}\leqslant f_2(u,w).$$

• Point (u, w) belongs to the boundary of $D_0(c', n)$, hence

$$(u-c')^2 + (w-\frac{1}{n})^2 = (\frac{1}{n})^2,$$

 $c' = u - \sqrt{\frac{2}{n}w - w^2},$

and

$$(*) \quad \bigg(\tan\frac{\alpha}{2}\bigg)\frac{g(u)-g(u-\sqrt{\frac{2}{n}w-w^2})}{2}\leqslant f_2(u,w).$$

• There exists m such that $\frac{2}{m} < \frac{y}{2}$ and

$$\sqrt{\frac{n}{m}} < \frac{\tan \frac{\alpha}{2}}{\tan \alpha}.$$

• For every $u \in (c, d)$ there exists k_u and $\beta_u \in (\frac{\alpha}{2}, \alpha) \cap \mathbb{Q}$ such that

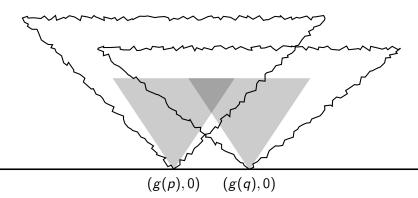
$$T(\beta_u, g(u), k_u) \subseteq f[D_0(u, m)].$$

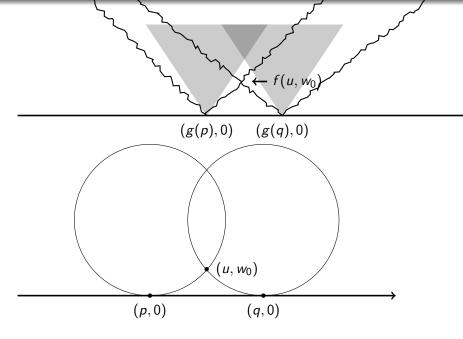
• The Baire category theorem implies that there exists an interval $(s,t)\subseteq (c,d)$, an angle $\beta\in (\frac{\alpha}{2},\alpha)$ and k such that the set

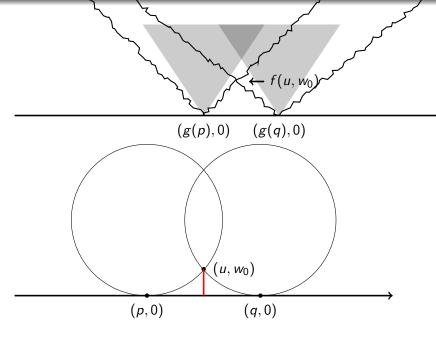
$$H = \{u \in (s, t) : (\beta_u, k_u) = (\beta, k)\}$$

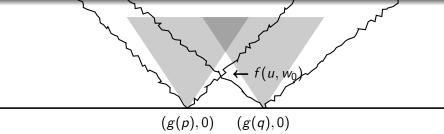
is dense in (s, t).

- Fix $s such that <math>p, q \in H$ and the intersection of triangles $T(\beta, g(p), k)$, $T(\beta, g(q), k)$ has nonempty interior.
- Then $f[D_0(p,m)] \cap f[D_0(q,m)]$ has nonempty interior and the intersection of boundaries of $D_0(p,m)$, $D_0(q,m)$ has two points (u, w_0) , (u, w_1) , where $w_0 < w_1$ and $u = \frac{p+q}{2}$.









We obtain the inequality

$$f(u, w_0) \leqslant (\tan \beta) \frac{g(q) - g(p)}{2}$$
.

• Point (u, w_0) belongs to the boundary of $D_0(p, m)$, hence

$$(u-p)^2 + (w_0 - \frac{1}{m})^2 = (\frac{1}{m})^2$$

and
$$p = u - \sqrt{\frac{2}{m}w_0 - w_0^2}$$
.

Since g(u) < g(q), we obtain

$$f_2(u, w_0) \leqslant (\tan \beta) \frac{g(u) - g(u - \sqrt{\frac{2}{m}w_0 - w_0^2})}{2}.$$

and, together with (*),

$$\left(\tan\frac{\alpha}{2}\right)\frac{g(u)-g(u-\sqrt{\frac{2}{n}}w_0-w_0^2)}{2}\leqslant \\ \left(\tan\beta\right)\frac{g(u)-g(u-\sqrt{\frac{2}{m}}w_0-w_0^2)}{2}.$$

- Let us denote $t_i = \sqrt{\frac{2}{i}w_0 w_0^2}$.
- Then

$$\begin{aligned} \frac{\tan\frac{\alpha}{2}}{\tan\alpha} &< \frac{\tan\frac{\alpha}{2}}{\tan\beta} \leqslant \frac{g(u) - g(u - t_m)}{g(u) - g(u - t_n)} = \\ &= \frac{g(u) - g(u - t_m)}{t_m} \cdot \frac{t_n}{g(u) - g(u - t_n)} \cdot \frac{t_m}{t_n}. \end{aligned}$$

• If g is differentiable at the point u and $w_0 \to 0$, then the right hand side tends to $\sqrt{\frac{n}{m}}$; a contradiction.