Combinatorial Banach spaces

Piotr Borodulin-Nadzieja

Wrocław

Promised Land 2024

This represents joint works with Barnabas Farkas, Sebastian Jachimek, Jordi Lopez-Abad, Anna Pelczar-Barwacz.

For a 'norm'

$$\|\cdot\|\colon \mathbb{R}^\mathbb{N}\to [0,\infty]$$

For a 'norm'

$$\|\cdot\|\colon\mathbb{R}^{\mathbb{N}}\to[0,\infty]$$

we define

• $Fin(\|\cdot\|) = \{x \in \mathbb{R}^{\mathbb{N}} : \|x\| < \infty\}.$

For a 'norm'

$$\|\cdot\|\colon\mathbb{R}^{\mathbb{N}}\to[0,\infty]$$

- $Fin(\|\cdot\|) = \{x \in \mathbb{R}^{\mathbb{N}} : \|x\| < \infty\}.$
 - e.g. ℓ_{∞} , ℓ_{1} , ℓ_{2} ,

For a 'norm'

$$\|\cdot\|\colon\mathbb{R}^{\mathbb{N}}\to[0,\infty]$$

- $Fin(\|\cdot\|) = \{x \in \mathbb{R}^{\mathbb{N}} : \|x\| < \infty\}.$
 - e.g. ℓ_{∞} , ℓ_{1} , ℓ_{2} ,
- $Exh(\|\cdot\|) = \{x \in \mathbb{R}^{\mathbb{N}} : \|(0, \dots, 0, x(n), x(n+1), \dots)\| \to_n 0\}.$

For a 'norm'

$$\|\cdot\|\colon\mathbb{R}^{\mathbb{N}}\to[0,\infty]$$

- $Fin(\|\cdot\|) = \{x \in \mathbb{R}^{\mathbb{N}} : \|x\| < \infty\}.$
 - e.g. ℓ_{∞} , ℓ_1 , ℓ_2 ,
- $Exh(\|\cdot\|) = \{x \in \mathbb{R}^{\mathbb{N}} : \|(0, \dots, 0, x(n), x(n+1), \dots)\| \to_n 0\}.$
 - e.g. *c*₀,

For a 'norm'

$$\|\cdot\|\colon\mathbb{R}^{\mathbb{N}}\to[0,\infty]$$

- $Fin(\|\cdot\|) = \{x \in \mathbb{R}^{\mathbb{N}} : \|x\| < \infty\}.$
 - e.g. ℓ_{∞} , ℓ_{1} , ℓ_{2} ,
- $Exh(\|\cdot\|) = \{x \in \mathbb{R}^{\mathbb{N}} : \|(0, \dots, 0, x(n), x(n+1), \dots)\| \to_n 0\}.$
 - e.g. c_0 , ℓ_1 , ℓ_2 , ...

For a 'norm'

$$\|\cdot\|\colon\mathbb{R}^{\mathbb{N}}\to[0,\infty]$$

we define

- $Fin(\|\cdot\|) = \{x \in \mathbb{R}^{\mathbb{N}} : \|x\| < \infty\}.$
 - e.g. ℓ_{∞} , ℓ_{1} , ℓ_{2} ,
- $Exh(\|\cdot\|) = \{x \in \mathbb{R}^{\mathbb{N}} : \|(0, \dots, 0, x(n), x(n+1), \dots)\| \to_n 0\}.$
 - e.g. c_0 , ℓ_1 , ℓ_2 , ...

This is a slang coming from set theory (analytic P-ideals).

Theorem (PBN, Farkas) If a norm $\|\cdot\|$ satisfies certain natural conditions, then $Fin(\|\cdot\|)$ and $Exh(\|\cdot\|)$ are Banach spaces.

Theorem (PBN, Farkas) If a norm $\|\cdot\|$ satisfies certain natural conditions, then $Fin(\|\cdot\|)$ and $Exh(\|\cdot\|)$ are Banach spaces.

Theorem (PBN, Farkas, in fact folklore) If X is a Banach space with unconditional basis, then X is isometric to $Exh(\|\cdot\|)$ for some norm $\|\cdot\|$.

Theorem (PBN, Farkas) If a norm $\|\cdot\|$ satisfies certain natural conditions, then $Fin(\|\cdot\|)$ and $Exh(\|\cdot\|)$ are Banach spaces.

Theorem (PBN, Farkas, in fact folklore) If X is a Banach space with unconditional basis, then X is isometric to $Exh(\|\cdot\|)$ for some norm $\|\cdot\|$.

Theorem (PBN, Farkas, in fact Pełczyński) A space $Exh(\|\cdot\|)$ does not contain a copy of c_0 if and only if $Exh(\|\cdot\|) = Fin(\|\cdot\|)$.

Theorem (PBN, Farkas) If a norm $\|\cdot\|$ satisfies certain natural conditions, then $Fin(\|\cdot\|)$ and $Exh(\|\cdot\|)$ are Banach spaces.

Theorem (PBN, Farkas, in fact folklore) If X is a Banach space with unconditional basis, then X is isometric to $Exh(\|\cdot\|)$ for some norm $\|\cdot\|$.

Theorem (PBN, Farkas, in fact Pełczyński) A space $Exh(\|\cdot\|)$ does not contain a copy of c_0 if and only if $Exh(\|\cdot\|) = Fin(\|\cdot\|)$.

Theorem (PBN, Farkas, in fact folklore) If a space $Exh(\|\cdot\|)$ does not contain a copy of ℓ_1 , then $Fin(\|\cdot\|)$ is isometric to the double dual of $Exh(\|\cdot\|)$.

Theorem (PBN, Farkas) If a norm $\|\cdot\|$ satisfies certain natural conditions, then $Fin(\|\cdot\|)$ and $Exh(\|\cdot\|)$ are Banach spaces.

Theorem (PBN, Farkas, in fact folklore) If X is a Banach space with unconditional basis, then X is isometric to $Exh(\|\cdot\|)$ for some norm $\|\cdot\|$.

Theorem (PBN, Farkas, in fact Pełczyński) A space $Exh(\|\cdot\|)$ does not contain a copy of c_0 if and only if $Exh(\|\cdot\|) = Fin(\|\cdot\|)$.

Theorem (PBN, Farkas, in fact folklore) If a space $Exh(\|\cdot\|)$ does not contain a copy of ℓ_1 , then $Fin(\|\cdot\|)$ is isometric to the double dual of $Exh(\|\cdot\|)$.

Fix a hereditary family $\mathcal F$ of finite subsets of $\mathbb N.$

Fix a hereditary family $\mathcal F$ of finite subsets of $\mathbb N.$

$$||x||_{\mathcal{F}} = \sup_{F \in \mathcal{F}} \sum_{i \in F} |x(i)|.$$

Fix a hereditary family \mathcal{F} of finite subsets of \mathbb{N} .

For $x \in \mathbb{R}^{\mathbb{N}}$ let

$$||x||_{\mathcal{F}} = \sup_{F \in \mathcal{F}} \sum_{i \in F} |x(i)|.$$

• if $\mathcal{F} = \{\text{singletons}\}$, then $Fin(\mathcal{F}) =$

Fix a hereditary family $\mathcal F$ of finite subsets of $\mathbb N.$

For $x \in \mathbb{R}^{\mathbb{N}}$ let

$$||x||_{\mathcal{F}} = \sup_{F \in \mathcal{F}} \sum_{i \in F} |x(i)|.$$

• if $\mathcal{F} = \{\text{singletons}\}$, then $Fin(\mathcal{F}) = \ell_{\infty}$, $Exh(\mathcal{F}) = \ell_{\infty}$

Fix a hereditary family $\mathcal F$ of finite subsets of $\mathbb N.$

For $x \in \mathbb{R}^{\mathbb{N}}$ let

$$||x||_{\mathcal{F}} = \sup_{F \in \mathcal{F}} \sum_{i \in F} |x(i)|.$$

• if $\mathcal{F} = \{\text{singletons}\}$, then $Fin(\mathcal{F}) = \ell_{\infty}$, $Exh(\mathcal{F}) = c_0$.

Fix a hereditary family $\mathcal F$ of finite subsets of $\mathbb N.$

$$||x||_{\mathcal{F}} = \sup_{F \in \mathcal{F}} \sum_{i \in F} |x(i)|.$$

- if $\mathcal{F} = \{\text{singletons}\}$, then $Fin(\mathcal{F}) = \ell_{\infty}$, $Exh(\mathcal{F}) = c_0$.
- if $\mathcal{F} = \{\text{finite sets}\}$, then $Fin(\mathcal{F}) =$

Fix a hereditary family $\mathcal F$ of finite subsets of $\mathbb N.$

$$||x||_{\mathcal{F}} = \sup_{F \in \mathcal{F}} \sum_{i \in F} |x(i)|.$$

- if $\mathcal{F} = \{\text{singletons}\}$, then $Fin(\mathcal{F}) = \ell_{\infty}$, $Exh(\mathcal{F}) = c_0$.
- ullet if $\mathcal{F}=\{ ext{finite sets}\}$, then $extit{Fin}(\mathcal{F})=\ell_1$, $extit{Exh}(\mathcal{F})=\ell_1$

Fix a hereditary family ${\mathcal F}$ of finite subsets of ${\mathbb N}.$

$$||x||_{\mathcal{F}} = \sup_{F \in \mathcal{F}} \sum_{i \in F} |x(i)|.$$

- if $\mathcal{F} = \{\text{singletons}\}$, then $Fin(\mathcal{F}) = \ell_{\infty}$, $Exh(\mathcal{F}) = c_0$.
- if $\mathcal{F} = \{\text{finite sets}\}$, then $Fin(\mathcal{F}) = \ell_1$, $Exh(\mathcal{F}) = \ell_1$.

Convention

$$X_{\mathcal{F}} = Exh(\mathcal{F}).$$

The Schreier family:

$$\mathcal{S} = \{ F \subseteq \mathbb{N} \colon |F| \le \min F + 1 \}.$$

 X_S is called the *Schreier space*.

The Schreier family:

$$\mathcal{S} = \{ F \subseteq \mathbb{N} \colon |F| \le \min F + 1 \}.$$

 $X_{\mathcal{S}}$ is called the *Schreier space*.

The family S is compact (in the Cantor topology):

The Schreier family:

$$\mathcal{S} = \{ F \subseteq \mathbb{N} \colon |F| \le \min F + 1 \}.$$

 $X_{\mathcal{S}}$ is called the *Schreier space*.

The family $\mathcal S$ is compact (in the Cantor topology): a hereditary family $\mathcal F$ is compact iff there is no infinite $N\subseteq\omega$ such that $[N]^\infty\subseteq\mathcal F$.

The Schreier family:

$$\mathcal{S} = \{ F \subseteq \mathbb{N} \colon |F| \le \min F + 1 \}.$$

 $X_{\mathcal{S}}$ is called the *Schreier space*.

The family $\mathcal S$ is compact (in the Cantor topology): a hereditary family $\mathcal F$ is compact iff there is no infinite $N\subseteq\omega$ such that $[N]^\infty\subseteq\mathcal F$.

If \mathcal{F} is compact, then $X_{\mathcal{F}}$ can be embedded into $C(\mathcal{F})$, the Banach space of continuous functions on \mathcal{F} .

If \mathcal{F} is compact, then $X_{\mathcal{F}}$ can be embedded into $C(\mathcal{F})$, the Banach space of continuous functions on \mathcal{F} .

Theorem (Pełczyński) If K is compact and countable, then C(K) is c_0 -saturated, i.e. each ∞ -dim subspace of C(K) contains an isomorphic copy of c_0 .

If \mathcal{F} is compact, then $X_{\mathcal{F}}$ can be embedded into $C(\mathcal{F})$, the Banach space of continuous functions on \mathcal{F} .

Theorem (Pełczyński) If K is compact and countable, then C(K) is c_0 -saturated, i.e. each ∞ -dim subspace of C(K) contains an isomorphic copy of c_0 .

So, if \mathcal{F} is compact, then $X_{\mathcal{F}}$ is c_0 -saturated.

If \mathcal{F} is compact, then $X_{\mathcal{F}}$ can be embedded into $C(\mathcal{F})$, the Banach space of continuous functions on \mathcal{F} .

Theorem (Pełczyński) If K is compact and countable, then C(K) is c_0 -saturated, i.e. each ∞ -dim subspace of C(K) contains an isomorphic copy of c_0 .

So, if \mathcal{F} is compact, then $X_{\mathcal{F}}$ is c_0 -saturated.

Each countable compact space is scattered (i.e. it does not contain a Cantor set). One can analyze $X_{\mathcal{F}}$ for compact families in terms of Cantor-Bendixson rank of \mathcal{F} (higher order Schreier spaces).

If \mathcal{F} is not compact, then $X_{\mathcal{F}}$ contains a copy of ℓ_1 (e.g. on any infinite $N \in \overline{\mathcal{F}}$).

If \mathcal{F} is not compact, then $X_{\mathcal{F}}$ contains a copy of ℓ_1 (e.g. on any infinite $N \in \overline{\mathcal{F}}$).

A natural example: consider the dyadic tree $2^{<\mathbb{N}}$ (instead of \mathbb{N}).

If \mathcal{F} is not compact, then $X_{\mathcal{F}}$ contains a copy of ℓ_1 (e.g. on any infinite $N \in \overline{\mathcal{F}}$).

A natural example: consider the dyadic tree $2^{<\mathbb{N}}$ (instead of \mathbb{N}).

Let $\mathcal{A} = \{ \text{finite antichains} \}$ and $\mathcal{C} = \{ \text{finite chains} \}$.

If \mathcal{F} is not compact, then $X_{\mathcal{F}}$ contains a copy of ℓ_1 (e.g. on any infinite $N \in \overline{\mathcal{F}}$).

A natural example: consider the dyadic tree $2^{<\mathbb{N}}$ (instead of \mathbb{N}).

Let $\mathcal{A} = \{ \text{finite antichains} \}$ and $\mathcal{C} = \{ \text{finite chains} \}.$

[Contemplate X_A and X_C .]

Farah space

Let
$$I_n = [2^n, 2^{n+1})$$
 for every n . Let

$$\mathcal{F} = \{ F \in [\mathbb{N}]^{<\infty} \colon \forall n \; \frac{|F \cap I_n|}{|I_n|} < 1/n \}.$$

Then

Let $I_n = [2^n, 2^{n+1})$ for every n. Let

$$\mathcal{F} = \{ F \in [\mathbb{N}]^{<\infty} \colon \forall n \; \frac{|F \cap I_n|}{|I_n|} < 1/n \}.$$

Then

• $X_{\mathcal{F}}$ is not isomorphic to ℓ_1 ,

Let $I_n = [2^n, 2^{n+1})$ for every n. Let

$$\mathcal{F} = \{ F \in [\mathbb{N}]^{<\infty} \colon \forall n \; \frac{|F \cap I_n|}{|I_n|} < 1/n \}.$$

Then

- $X_{\mathcal{F}}$ is not isomorphic to ℓ_1 ,
- $X_{\mathcal{F}}$ is ℓ_1 -saturated,

Let $I_n = [2^n, 2^{n+1})$ for every n. Let

$$\mathcal{F} = \{ F \in [\mathbb{N}]^{<\infty} \colon \forall n \; \frac{|F \cap I_n|}{|I_n|} < 1/n \}.$$

Then

- $X_{\mathcal{F}}$ is not isomorphic to ℓ_1 ,
- $X_{\mathcal{F}}$ is ℓ_1 -saturated,
- in fact $X_{\mathcal{F}}$ has the Schur property.

Let $I_n = [2^n, 2^{n+1})$ for every n. Let

$$\mathcal{F} = \{ F \in [\mathbb{N}]^{<\infty} \colon \forall n \; \frac{|F \cap I_n|}{|I_n|} < 1/n \}.$$

Then

- $X_{\mathcal{F}}$ is not isomorphic to ℓ_1 ,
- $X_{\mathcal{F}}$ is ℓ_1 -saturated,
- in fact $X_{\mathcal{F}}$ has the Schur property.

In general:

Schur property $\implies \ell_1$ -saturation \implies no copies of c_0

It was an open problem if ℓ_1 -saturation implies the Schur property. Solved by Bourgain in negative, then another examples appeared (Azimi-Hagler, Popov).

It was an open problem if ℓ_1 -saturation implies the Schur property. Solved by Bourgain in negative, then another examples appeared (Azimi-Hagler, Popov).

Another example:

It was an open problem if ℓ_1 -saturation implies the Schur property. Solved by Bourgain in negative, then another examples appeared (Azimi-Hagler, Popov).

Another example:

• fix a strictly increasing function $g: \mathbb{N} \to \mathbb{N}$,

It was an open problem if ℓ_1 -saturation implies the Schur property. Solved by Bourgain in negative, then another examples appeared (Azimi-Hagler, Popov).

Another example:

- fix a strictly increasing function $g: \mathbb{N} \to \mathbb{N}$,
- define

$$\mathcal{F}_g = \{F \in [\mathbb{N}]^{<\infty} \colon rac{|F \cap I_{g(n)}|}{|I_{g(n)}|} < 1/n ext{ and } F \cap I_k = \emptyset ext{ if } k
otin g[\mathbb{N}]\}.$$

It was an open problem if ℓ_1 -saturation implies the Schur property. Solved by Bourgain in negative, then another examples appeared (Azimi-Hagler, Popov).

Another example:

- fix a strictly increasing function $g: \mathbb{N} \to \mathbb{N}$,
- define

$$\mathcal{F}_g = \{ F \in [\mathbb{N}]^{<\infty} \colon \frac{|F \cap I_{g(n)}|}{|I_{g(n)}|} < 1/n \text{ and } F \cap I_k = \emptyset \text{ if } k \notin g[\mathbb{N}] \}.$$

• finally let $\mathcal F$ be the union of all $\mathcal F_g$'s, for all possible strictly increasing g's.

It was an open problem if ℓ_1 -saturation implies the Schur property. Solved by Bourgain in negative, then another examples appeared (Azimi-Hagler, Popov).

Another example:

- fix a strictly increasing function $g: \mathbb{N} \to \mathbb{N}$,
- define

$$\mathcal{F}_g = \{ F \in [\mathbb{N}]^{<\infty} \colon \frac{|F \cap I_{g(n)}|}{|I_{g(n)}|} < 1/n \text{ and } F \cap I_k = \emptyset \text{ if } k \notin g[\mathbb{N}] \}.$$

• finally let ${\cal F}$ be the union of all ${\cal F}_g$'s, for all possible strictly increasing g's.

Then $X_{\mathcal{F}}$ does not have the Schur property but it is ℓ_1 -saturated.

イロト (日) (日) (日) (日)

The spaces of the form $X_{\mathcal{F}}$ look like amalgamates of c_0 's and ℓ_1 's.

The spaces of the form $X_{\mathcal{F}}$ look like amalgamates of c_0 's and ℓ_1 's.

Conjecture. Each combinatorial Banach space is $\{c_0, \ell_1\}$ -saturated, i.e. each ∞ -dim subspace of a combinatorial space contains a copy of c_0 or a copy of ℓ_1 .

The spaces of the form $X_{\mathcal{F}}$ look like amalgamates of c_0 's and ℓ_1 's.

Conjecture. Each combinatorial Banach space is $\{c_0, \ell_1\}$ -saturated, i.e. each ∞ -dim subspace of a combinatorial space contains a copy of c_0 or a copy of ℓ_1 .

No! The space X_A (time stopping space), by a result of Rosenthal, contains ℓ_p for each p > 1.

The spaces of the form $X_{\mathcal{F}}$ look like amalgamates of c_0 's and ℓ_1 's.

Conjecture. Each combinatorial Banach space is $\{c_0, \ell_1\}$ -saturated, i.e. each ∞ -dim subspace of a combinatorial space contains a copy of c_0 or a copy of ℓ_1 .

No! The space X_A (time stopping space), by a result of Rosenthal, contains ℓ_p for each p > 1.

Even more, Rosenthal proved that X_C is a universal space for all Banach spaces with unconditional basis!

The spaces of the form $X_{\mathcal{F}}$ look like amalgamates of c_0 's and ℓ_1 's.

Conjecture. Each combinatorial Banach space is $\{c_0, \ell_1\}$ -saturated, i.e. each ∞ -dim subspace of a combinatorial space contains a copy of c_0 or a copy of ℓ_1 .

No! The space X_A (time stopping space), by a result of Rosenthal, contains ℓ_p for each p > 1.

Even more, Rosenthal proved that X_C is a universal space for all Banach spaces with unconditional basis!

So, combinatorial spaces may be quite reach in terms of subspaces.

Let Y be a sequential space, with unconditional basis (e.g. $Y = \ell_2$).

Let Y be a sequential space, with unconditional basis (e.g. $Y = \ell_2$). Here is a procedure to create a combinatorial space with a 'tangible' copy of Y.

Let Y be a sequential space, with unconditional basis (e.g. $Y = \ell_2$). Here is a procedure to create a combinatorial space with a 'tangible' copy of Y.

Let

$$\mathcal{F} = \{ F \in [\mathbb{N}]^{<\infty} : (\frac{|F \cap I_n|}{|I_n|})_n \in B(Y^*) \}.$$

Let Y be a sequential space, with unconditional basis (e.g. $Y = \ell_2$). Here is a procedure to create a combinatorial space with a 'tangible' copy of Y.

Let

$$\mathcal{F} = \{ F \in [\mathbb{N}]^{<\infty} : (\frac{|F \cap I_n|}{|I_n|})_n \in B(Y^*) \}.$$

Let

$$z_n = \frac{x_{2^n} + \cdots + x_{2^{n+1}-1}}{2^n}.$$

Let Y be a sequential space, with unconditional basis (e.g. $Y = \ell_2$). Here is a procedure to create a combinatorial space with a 'tangible' copy of Y.

Let

$$\mathcal{F} = \{ F \in [\mathbb{N}]^{<\infty} : (\frac{|F \cap I_n|}{|I_n|})_n \in B(Y^*) \}.$$

Let

$$z_n = \frac{x_{2^n} + \cdots + x_{2^{n+1}-1}}{2^n}.$$

Claim. (z_n) generates Y.

Let Y be a sequential space, with unconditional basis (e.g. $Y = \ell_2$). Here is a procedure to create a combinatorial space with a 'tangible' copy of Y.

Let

$$\mathcal{F} = \{ F \in [\mathbb{N}]^{<\infty} : (\frac{|F \cap I_n|}{|I_n|})_n \in B(Y^*) \}.$$

Let

$$z_n = \frac{x_{2^n} + \cdots + x_{2^{n+1}-1}}{2^n}.$$

Claim. (z_n) generates Y.

It follows from the fact that

$$||y||_Y = \sup\{\langle x, y \rangle \colon x \in B(Y^*)\}.$$

Let Y be a sequential space, with unconditional basis (e.g. $Y = \ell_2$). Here is a procedure to create a combinatorial space with a 'tangible' copy of Y.

Let

$$\mathcal{F} = \{ F \in [\mathbb{N}]^{<\infty} : (\frac{|F \cap I_n|}{|I_n|})_n \in B(Y^*) \}.$$

Let

$$z_n = \frac{x_{2^n} + \cdots + x_{2^{n+1}-1}}{2^n}.$$

Claim. (z_n) generates Y.

It follows from the fact that

$$||y||_Y = \sup\{\langle x, y \rangle \colon x \in B(Y^*)\}.$$

$$\|y\|_{\mathcal{F}} = \|\sum_n y(n)z_n\|_{\mathcal{F}} = \sup_{F \in \mathcal{F}} \sum_n \frac{|F \cap I_n|}{|I_n|} |y(n)| = \sup_{F \in \mathcal{F}} \langle \frac{|F \cap I_n|}{|I_n|}, y \rangle.$$

So, Y can be embedded isomorphically into $X_{\mathcal{F}}$.

So, Y can be embedded isomorphically into $X_{\mathcal{F}}$. Moreover, it can be embedded in a complemented way.

So, Y can be embedded isomorphically into $X_{\mathcal{F}}$. Moreover, it can be embedded in a complemented way.

 $X \subseteq Y$ is complemented in Y if there is a continuous linear $T \colon Y \to X$ such that $T^2 = T$.

So, Y can be embedded isomorphically into $X_{\mathcal{F}}$. Moreover, it can be embedded in a complemented way.

 $X \subseteq Y$ is complemented in Y if there is a continuous linear $T \colon Y \to X$ such that $T^2 = T$. In other words: Y is isomorphic to $X \oplus Z$ for some Z.

So, Y can be embedded isomorphically into $X_{\mathcal{F}}$. Moreover, it can be embedded in a complemented way.

 $X \subseteq Y$ is complemented in Y if there is a continuous linear $T \colon Y \to X$ such that $T^2 = T$. In other words: Y is isomorphic to $X \oplus Z$ for some Z.

In our case, let

$$T(x)(k) = \sup_{i \in I_n} \frac{x(i)}{|I_n|}$$

if $k \in I_n$.

Let ${\mathcal F}$ be an universal family of finite sets, i.e. such that

Let ${\mathcal F}$ be an universal family of finite sets, i.e. such that

whenever \mathcal{G} is a family of finite sets and $\mathcal{N} \subseteq \mathbb{N}$ is finite, then

Let $\mathcal F$ be an universal family of finite sets, i.e. such that

whenever \mathcal{G} is a family of finite sets and $N \subseteq \mathbb{N}$ is finite, then there is $M \subseteq \mathbb{N}$ such that $\mathcal{F}_{|M}$ is isomorphic to $\mathcal{G}_{|N}$.

Let $\mathcal F$ be an universal family of finite sets, i.e. such that

whenever \mathcal{G} is a family of finite sets and $N \subseteq \mathbb{N}$ is finite, then there is $M \subseteq \mathbb{N}$ such that $\mathcal{F}_{|M}$ is isomorphic to $\mathcal{G}_{|N}$.

Such family can be constructed e.g. as a Fraisse limit.

Let ${\mathcal F}$ be an universal family of finite sets, i.e. such that

whenever \mathcal{G} is a family of finite sets and $N \subseteq \mathbb{N}$ is finite, then there is $M \subseteq \mathbb{N}$ such that $\mathcal{F}_{|M}$ is isomorphic to $\mathcal{G}_{|N}$.

Such family can be constructed e.g. as a Fraisse limit. (In fact, this is the random hypergraph).

Let ${\mathcal F}$ be an universal family of finite sets, i.e. such that

whenever $\mathcal G$ is a family of finite sets and $N\subseteq\mathbb N$ is finite, then there is $M\subseteq\mathbb N$ such that $\mathcal F_{|M}$ is isomorphic to $\mathcal G_{|N}$.

Such family can be constructed e.g. as a Fraisse limit. (In fact, this is the random hypergraph).

Theorem. $X_{\mathcal{F}}$ is universal for Banach spaces with unconditional basis. Moreover, each Banach space with unconditional basis has a complemented copy in $X_{\mathcal{F}}$.

Let ${\mathcal F}$ be an universal family of finite sets, i.e. such that

whenever \mathcal{G} is a family of finite sets and $N \subseteq \mathbb{N}$ is finite, then there is $M \subseteq \mathbb{N}$ such that $\mathcal{F}_{|M}$ is isomorphic to $\mathcal{G}_{|N}$.

Such family can be constructed e.g. as a Fraisse limit. (In fact, this is the random hypergraph).

Theorem. $X_{\mathcal{F}}$ is universal for Banach spaces with unconditional basis. Moreover, each Banach space with unconditional basis has a complemented copy in $X_{\mathcal{F}}$.

By a theorem due to Pełczyński $X_{\mathcal{F}}$ is isomorphic to so called Pełczyński space.

Pełczyński space

Problem (Pełczyński, 1969). Is a base of every Pełczyński space permutatively equivalent to the base of **the** Pełczyński space?

Pełczyński space

Problem (Pełczyński, 1969). Is a base of every Pełczyński space permutatively equivalent to the base of **the** Pełczyński space?

Theorem No, $X_{\mathcal{F}}$ is not. In $X_{\mathcal{F}}$ the base is not universal (contrary to the case of the Pełczyński space).

Theorem (Bang, Odell, 1989)

- $(Exh(C))^*$ is isometric to Fin(A),
- $(Exh(A))^*$ is isometric to Fin(C).

Theorem (Bang, Odell, 1989)

- $(Exh(C))^*$ is isometric to Fin(A),
- $(E \times h(A))^*$ is isometric to Fin(C).

Question Can we find another dual pairs of spaces?

Theorem (Bang, Odell, 1989)

- $(Exh(C))^*$ is isometric to Fin(A),
- $(Exh(A))^*$ is isometric to Fin(C).

Question Can we find another dual pairs of spaces?

For a family ${\mathcal F}$ let

$$\mathcal{F}^{\perp} = \{ A \in [\mathbb{N}]^{<\infty} \colon \forall F \in \mathcal{F} \ |A \cap F| \le 1 \}.$$

Theorem (Bang, Odell, 1989)

- $(Exh(C))^*$ is isometric to Fin(A),
- $(Exh(A))^*$ is isometric to Fin(C).

Question Can we find another dual pairs of spaces?

For a family ${\mathcal F}$ let

$$\mathcal{F}^{\perp} = \{ A \in [\mathbb{N}]^{<\infty} \colon \forall F \in \mathcal{F} \mid A \cap F \mid \leq 1 \}.$$

We say that \mathcal{F} is reflexive if $\mathcal{F}^{\perp\perp} = \mathcal{F}$.

Theorem (Bang, Odell, 1989)

- $(Exh(C))^*$ is isometric to Fin(A),
- $(Exh(A))^*$ is isometric to Fin(C).

Question Can we find another dual pairs of spaces?

For a family ${\mathcal F}$ let

$$\mathcal{F}^{\perp} = \{ A \in [\mathbb{N}]^{<\infty} \colon \forall F \in \mathcal{F} \mid A \cap F \mid \leq 1 \}.$$

We say that \mathcal{F} is reflexive if $\mathcal{F}^{\perp\perp} = \mathcal{F}$.

Examples: singletons, all finite subsets, antichains, chains.

Theorem (Bang, Odell, 1989)

- $(Exh(C))^*$ is isometric to Fin(A),
- $(Exh(A))^*$ is isometric to Fin(C).

Question Can we find another dual pairs of spaces?

For a family ${\mathcal F}$ let

$$\mathcal{F}^{\perp} = \{ A \in [\mathbb{N}]^{<\infty} \colon \forall F \in \mathcal{F} \mid A \cap F \mid \leq 1 \}.$$

We say that \mathcal{F} is reflexive if $\mathcal{F}^{\perp\perp} = \mathcal{F}$.

Examples: singletons, all finite subsets, antichains, chains.

Theorem / Conjecture If \mathcal{F} is reflexive, then

- $(Exh(\mathcal{F}))^*$ is isometric to $Fin(\mathcal{F}^{\perp})$,
- $(Exh(\mathcal{F}^{\perp}))^*$ is isometric to $Fin(\mathcal{F})$.

Theorem (Bang, Odell, 1989)

- $(Exh(C))^*$ is isometric to Fin(A),
- $(Exh(A))^*$ is isometric to Fin(C).

Question Can we find another dual pairs of spaces?

For a family ${\mathcal F}$ let

$$\mathcal{F}^{\perp} = \{ A \in [\mathbb{N}]^{<\infty} \colon \forall F \in \mathcal{F} \mid A \cap F \mid \leq 1 \}.$$

We say that \mathcal{F} is reflexive if $\mathcal{F}^{\perp\perp} = \mathcal{F}$.

Examples: singletons, all finite subsets, antichains, chains.

Theorem / Conjecture If \mathcal{F} is reflexive, then

- $(Exh(\mathcal{F}))^*$ is isometric to $Fin(\mathcal{F}^{\perp})$,
- $(Exh(\mathcal{F}^{\perp}))^*$ is isometric to $Fin(\mathcal{F})$.

•
$$\mathcal{F} \subseteq \mathcal{F}^{\perp \perp}$$
,

- $\mathcal{F} \subseteq \mathcal{F}^{\perp \perp}$,
- $\mathcal{F}^{\perp\perp\perp} = \mathcal{F}^{\perp}$,

- $\mathcal{F} \subseteq \mathcal{F}^{\perp \perp}$,
- $\mathcal{F}^{\perp\perp\perp} = \mathcal{F}^{\perp}$,
- $\mathcal F$ is reflexive iff $\mathcal F=\mathcal G^\perp$ for some family $\mathcal G.$

Let ${\mathcal F}$ be a hereditary family. Then

- $\mathcal{F} \subseteq \mathcal{F}^{\perp \perp}$,
- $\mathcal{F}^{\perp\perp\perp} = \mathcal{F}^{\perp}$.
- $\mathcal F$ is reflexive iff $\mathcal F=\mathcal G^\perp$ for some family $\mathcal G.$

Fix a coloring $c : [\mathbb{N}]^2 \to \{0,1\}$. Let

$$Hom_i(c) = \{A \subseteq \mathbb{N} : \forall x \neq y \in A \ c(x,y) = i\}.$$

Let ${\mathcal F}$ be a hereditary family. Then

- $\mathcal{F} \subseteq \mathcal{F}^{\perp \perp}$,
- $\mathcal{F}^{\perp\perp\perp} = \mathcal{F}^{\perp}$.
- \mathcal{F} is reflexive iff $\mathcal{F} = \mathcal{G}^{\perp}$ for some family \mathcal{G} .

Fix a coloring $c \colon [\mathbb{N}]^2 \to \{0,1\}$. Let

$$Hom_i(c) = \{A \subseteq \mathbb{N} : \forall x \neq y \in A \ c(x,y) = i\}.$$

For each c the family $Hom_1(c)$ is hereditary and reflexive.

Let ${\mathcal F}$ be a hereditary family. Then

- $\mathcal{F} \subseteq \mathcal{F}^{\perp \perp}$,
- $\mathcal{F}^{\perp\perp\perp} = \mathcal{F}^{\perp}$.
- \mathcal{F} is reflexive iff $\mathcal{F} = \mathcal{G}^{\perp}$ for some family \mathcal{G} .

Fix a coloring $c \colon [\mathbb{N}]^2 \to \{0,1\}$. Let

$$Hom_i(c) = \{A \subseteq \mathbb{N} : \forall x \neq y \in A \ c(x,y) = i\}.$$

For each c the family $Hom_1(c)$ is hereditary and reflexive.

Conversely, each reflexive family is of the form $Hom_1(c)$ for some coloring.

Fix a bijection $f: \mathbb{N} \to \mathbb{Q}$.

Fix a bijection $f: \mathbb{N} \to \mathbb{Q}$. Let

$$n \leq_q k \iff f(n) \leq f(k).$$

Fix a bijection $f: \mathbb{N} \to \mathbb{Q}$. Let

$$n \leq_q k \iff f(n) \leq f(k).$$

The Sierpiński coloring $c \colon [\mathbb{N}]^2 \to \{0,1\}$ is defined by

$$c(x,y) = 1 \iff \leq \text{ agrees with } \leq_q \text{ about } x,y.$$

Fix a bijection $f: \mathbb{N} \to \mathbb{Q}$. Let

$$n \leq_q k \iff f(n) \leq f(k).$$

The Sierpiński coloring $c \colon [\mathbb{N}]^2 \to \{0,1\}$ is defined by

$$c(x,y) = 1 \iff \leq \text{ agrees with } \leq_q \text{ about } x,y.$$

Let $\mathcal{F} = Hom_1(c)$.

Fix a bijection $f: \mathbb{N} \to \mathbb{Q}$. Let

$$n \leq_q k \iff f(n) \leq f(k).$$

The Sierpiński coloring $c \colon [\mathbb{N}]^2 \to \{0,1\}$ is defined by

$$c(x,y) = 1 \iff \leq \text{ agrees with } \leq_q \text{ about } x,y.$$

Let $\mathcal{F} = Hom_1(c)$.

•
$$Exh(\mathcal{F}^{\perp})^* = Fin(\mathcal{F})$$
 (?).

Fix a bijection $f: \mathbb{N} \to \mathbb{Q}$. Let

$$n \leq_q k \iff f(n) \leq f(k).$$

The Sierpiński coloring $c \colon [\mathbb{N}]^2 \to \{0,1\}$ is defined by

$$c(x,y) = 1 \iff \leq \text{ agrees with } \leq_q \text{ about } x,y.$$

Let $\mathcal{F} = Hom_1(c)$.

- $Exh(\mathcal{F}^{\perp})^* = Fin(\mathcal{F})$ (?).
- But there is a permutation of \mathbb{N} switching $Hom_0(c)$ with $Hom_1(c)$.

Fix a bijection $f: \mathbb{N} \to \mathbb{Q}$. Let

$$n \leq_q k \iff f(n) \leq f(k).$$

The Sierpiński coloring $c \colon [\mathbb{N}]^2 \to \{0,1\}$ is defined by

$$c(x,y) = 1 \iff \leq \text{ agrees with } \leq_q \text{ about } x,y.$$

Let $\mathcal{F} = Hom_1(c)$.

- $Exh(\mathcal{F}^{\perp})^* = Fin(\mathcal{F})$ (?).
- But there is a permutation of \mathbb{N} switching $Hom_0(c)$ with $Hom_1(c)$.
- So, $Exh(\mathcal{F}^{\perp})$ is isometric to $Exh(\mathcal{F})$.

Fix a bijection $f: \mathbb{N} \to \mathbb{Q}$. Let

$$n \leq_q k \iff f(n) \leq f(k).$$

The Sierpiński coloring $c \colon [\mathbb{N}]^2 \to \{0,1\}$ is defined by

$$c(x,y) = 1 \iff \leq \text{ agrees with } \leq_q \text{ about } x,y.$$

Let $\mathcal{F} = Hom_1(c)$.

- $Exh(\mathcal{F}^{\perp})^* = Fin(\mathcal{F})$ (?).
- But there is a permutation of $\mathbb N$ switching $Hom_0(c)$ with $Hom_1(c)$.
- So, $Exh(\mathcal{F}^{\perp})$ is isometric to $Exh(\mathcal{F})$.
- So, $Exh(\mathcal{F})^*$ is isometric to $Fin(\mathcal{F})$.

A space $X_{\mathcal{F}}$ is c_0 -saturated if and only if \mathcal{F} is compact.

A space $X_{\mathcal{F}}$ is c_0 -saturated if and only if \mathcal{F} is compact. A space $X_{\mathcal{F}}$ is c_0 -saturated if and only if \mathcal{F} is scattered.

A space $X_{\mathcal{F}}$ is c_0 -saturated if and only if \mathcal{F} is compact. A space $X_{\mathcal{F}}$ is c_0 -saturated if and only if \mathcal{F} is scattered.

Can we characterize combinatorially ℓ_1 -saturated spaces?

A space $X_{\mathcal{F}}$ is c_0 -saturated if and only if \mathcal{F} is compact. A space $X_{\mathcal{F}}$ is c_0 -saturated if and only if \mathcal{F} is scattered.

Can we characterize combinatorially ℓ_1 -saturated spaces?

Idea 1: what about families which are perfect (in the Cantor topology)?

A space $X_{\mathcal{F}}$ is c_0 -saturated if and only if \mathcal{F} is compact. A space $X_{\mathcal{F}}$ is c_0 -saturated if and only if \mathcal{F} is scattered.

Can we characterize combinatorially ℓ_1 -saturated spaces?

Idea 1: what about families which are perfect (in the Cantor topology)? A family $\mathcal F$ is perfect iff for each $F\in\mathcal F$ there is an infinite $A\subseteq\mathbb N$ such that $F\subseteq A$ and $A\in\overline{\mathcal F}$.

A space $X_{\mathcal{F}}$ is c_0 -saturated if and only if \mathcal{F} is compact. A space $X_{\mathcal{F}}$ is c_0 -saturated if and only if \mathcal{F} is scattered.

Can we characterize combinatorially ℓ_1 -saturated spaces?

Idea 1: what about families which are perfect (in the Cantor topology)? A family $\mathcal F$ is perfect iff for each $F\in\mathcal F$ there is an infinite $A\subseteq\mathbb N$ such that $F\subseteq A$ and $A\in\overline{\mathcal F}$.

Does not work.

A space $X_{\mathcal{F}}$ is c_0 -saturated if and only if \mathcal{F} is compact. A space $X_{\mathcal{F}}$ is c_0 -saturated if and only if \mathcal{F} is scattered.

Can we characterize combinatorially ℓ_1 -saturated spaces?

Idea 1: what about families which are perfect (in the Cantor topology)? A family \mathcal{F} is perfect iff for each $F \in \mathcal{F}$ there is an infinite $A \subseteq \mathbb{N}$ such that $F \subseteq A$ and $A \in \overline{\mathcal{F}}$.

Does not work.

Idea 2: what about families which are Ellentuck perfect ?

A space $X_{\mathcal{F}}$ is c_0 -saturated if and only if \mathcal{F} is compact. A space $X_{\mathcal{F}}$ is c_0 -saturated if and only if \mathcal{F} is scattered.

Can we characterize combinatorially ℓ_1 -saturated spaces?

Idea 1: what about families which are perfect (in the Cantor topology)? A family $\mathcal F$ is perfect iff for each $F\in\mathcal F$ there is an infinite $A\subseteq\mathbb N$ such that $F\subseteq A$ and $A\in\overline{\mathcal F}$.

Does not work.

Idea 2: what about families which are Ellentuck perfect ? A family $\mathcal F$ is Ellentuck perfect iff for each $F\in\mathcal F$ and an infinite $A\supseteq F$ there is an infinite $B\subseteq A$ such that $F\subseteq B$ and $B\in\overline{\mathcal F}$.

A space $X_{\mathcal{F}}$ is c_0 -saturated if and only if \mathcal{F} is compact. A space $X_{\mathcal{F}}$ is c_0 -saturated if and only if \mathcal{F} is scattered.

Can we characterize combinatorially ℓ_1 -saturated spaces?

Idea 1: what about families which are perfect (in the Cantor topology)? A family \mathcal{F} is perfect iff for each $F \in \mathcal{F}$ there is an infinite $A \subseteq \mathbb{N}$ such that $F \subseteq A$ and $A \in \overline{\mathcal{F}}$.

Does not work.

Idea 2: what about families which are Ellentuck perfect ? A family $\mathcal F$ is Ellentuck perfect iff for each $F\in\mathcal F$ and an infinite $A\supseteq F$ there is an infinite $B\subseteq A$ such that $F\subseteq B$ and $B\in\overline{\mathcal F}$.

Does not work either.

A space $X_{\mathcal{F}}$ is c_0 -saturated if and only if \mathcal{F} is compact. A space $X_{\mathcal{F}}$ is c_0 -saturated if and only if \mathcal{F} is scattered.

Can we characterize combinatorially ℓ_1 -saturated spaces?

Idea 1: what about families which are perfect (in the Cantor topology)? A family \mathcal{F} is perfect iff for each $F \in \mathcal{F}$ there is an infinite $A \subseteq \mathbb{N}$ such that $F \subseteq A$ and $A \in \overline{\mathcal{F}}$.

Does not work.

Idea 2: what about families which are Ellentuck perfect ? A family $\mathcal F$ is Ellentuck perfect iff for each $F\in\mathcal F$ and an infinite $A\supseteq F$ there is an infinite $B\subseteq A$ such that $F\subseteq B$ and $B\in\overline{\mathcal F}$.

Does not work either. And I don't know if anything reasonable may work.

General problem. The dual norm to the Schreier norm is difficult to handle.

General problem. The dual norm to the Schreier norm is difficult to handle. Can we find an alternative description?

General problem. The dual norm to the Schreier norm is difficult to handle. Can we find an alternative description?

For a family ${\mathcal F}$ define

$$||x||^{\mathcal{F}} = \inf_{\mathcal{P} \in \mathbb{P}} \sum_{P \in \mathcal{P}} \sup_{i \in P} |x(i)|,$$

where \mathbb{P} is the family of all partitions into elements of \mathcal{F} .

General problem. The dual norm to the Schreier norm is difficult to handle. Can we find an alternative description?

For a family ${\mathcal F}$ define

$$||x||^{\mathcal{F}} = \inf_{\mathcal{P} \in \mathbb{P}} \sum_{P \in \mathcal{P}} \sup_{i \in P} |x(i)|,$$

where \mathbb{P} is the family of all partitions into elements of \mathcal{F} .

Question. Is $X^{\mathcal{F}} = Exh(\|\cdot\|^{\mathcal{F}})$ isomorphic to $X^*_{\mathcal{F}}$ (at least for \mathcal{F} being the Schreier family?

Question. Is $X^{\mathcal{F}} = Exh(\|\cdot\|^{\mathcal{F}})$ isomorphic to $X_{\mathcal{F}}^*$ (at least for \mathcal{F} being the Schreier family)?

Question. Is $X^{\mathcal{F}} = Exh(\|\cdot\|^{\mathcal{F}})$ isomorphic to $X^*_{\mathcal{F}}$ (at least for \mathcal{F} being the Schreier family)?

ullet both $X^{\mathcal{F}}$ and $X^*_{\mathcal{F}}$ do not have the Schur property,

Question. Is $X^{\mathcal{F}} = Exh(\|\cdot\|^{\mathcal{F}})$ isomorphic to $X^*_{\mathcal{F}}$ (at least for \mathcal{F} being the Schreier family)?

- ullet both $X^{\mathcal{F}}$ and $X^*_{\mathcal{F}}$ do not have the Schur property,
- ullet both $X^{\mathcal{F}}$ and $X^*_{\mathcal{F}}$ are ℓ_1 -saturated,

Question. Is $X^{\mathcal{F}} = Exh(\|\cdot\|^{\mathcal{F}})$ isomorphic to $X^*_{\mathcal{F}}$ (at least for \mathcal{F} being the Schreier family)?

- both $X^{\mathcal{F}}$ and $X_{\mathcal{F}}^*$ do not have the Schur property,
- both $X^{\mathcal{F}}$ and $X_{\mathcal{F}}^*$ are ℓ_1 -saturated,
- they have isometric dual spaces,

Question. Is $X^{\mathcal{F}} = Exh(\|\cdot\|^{\mathcal{F}})$ isomorphic to $X^*_{\mathcal{F}}$ (at least for \mathcal{F} being the Schreier family)?

- ullet both $X^{\mathcal{F}}$ and $X^*_{\mathcal{F}}$ do not have the Schur property,
- both $X^{\mathcal{F}}$ and $X^*_{\mathcal{F}}$ are ℓ_1 -saturated,
- they have isometric dual spaces,
- they have the same extreme points.

Question. Is $X^{\mathcal{F}} = Exh(\|\cdot\|^{\mathcal{F}})$ isomorphic to $X^*_{\mathcal{F}}$ (at least for \mathcal{F} being the Schreier family)?

- ullet both $X^{\mathcal{F}}$ and $X_{\mathcal{F}}^*$ do not have the Schur property,
- both $X^{\mathcal{F}}$ and $X^*_{\mathcal{F}}$ are ℓ_1 -saturated,
- they have isometric dual spaces,
- they have the same extreme points.

Question. Is $X^{\mathcal{F}} = Exh(\|\cdot\|^{\mathcal{F}})$ isomorphic to $X_{\mathcal{F}}^*$ (at least for \mathcal{F} being the Schreier family)?

- ullet both $X^{\mathcal{F}}$ and $X^*_{\mathcal{F}}$ do not have the Schur property,
- both $X^{\mathcal{F}}$ and $X^*_{\mathcal{F}}$ are ℓ_1 -saturated,
- they have isometric dual spaces,
- they have the same extreme points.

But...

 $\bullet \parallel \cdot \parallel^{\mathcal{F}}$ do not need to satisfy the triangle inequality!

ullet $\|\cdot\|^{\mathcal{F}}$ do not need to satisfy the triangle inequality!

ullet $\|\cdot\|^{\mathcal{F}}$ do not need to satisfy the triangle inequality!

 $\bullet \| \cdot \|^{\mathcal{F}}$ do not need to satisfy the triangle inequality!

But...

• for each x, y we have $||x + y||^{\mathcal{F}} \le 2(||x||^{\mathcal{F}} + ||y||^{\mathcal{F}})$.

 $\bullet \| \cdot \|^{\mathcal{F}}$ do not need to satisfy the triangle inequality!

But...

• for each x, y we have $||x + y||^{\mathcal{F}} \le 2(||x||^{\mathcal{F}} + ||y||^{\mathcal{F}})$.

So, $X^{\mathcal{F}}$ is a quasi-Banach space.

• $\|\cdot\|^{\mathcal{F}}$ do not need to satisfy the triangle inequality!

But...

• for each x, y we have $||x + y||^{\mathcal{F}} \le 2(||x||^{\mathcal{F}} + ||y||^{\mathcal{F}})$.

So, $X^{\mathcal{F}}$ is a quasi-Banach space. It may still be isomorphic to $X_{\mathcal{F}}^*$.

 $\bullet \parallel \cdot \parallel^{\mathcal{F}}$ do not need to satisfy the triangle inequality!

But...

• for each x, y we have $||x + y||^{\mathcal{F}} \le 2(||x||^{\mathcal{F}} + ||y||^{\mathcal{F}})$.

So, $X^{\mathcal{F}}$ is a quasi-Banach space. It may still be isomorphic to $X_{\mathcal{F}}^*$.

 $\bullet \parallel \cdot \parallel^{\mathcal{F}}$ do not need to satisfy the triangle inequality!

But...

• for each x, y we have $||x + y||^{\mathcal{F}} \le 2(||x||^{\mathcal{F}} + ||y||^{\mathcal{F}})$.

So, $X^{\mathcal{F}}$ is a quasi-Banach space. It may still be isomorphic to $X_{\mathcal{F}}^*$.

But...

It is not (for the Schreier family).

But...

We can define

$$|||x|||^{\mathcal{F}} = \inf\{\sum_{i \leq n} ||x_i||^{\mathcal{F}} \colon x = x_1 + \dots + x_n, n \in \mathbb{N}\}.$$

But...

We can define

$$|||x|||^{\mathcal{F}} = \inf\{\sum_{i \leq n} ||x_i||^{\mathcal{F}} \colon x = x_1 + \dots + x_n, n \in \mathbb{N}\}.$$

(a 'convexification' of $\|\cdot\|^{\mathcal{F}}$).

But...

We can define

$$|||x|||^{\mathcal{F}} = \inf\{\sum_{i \leq n} ||x_i||^{\mathcal{F}} \colon x = x_1 + \dots + x_n, n \in \mathbb{N}\}.$$

(a 'convexification' of $\|\cdot\|^{\mathcal{F}}$).

This is a norm and it is equivalent to $\|\cdot\|_{\mathcal{F}}^*$.

But...

We can define

$$|||x|||^{\mathcal{F}} = \inf\{\sum_{i \leq n} ||x_i||^{\mathcal{F}} \colon x = x_1 + \dots + x_n, n \in \mathbb{N}\}.$$

(a 'convexification' of $\|\cdot\|^{\mathcal{F}}$).

This is a norm and it is equivalent to $\|\cdot\|_{\mathcal{F}}^*$.

It may explain the similarities between $X^{\mathcal{F}}$ and $X_{\mathcal{F}}^*$.

Thanks.