Composition operators in spaces of sequences of bounded variation

Daria Bugajewska

Faculty of Mathematics and Computer Science Adam Mickiewicz University in Poznań, Poland

Łódź, June 2024

By $bv_p(E)$ for $p \ge 1$ (E a normed space), we denote the space of all sequences $x \colon \mathbb{N} \to E$ such that $\sum_{n=1}^{\infty} \|x(n+1) - x(n)\|^p < +\infty$.

By $bv_p(E)$ for $p \ge 1$ (E a normed space), we denote the space of all sequences $x \colon \mathbb{N} \to E$ such that $\sum_{n=1}^{\infty} \|x(n+1) - x(n)\|^p < +\infty$.

$$||x||_{bv_p} := ||x(1)|| + \left(\sum_{n=1}^{\infty} ||x(n+1) - x(n)||^p\right)^{\frac{1}{p}}.$$

By $bv_p(E)$ for $p \ge 1$ (E a normed space), we denote the space of all sequences $x \colon \mathbb{N} \to E$ such that $\sum_{n=1}^{\infty} \|x(n+1) - x(n)\|^p < +\infty$.

$$||x||_{bv_p} := ||x(1)|| + \left(\sum_{n=1}^{\infty} ||x(n+1) - x(n)||^p\right)^{\frac{1}{p}}.$$

If E is a Banach space, then $bv_p(E)$ is complete.

By $bv_p(E)$ for $p \ge 1$ (E a normed space), we denote the space of all sequences $x \colon \mathbb{N} \to E$ such that $\sum_{n=1}^{\infty} \|x(n+1) - x(n)\|^p < +\infty$.

$$\|x\|_{bv_p} := \|x(1)\| + \left(\sum_{n=1}^{\infty} \|x(n+1) - x(n)\|^p\right)^{\frac{1}{p}}.$$

If E is a Banach space, then $bv_p(E)$ is complete.

$$I^p(E) \subset bv_p(E) \subset bv_q(E)$$
 for $1 \le p < q < +\infty$

By $bv_p(E)$ for $p \ge 1$ (E a normed space), we denote the space of all sequences $x \colon \mathbb{N} \to E$ such that $\sum_{n=1}^{\infty} \|x(n+1) - x(n)\|^p < +\infty$.

$$\|x\|_{bv_p} := \|x(1)\| + \left(\sum_{n=1}^{\infty} \|x(n+1) - x(n)\|^p\right)^{\frac{1}{p}}.$$

If E is a Banach space, then $bv_p(E)$ is complete.

$$I^p(E) \subset bv_p(E) \subset bv_q(E)$$
 for $1 \le p < q < +\infty$

$$bv_1(E) \subset I^{\infty}(E), \quad bv_p(E) \nsubseteq I^{\infty}(E) \quad I^{\infty}(E) \nsubseteq bv_p(E)$$

Composition operator

Let E be a normed space and let Ω be a non-empty set. For given map $f: E \to E$ we define the *composition operator* C_f , generated by f, as

$$C_f(x)(t) = f(x(t)), \quad \text{for } t \in \Omega,$$

where $x : \Omega \to E$.

Theorem

Let $p, q \in [1, +\infty)$.

1. If C_f maps $X \in \{bv_p(E), c(E), l^{\infty}(E)\}$ into $bv_q(E)$, then f is continuous on E.

Theorem

Let $p, q \in [1, +\infty)$.

- 1. If C_f maps $X \in \{bv_p(E), c(E), l^{\infty}(E)\}$ into $bv_q(E)$, then f is continuous on E.
- 2. If C_f maps $Y \in \{I^p(E), c_0(E)\}$ into $bv_q(E)$, then f is continuous at 0.

Theorem

Let $p \in [1, +\infty)$. The composition operator C_f maps $c_0(E)$ into $bv_p(E)$ if and only if its generator f is locally constant at 0, that is, there exists a number $\delta > 0$ such that $f|_{\bar{B}_F(0,\delta)}$ is constant.

Theorem

Let $p \in [1, +\infty)$. The composition operator C_f maps $c_0(E)$ into $bv_p(E)$ if and only if its generator f is locally constant at 0, that is, there exists a number $\delta > 0$ such that $f|_{\bar{B}_F(0,\delta)}$ is constant.

Theorem

Let $p \in [1, +\infty)$ and let $X \in \{c(E), l^{\infty}(E)\}$. The composition operator C_f maps X into $bv_p(E)$ if and only if f is a constant function.

Theorem

For any $p, q \in [1, +\infty)$ the following conditions are equivalent:

1. the composition operator C_f maps $I^p(E)$ into $bv_q(E)$,

Theorem

For any $p, q \in [1, +\infty)$ the following conditions are equivalent:

- 1. the composition operator C_f maps $I^p(E)$ into $bv_q(E)$,
- 2. there exist $\delta > 0$ and $L \ge 0$ such that $\|f(u) f(w)\| \le L \|u\|^{\frac{p}{q}} + L \|w\|^{\frac{p}{q}}$ for all $u, w \in \bar{B}_E(0, \delta)$,

Theorem

For any $p, q \in [1, +\infty)$ the following conditions are equivalent:

- 1. the composition operator C_f maps $I^p(E)$ into $bv_q(E)$,
- 2. there exist $\delta > 0$ and $L \ge 0$ such that $\|f(u) f(w)\| \le L \|u\|^{\frac{p}{q}} + L \|w\|^{\frac{p}{q}}$ for all $u, w \in \bar{B}_E(0, \delta)$,
- 3. there exist $\delta > 0$ and $L \ge 0$ such that $||f(u) f(0)|| \le L ||u||^{\frac{p}{q}}$ for every $u \in \bar{B}_E(0,\delta)$.

Theorem

Let $p, q \in [1, +\infty)$. If the composition operator C_f maps $bv_p(E)$ into $bv_q(E)$, then f is Hölder continuous on compact subsets of E with exponent $\frac{p}{q}$.

Theorem

Let $p, q \in [1, +\infty)$. If the composition operator C_f maps $bv_p(E)$ into $bv_q(E)$, then f is Hölder continuous on compact subsets of E with exponent $\frac{p}{q}$.

Corollary

Let $1 \le q . The composition operator <math>C_f$ acts between $bv_p(E)$ and $bv_q(E)$ if and only if f is a constant map.

Theorem

Let $p, q \in [1, +\infty)$. If the composition operator C_f maps $bv_p(E)$ into $bv_q(E)$, then f is Hölder continuous on compact subsets of E with exponent $\frac{p}{q}$.

Corollary

Let $1 \le q . The composition operator <math>C_f$ acts between $bv_p(E)$ and $bv_q(E)$ if and only if f is a constant map.

Theorem

Let $p \in [1, +\infty)$ and let E be a Banach space. The composition operator C_f maps $bv_1(E)$ into $bv_p(E)$ if and only if f is Hölder continuous on compact subsets of E with exponent $\frac{1}{p}$.

Theorem

Let $p \in [1, +\infty)$ and let E be a Banach space. The composition operator C_f maps $bv_1(E)$ into $bv_p(E)$ if and only if f is Hölder continuous on compact subsets of E with exponent $\frac{1}{p}$.

Theorem

Let $p \in [1, +\infty)$ and let E be a Banach space. The composition operator C_f maps $bv_1(E)$ into $bv_p(E)$ if and only if f is Hölder continuous on compact subsets of E with exponent $\frac{1}{p}$.

Example

Let $a:=(1,\frac{1}{2^2},\frac{1}{3^2},\ldots)$ and for $u\in c_{00}(\mathbb{R})$ let $f(u)=\frac{u}{\|u-a\|_{\infty}}$. f is Lipschitz continuous on compact subsets of $c_{00}(\mathbb{R})$. However, it does not generate a composition operator acting between $bv_1(c_{00}(\mathbb{R}))$ and $bv_1(c_{00}(\mathbb{R}))$. Define $x:\mathbb{N}\to c_{00}(\mathbb{R})$ by $x(n):=P_n(a)$. Since $\|x(n+1)-x(n)\|_{\infty}=(n+1)^{-2}$ for $n\in\mathbb{N}$, we see that $x\in bv_1(c_{00}(\mathbb{R}))$. But,

$$\sum_{n=1} \|f(x(n+1)) - f(x(n))\|_{\infty} = +\infty.$$

Hence, $C_f(x) \notin bv_1(c_{00}(\mathbb{R}))$.

Definition

A map $f: E \to E$ is called locally Hölder continuous in the stronger sense with exponent α , if there exist $\delta > 0$ and $L \ge 0$ such that $\|f(u) - f(w)\| \le L \|u - w\|^{\alpha}$ for all $u, w \in E$ with $\|u - w\| \le \delta$.

Definition

A map $f: E \to E$ is called locally Hölder continuous in the stronger sense with exponent α , if there exist $\delta > 0$ and $L \ge 0$ such that $\|f(u) - f(w)\| \le L \|u - w\|^{\alpha}$ for all $u, w \in E$ with $\|u - w\| \le \delta$.

Theorem

Let $1 . The composition operator <math>C_f$ maps $bv_p(E)$ into $bv_q(E)$ if and only if f is locally Hölder continuous in the stronger sense with exponent $\frac{p}{q}$.

Composition operators acting from bv_p -spaces

Theorem

Let $p, q \in [1, +\infty)$ and let $X \in \{c_0(E), l^q(E)\}$. The composition operator C_f maps $bv_p(E)$ into X if and only if its generator f is the zero function.

Composition operators acting from bv_p -spaces

Theorem

Let $p, q \in [1, +\infty)$ and let $X \in \{c_0(E), l^q(E)\}$. The composition operator C_f maps $bv_p(E)$ into X if and only if its generator f is the zero function.

Theorem

Let E be a Banach space. The composition operator C_f maps $bv_1(E)$ into $I^{\infty}(E)$ if and only if f is bounded on compact subsets of E.

Composition operators acting from bv_p -spaces

Theorem

Let $p, q \in [1, +\infty)$ and let $X \in \{c_0(E), l^q(E)\}$. The composition operator C_f maps $bv_p(E)$ into X if and only if its generator f is the zero function.

Theorem

Let E be a Banach space. The composition operator C_f maps $bv_1(E)$ into $I^{\infty}(E)$ if and only if f is bounded on compact subsets of F.

Theorem

Let $p \in (1, +\infty)$. Then, the following conditions are equivalent:

- 1. the composition operator C_f maps $bv_p(E)$ into $I^{\infty}(E)$,
- 2. f is bounded on E,
- 3. f is bounded on countable subsets of E.

Composition operators acting from bv_p -spaces to c(E)

Theorem

Let E be a Banach space. Then, the following conditions are equivalent:

- 1. the composition operator C_f maps $bv_1(E)$ into c(E),
- 2. f is continuous on E,
- 3. f is continuous on bounded subsets of E,
- 4. f is continuous on compact subsets of E,
- 5. f is continuous on countable subsets of E.

Composition operators acting from bv_p -spaces to c(E)

For p>1 (Lipschitz) continuous mappings, in general, do not generate composition operators that act from $bv_p(E)$ into c(E). To see this it suffices to consider the identity mapping on E, that is, $f: E \to E$ given by f(u) = u. It generates the identity composition operator C_f that maps $bv_p(E)$ onto $bv_p(E)$. But $bv_p(E) \not\subseteq c(E)$. And so, $C_f(bv_p(E)) \not\subseteq c(E)$.

Composition operators acting from bv_p -spaces to c(E)

For p>1 (Lipschitz) continuous mappings, in general, do not generate composition operators that act from $bv_p(E)$ into c(E). To see this it suffices to consider the identity mapping on E, that is, $f: E \to E$ given by f(u) = u. It generates the identity composition operator C_f that maps $bv_p(E)$ onto $bv_p(E)$. But $bv_p(E) \not\subseteq c(E)$. And so, $C_f(bv_p(E)) \not\subseteq c(E)$.

Theorem

Let $p \in (1, +\infty)$. The composition operator C_f maps $bv_p(E)$ into c(E) if and only if f is a constant mapping.

Theorem

Let $p \in [1, +\infty)$ and assume that the composition operator C_f maps $c_0(E)$ into $bv_p(E)$. Then, the following conditions are equivalent:

- 1. C_f is bounded,
- 2. C_f is locally bounded,
- 3. f is a constant map.

Theorem

Let $p \in [1, +\infty)$ and assume that the composition operator C_f maps $c_0(E)$ into $bv_p(E)$. Then, the following conditions are equivalent:

- 1. C_f is bounded,
- 2. C_f is locally bounded,
- 3. f is a constant map.

Theorem

Let $p, q \in [1, +\infty)$ and assume that the composition operator C_f maps $I^p(E)$ into $bv_q(E)$. Then, C_f is locally bounded if and only if f is.

Theorem

Let $p, q \in [1, +\infty)$ and assume that the composition operator C_f maps $I^p(E)$ into $bv_q(E)$. Then, C_f is locally bounded if and only if f is.

Theorem

Let $1 . Moreover, assume that the composition operator <math>C_f$ maps $bv_p(E)$ into $bv_q(E)$. Then, C_f is locally bounded.

Example

Let $f: l^2(\mathbb{R}) \to l^2(\mathbb{R})$ be defined by $f(u) = (\sin \psi(u), 0, ...)$, where $\psi(u) = \sup\{(2\pi + 1)n|u(n)| - n; n \in \mathbb{N}\}$. f is Lipschitz continuous on compact subsets of $l^2(\mathbb{R})$, and so

 $C_f: bv_1(I^2(\mathbb{R})) \to bv_1(I^2(\mathbb{R}))$. For each $n \in \mathbb{N}$ set

$$x_n := \left(e_n, (1-n^{-2})e_n, e_n, (1-n^{-2})e_n, \ldots, e_n, (1-n^{-2})e_n, 0, 0, 0, \ldots\right),$$
 where the last non-zero element appears at the $2n^2$ -th position. Then, $x_n \in bv_1(I^2(\mathbb{R}))$ and $\|x_n\|_{bv_1} \le 4$ for $n \in \mathbb{N}$. Since $f(e_n) = 0$ and $f\left((1-n^{-2})e_n\right) = (-\sin[(2\pi+1)n^{-1}], 0, 0, \ldots)$, for $n \ge 5$ we thus have

$$\|C_f(x_n)\|_{bv_1} \ge n^2 \|f(e_n) - f((1 - \frac{1}{n^2})e_n)\|_{l^2} \ge 4n.$$

This means that C_f is not locally bounded.

Theorem

Let $p \in [1, +\infty)$ and let E be a Banach space. Moreover, assume that the composition operator C_f maps $bv_1(E)$ into $bv_p(E)$. Then, C_f is locally bounded if and only if f is Hölder continuous on bounded subsets of E with exponent $\frac{1}{p}$.

Theorem

Let $p \in [1, +\infty)$ and let E be a Banach space. Moreover, assume that the composition operator C_f maps $bv_1(E)$ into $bv_p(E)$. Then, C_f is locally bounded if and only if f is Hölder continuous on bounded subsets of E with exponent $\frac{1}{p}$.

Theorem

Let E be a Banach space and let $X \in \{c(E), l^{\infty}(E)\}$. Moreover, assume that the composition operator C_f maps $bv_1(E)$ into X. Then, C_f is locally bounded if and only if f is.

Boundedness

Theorem

Let $p, q \in [1, +\infty)$ and let $X \in \{I^p(E), bv_p(E)\}$. Moreover, assume that the composition operator C_f maps X into $bv_q(E)$. Then, C_f is bounded if and only if f is a constant map.

Boundedness

Theorem

Let $p, q \in [1, +\infty)$ and let $X \in \{I^p(E), bv_p(E)\}$. Moreover, assume that the composition operator C_f maps X into $bv_q(E)$. Then, C_f is bounded if and only if f is a constant map.

Theorem

Let E be a Banach space and let $X \in \{c(E), l^{\infty}(E)\}$. Moreover, assume that the composition operator C_f maps $bv_1(E)$ into X. Then, C_f is bounded if and only if f is.

References

- 1. F. Başar, B. Altay, M. Mursaleen, Some generalizations of the space bv_p of p-bounded variation sequences, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal, 68, 2008, 273–287.
- 2. F. Başar, B. Altay, On the space of sequences of *p*-bounded variation and related matrix mappings, Ukraïn. Mat. Zh., 55, 2003, 108-118.
- 3. D. Bugajewska, P. Kasprzak, Composition operators in bv_p -spaces, part I: acting conditions and boundedness.

Thank you for your attention!