Alan Chang (WashU): Prescribed projections and efficient coverings by curves in the plane

Theorem 1 (Existence of Kakeya sets)

 \exists a set $K \subset \mathbb{R}^2$ which is a *union of lines* s.t. (1) K contains a line in every direction and (2) $\mathcal{L}^2(K) = 0$.

Theorem 2 (Dual formulation, a set with one large projection and many small projections)

 \exists a set $E \subset \mathbb{R}^2$ s.t. (1) $\operatorname{proj}_0 E \supset [0,1]$ and (2) for a.e. $\theta \in [0,\pi)$, $\mathcal{L}^1(\operatorname{proj}_\theta E) = 0$.

Proof of Theorem 1 from Theorem 2. Let $K = \bigcup_{(a,b) \in E} \{(x,y) \in \mathbb{R}^2 : y = ax + b\}$.

Theorem 3 (Davies's efficient covering theorem)

 \forall (measurable) $A \subset \mathbb{R}^2$, \exists a set $K \subset \mathbb{R}^2$ which is a *union of lines* s.t. (1) $K \supset A$ and (2) $\mathcal{L}^2(K \setminus A) = 0$.

Theorem 4 (Falconer's digital sundial theorem, a.k.a. Falconer's prescribed projection theorem)

Let $(A_{\theta})_{\theta \in [0,\pi)}$ be a collection of subsets of \mathbb{R} (such that $\bigcup_{\theta \in [0,\pi)} (\{\theta\} \times A_{\theta})$ is measurable). Then \exists a set $E \subset \mathbb{R}^2$ s.t. (1) $\forall \theta \in [0,\pi), \operatorname{proj}_{\theta} E \supset A_{\theta}$ and (2) for a.e. $\theta \in [0,\pi), \mathcal{L}^1((\operatorname{proj}_{\theta} E) \setminus A_{\theta}) = 0$.

Theorem 5 (A nonlinear variant of Davies's theorem, AC \longrightarrow , Alex McDonald \longrightarrow , Krystal Taylor \Longrightarrow) Let $\Gamma \subset \mathbb{R}^2$ be the graph of a strictly convex \mathcal{C}^2 function $[a,b] \to \mathbb{R}$. Then \forall measurable $A \subset \mathbb{R}^2$, \exists a set $K \subset \mathbb{R}^2$ which is a *union of translates of* Γ s.t. (1) $K \supset A$ and (2) $\mathcal{L}^2(K \setminus A) = 0$.

Venetian blinds, digital sundials, and efficient overings Alan Chang. Washington University in St. Louis. SSRA 46. "The Promised Land Symposium". Łódź, Poland. June 17, 2024.

Theorem 5 (A nonlinear variant of Davies's theorem, AC , Alex McDonald , Krystal Taylor) Let $\Gamma \subset \mathbb{R}^2$ be the graph of a strictly convex \mathcal{C}^2 function $[a,b] \to \mathbb{R}$. Then \forall measurable $A \subset \mathbb{R}^2$, \exists a set

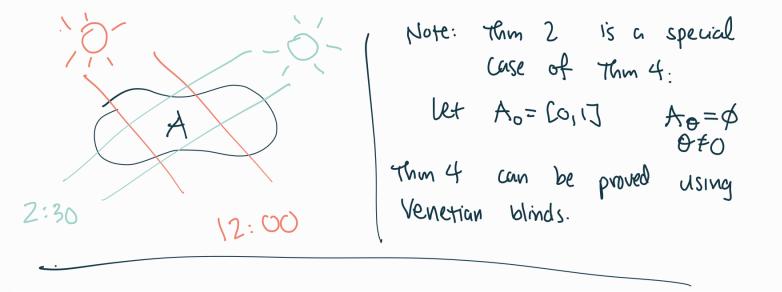
 $K \subset \mathbb{R}^2$ which is a union of translates of Γ s.t. (1) $K \supset A$ and (2) $\mathcal{L}^2(K \setminus A) = 0$. Venetian blind construction: large projection small projection Venetian blinds to prove: use FECR2 s.t. (1) Projo E > [0,1] (2) for a.e. $\theta \in (0,\pi)$, $|proj_{\theta} E| = 0$ Small proj (< E) Start: full proj [0,1] Small proj (< E)

Keep iterating.

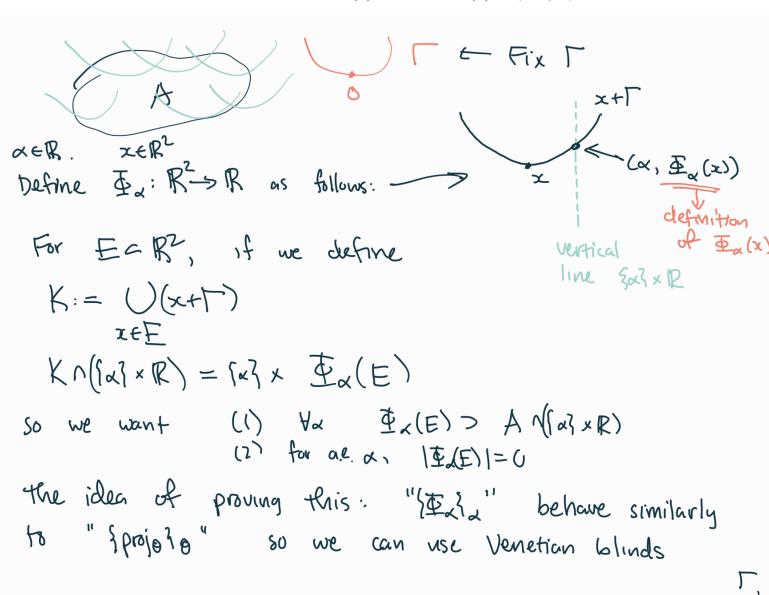
lem: 4270 FECR2 s.t. (1) proj. E = Co.1] (2) $\forall \theta \notin (-\epsilon, \epsilon)$ | $|Proj_{\theta}E| \lesssim \epsilon$ Repeat this, let 2-50 to get Thm2; FECR? S.t. (1) projo E>[0,1] (2) YO FO, (projo E)=0 Thm 1: 3KCIR2 s.t. (1) K has a line in every direction (5) PS(K)=0 Pf that then 2=> then 1: Let E be as in Them 2. Define $K = \bigcup \{(x,y) \in \mathbb{R}^2 : y = ax + b\}$ (1) of Thm 2 => (1) of Thm 1 -Also, (2) of Thim 2 = (2) of thim 1. To see this, for a.e.o, Ipnie = 1=0 L(K)=0 fix cell consider Kn 9x=c3. $Kng_{x=c} = 0$ $f(c,y): y=ac+bq = f(c,ac+b): (a,b) \in Eq$ = {cqx {ac+b: (9,5) += } This is a proj of E ac+6= (a,6) - (c,1) Thm 3: let ACR2. Then JKCRZ which is a union of lines s.t. (1) KDA (5) $f_5(K/Y) = 0$ Note: Thm 1 is actually a special case of thm 3 if you replace R2 with the

Thun Φ : Let $(A_0)_{0 \in [0,\pi)}$ be subsets of R. Then $J \not\equiv CIR^2$ s.t. (1) $\forall \theta$ projo $E > A_0$. (2) for a.e. θ $f'(projo \not\in) (A_0) = 0$ "Digital sundial theorem"

real projective plane RPZ.



Theorem 5 (A nonlinear variant of Davies's theorem, AC \longrightarrow , Alex McDonald \longrightarrow , Krystal Taylor \Longrightarrow) Let $\Gamma \subset \mathbb{R}^2$ be the graph of a strictly convex \mathcal{C}^2 function $[a,b] \to \mathbb{R}$. Then \forall measurable $A \subset \mathbb{R}^2$, \exists a set $K \subset \mathbb{R}^2$ which is a *union of translates of* Γ s.t. (1) $K \supset A$ and (2) $\mathcal{L}^2(K \setminus A) = 0$.



projo (projo (x))

 $\Phi_{\alpha}^{T}(\Phi_{\alpha}(x))$

different a