Perfect cliques with respect to infinitely many relations

Martin Doležal

joint work with Wiesław Kubiś

Institute of Mathematics, Czech Academy of Sciences

46th Summer Symposium in Real Analysis Łódź, Poland June 17, 2024

Cliques and independent sets

Let *R* be a relation on a set *X*. Let *n* be the arity of *R*.

A set $C \subseteq X$ is called an R-clique if $R(x_1, \ldots, x_n)$ holds whenever $x_1, \ldots, x_n \in C$ are pairwise distinct.

A set $I \subseteq X$ is called R-independent if $\neg R(x_1, ..., x_n)$ holds whenever $x_1, ..., x_n \in C$ are pairwise distinct.

Let \mathcal{R} be a family of relations on a set X.

A set $C \subseteq X$ is called an \mathbb{R} -clique if it is an R-clique for every $R \in \mathbb{R}$.

A set $I \subseteq X$ is called \mathcal{R} -independent if it is R-independent for every $R \in \mathcal{R}$.

Theorem (Feng 1993)

Let X be an analytic subset of a Polish space. Let $R \subseteq X^2$ be a symmetric open set which does not intersect the diagonal. Then either

- $X = \bigcup_{n \in \omega} X_n$, where X_n is R-independent for every $n \in \omega$, or else
 - there exists a perfect set P which is an R-clique.

- relations which are not open
- non-binary relations; more than one relation
- more general spaces

Theorem (Feng 1993)

Let X be an analytic subset of a Polish space. Let $R \subseteq X^2$ be a symmetric open set which does not intersect the diagonal. Then either

- $X = \bigcup_{n \in \omega} X_n$, where X_n is R-independent for every $n \in \omega$, or else
 - there exists a perfect set P which is an R-clique.

- relations which are not open
- 2 non-binary relations; more than one relation
- o more general spaces

Theorem (Feng 1993)

Let X be an analytic subset of a Polish space. Let $R \subseteq X^2$ be a symmetric open set which does not intersect the diagonal. Then either

- $X = \bigcup_{n \in \omega} X_n$, where X_n is R-independent for every $n \in \omega$, or else
 - there exists a perfect set P which is an R-clique.

- relations which are not open
- 2 non-binary relations; more than one relation
- o more general spaces

Theorem (Feng 1993)

Let X be an analytic subset of a Polish space. Let $R \subseteq X^2$ be a symmetric open set which does not intersect the diagonal. Then either

- $X = \bigcup_{n \in \omega} X_n$, where X_n is R-independent for every $n \in \omega$, or else
 - there exists a perfect set P which is an R-clique.

- relations which are not open
- non-binary relations; more than one relation
- o more general spaces

Theorem (Feng 1993)

Let X be an analytic subset of a Polish space. Let $R \subseteq X^2$ be a symmetric open set which does not intersect the diagonal. Then either

- $X = \bigcup_{n \in \omega} X_n$, where X_n is R-independent for every $n \in \omega$, or else
 - there exists a perfect set P which is an R-clique.

- relations which are not open
- non-binary relations; more than one relation
- more general spaces

Theorem (Feng 1993)

Let X be an analytic subset of a Polish space. Let $R \subseteq X^2$ be a symmetric open set which does not intersect the diagonal. Then either

- $X = \bigcup_{n \in \omega} X_n$, where X_n is R-independent for every $n \in \omega$, or else
 - there exists a perfect set P which is an R-clique.

Remark (Blass)

The theorem above fails when 2 is replaced by 3.

By taking $R = X^2 \setminus \{(x, x) : x \in X\}$ we obtain...

Perfect Set Theorem (Souslin)

Theorem (Feng 1993)

Let X be an analytic subset of a Polish space. Let $R \subseteq X^2$ be a symmetric open set which does not intersect the diagonal. Then either

- $X = \bigcup_{n \in \omega} X_n$, where X_n is R-independent for every $n \in \omega$, or else
 - there exists a perfect set P which is an R-clique.

Remark (Blass)

The theorem above fails when 2 is replaced by 3.

By taking $R = X^2 \setminus \{(x, x) : x \in X\}$ we obtain...

Perfect Set Theorem (Souslin)

Theorem (Feng 1993)

Let X be an analytic subset of a Polish space. Let $R \subseteq X^2$ be a symmetric open set which does not intersect the diagonal. Then either

- $X = \bigcup_{n \in \omega} X_n$, where X_n is R-independent for every $n \in \omega$, or else
 - there exists a perfect set P which is an R-clique.

Remark (Blass)

The theorem above fails when 2 is replaced by 3.

By taking $R = X^2 \setminus \{(x, x) : x \in X\}$ we obtain...

Perfect Set Theorem (Souslin)

Theorem (Feng 1993)

Let X be an analytic subset of a Polish space. Let $R \subseteq X^2$ be a symmetric open set which does not intersect the diagonal. Then either

- $X = \bigcup_{n \in \omega} X_n$, where X_n is R-independent for every $n \in \omega$, or else
 - there exists a perfect set P which is an R-clique.

Remark (Blass)

The theorem above fails when 2 is replaced by 3.

By taking $R = X^2 \setminus \{(x, x) : x \in X\}$ we obtain...

Perfect Set Theorem (Souslin)

Theorem (Mycielski 1964)

Let X be a Polish space without isolated points and let $\mathcal R$ be a countable family of co-meager relations on X. Then there exists a perfect $\mathcal R$ -clique.

Theorem (Shelah 1999)

The following statement is not decided by ZFC + $(2^{\aleph_0} > \aleph_{\omega_1})$: Let R be an analytic relation on a Polish space. Suppose that there exists an R-clique of cardinality $> \aleph_1$. Then there exists a perfect R-clique.

Theorem (Shelah 1999; Kubiś & Vejnar 2012)

There exists a σ -compact symmetric binary relation R on the Cantor space such that

- there exists an R-clique of cardinality ℵ₁,
- 2 there are no R-cliques of cardinality $> \aleph_1$,
- 1 there is no perfect R-clique.

Theorem (Mycielski 1964)

Let X be a Polish space without isolated points and let $\mathcal R$ be a countable family of co-meager relations on X. Then there exists a perfect $\mathcal R$ -clique.

Theorem (Shelah 1999)

The following statement is not decided by $ZFC + (2^{\aleph_0} > \aleph_{\omega_1})$: Let R be an analytic relation on a Polish space. Suppose that there exists an R-clique of cardinality $> \aleph_1$. Then there exists a perfect R-clique.

Theorem (Shelah 1999; Kubiś & Vejnar 2012)

There exists a σ -compact symmetric binary relation R on the Cantor space such that

- there exists an R-clique of cardinality ℵ₁,
- 2 there are no R-cliques of cardinality $> \aleph_1$,
- (3) there is no perfect R-clique.

Theorem (Mycielski 1964)

Let X be a Polish space without isolated points and let \mathcal{R} be a countable family of co-meager relations on X. Then there exists a perfect \mathcal{R} -clique.

Theorem (Shelah 1999)

The following statement is not decided by $ZFC + (2^{\aleph_0} > \aleph_{\omega_1})$: Let R be an analytic relation on a Polish space. Suppose that there exists an R-clique of cardinality $> \aleph_1$. Then there exists a perfect R-clique.

Theorem (Shelah 1999; Kubiś & Vejnar 2012)

There exists a σ -compact symmetric binary relation R on the Cantor space such that

- there exists an R-clique of cardinality ℵ₁,
- 2 there are no R-cliques of cardinality $> \aleph_1$,
- there is no perfect R-clique.

Main result

Theorem (Kubiś & D. 2016)

Let X be a completely metrizable space of weight $\kappa \geq \aleph_0$ and let \mathcal{R} be a countable family of G_δ relations on X. Then either

• there exists an ordinal $\gamma < \kappa^+$ such that the Cantor-Bendixson rank of every \mathcal{R} -clique is $\leq \gamma$,

or else

• there exists a perfect \mathcal{R} -clique.

Remark

The theorem fails if we replace the family \mathbb{R} by a single binary F_{σ} relation [Shelah 1999; Kubiś & Vejnar 2012].

Main result

Theorem (Kubiś & D. 2016)

Let X be a completely metrizable space of weight $\kappa \geq \aleph_0$ and let \mathcal{R} be a countable family of G_δ relations on X. Then either

• there exists an ordinal $\gamma < \kappa^+$ such that the Cantor-Bendixson rank of every \mathcal{R} -clique is $\leq \gamma$,

or else

• there exists a perfect \mathcal{R} -clique.

Remark

The theorem fails if we replace the family \mathcal{R} by a single binary F_{σ} relation [Shelah 1999; Kubiś & Vejnar 2012].

Corollary

Let X be a completely metrizable space and let $\mathcal R$ be a countable family of G_δ relations on X. Suppose that there exists a nonempty $\mathcal R$ -clique without isolated points. Then there exists a perfect $\mathcal R$ -clique.

Corollary

Let X be an analytic subset of a Polish space and let \mathcal{R} be a countable family of G_{δ} relations on X. Suppose that there exists an uncountable \mathcal{R} -clique. Then there exists a perfect \mathcal{R} -clique.

Corollary

Let X be a completely metrizable space and let $\mathcal R$ be a countable family of G_δ relations on X. Suppose that there exists a nonempty $\mathcal R$ -clique without isolated points. Then there exists a perfect $\mathcal R$ -clique.

Corollary

Let X be an analytic subset of a Polish space and let $\mathcal R$ be a countable family of G_δ relations on X. Suppose that there exists an uncountable $\mathcal R$ -clique. Then there exists a perfect $\mathcal R$ -clique.

Free subgroups of Polish groups

Theorem (Głąb & Strobin 2015)

Let $G = \prod_{n \in \omega} G_n$, where each G_n is a countable group. If G contains an uncountable free subgroup then it also contains a free subgroup of cardinality 2^{\aleph_0} .

Theorem

Let G be a Polish group. Then either all free subgroups of G are countable, or else G contains a perfect set generating a free subgroup.

Free subgroups of Polish groups

Theorem (Głąb & Strobin 2015)

Let $G = \prod_{n \in \omega} G_n$, where each G_n is a countable group. If G contains an uncountable free subgroup then it also contains a free subgroup of cardinality 2^{\aleph_0} .

Theorem

Let G be a Polish group. Then either all free subgroups of G are countable, or else G contains a perfect set generating a free subgroup.

Theorem

Let G be a Polish group. Then either all free subgroups of G are countable, or else G contains a perfect set generating a free subgroup.

Proof:

For each nonempty word $w=w(g_1,\ldots,g_n)$ on G, we put

$$R_w = \{(g_1, \ldots, g_n) \in G^n \colon w(g_1, \ldots, g_n) \neq 1\}.$$

Then each R_w is an open relation on G. Further, a subset of G generates a free subgroup iff it is an R_w -clique for every w. Now apply (a corollary of) our main result.

Theorem

Let G be a Polish group. Then either all free subgroups of G are countable, or else G contains a perfect set generating a free subgroup.

Proof:

For each nonempty word $w = w(g_1, \ldots, g_n)$ on G, we put

$$R_w = \{(g_1, \ldots, g_n) \in G^n \colon w(g_1, \ldots, g_n) \neq 1\}.$$

Then each R_w is an open relation on G. Further, a subset of G generates a free subgroup iff it is an R_w -clique for every w. Now apply (a corollary of) our main result.

Similarly, one can prove...

Theorem

Let G be a completely metrizable topological group containing a nonempty set, without isolated points, generating a free subgroup. Then G contains a perfect set generating a free subgroup.

... and other variants, e. g. for free abelian subgroups, torsion-free subgroups, etc.

Similarly, one can prove...

Theorem

Let G be a completely metrizable topological group containing a nonempty set, without isolated points, generating a free subgroup. Then G contains a perfect set generating a free subgroup.

... and other variants, e. g. for free abelian subgroups, torsion-free subgroups, etc.

Similarly, one can prove...

Theorem

Let G be a completely metrizable topological group containing a nonempty set, without isolated points, generating a free subgroup. Then G contains a perfect set generating a free subgroup.

... and other variants, e. g. for free abelian subgroups, torsion-free subgroups, etc.

Bibliography

M. Doležal & W. Kubiś.

Perfect independent sets with respect to infinitely many relations.

Arch. Math. Logic 55 (2016), no. 7-8, 847-856.