Remarks on center of distances

Małgorzata Filipczak

46TH SUMMER SYMPOSIUM IN REAL ANALYSIS THE PROMISED LAND SYMPOSIUM JUNE 17–21, 2024

For a given metric space X with a distance ρ the set

$$S(X) := \{\alpha : \forall_{x \in X} \exists_{y \in X} \ \rho(x, y) = \alpha\}$$

is called a center of distances of X.

For a given metric space X with a distance ρ the set

$$S(X) := \{\alpha : \forall_{x \in X} \exists_{y \in X} \ \rho(x, y) = \alpha\}$$

is called a center of distances of X. If $A \subset \mathbb{R}$ and ρ is the Euclidean metric then

$$S(A) := \{\alpha : \forall_{x \in A} (x - \alpha \in A \text{ or } x + \alpha \in A)\}$$

W. Bielas, S. Plewik, M. Walczyńska, *On the center of distances*, Eur. J. Math. (2018), 4, 687-698

• for any nonempty set $A \subset \mathbb{R}$, $0 \in S(A) \subset [0, \infty)$;

- for any nonempty set $A \subset \mathbb{R}$, $0 \in S(A) \subset [0, \infty)$;
- for any nonempty set $A \subset \mathbb{R}$, S(A+c) = S(A);

- for any nonempty set $A \subset \mathbb{R}$, $0 \in S(A) \subset [0, \infty)$;
- for any nonempty set $A \subset \mathbb{R}$, S(A + c) = S(A);
- the center of distances of a compact set $A \subset \mathbb{R}$ is compact;

- for any nonempty set $A \subset \mathbb{R}$, $0 \in S(A) \subset [0, \infty)$;
- for any nonempty set $A \subset \mathbb{R}$, S(A + c) = S(A);
- the center of distances of a compact set $A \subset \mathbb{R}$ is compact;
- in particular, for any compact set A, $S(A) = S(A \min A)$;

- for any nonempty set $A \subset \mathbb{R}$, $0 \in S(A) \subset [0, \infty)$;
- for any nonempty set $A \subset \mathbb{R}$, S(A + c) = S(A);
- the center of distances of a compact set $A \subset \mathbb{R}$ is compact;
- in particular, for any compact set A, $S(A) = S(A \min A)$;
- if $A \subset [0, \infty)$ and $0 \in A$ then $S(A) \subset A$

For any
$$a \ge 0$$

$$S({0,a}) = {0,a}$$

For any
$$a \ge 0$$

$$S({0,a}) = {0,a}$$

$$S([0,a])=\left[0,\frac{a}{2}\right]$$

For any
$$a\geq 0$$

$$S(\{0,a\})=\{0,a\}$$

$$S([0,a])=\left[0,\frac{a}{2}\right]$$

$$S([0,a]\cup[3a,4a])=\left[0,\frac{a}{2}\right]\cup\{3\}$$

For any
$$a \ge 0$$

$$S(\{0,a\}) = \{0,a\}$$

$$S([0,a]) = \left[0,\frac{a}{2}\right]$$

$$S([0,a] \cup [3a,4a]) = \left[0,\frac{a}{2}\right] \cup \{3\}$$

$$S([0,a] \cup [3a,4a] \cup [10a,11a]) = \left[0,\frac{a}{2}\right]$$

Important example

Theorem 1

Let $(a_n) \searrow 0$ be a summable sequence and

$$E(a_n) := \left\{ x \in \mathbb{R} : \exists_{M \subset \mathbb{N}} \ x = \sum_{n \in M} a_n \right\}$$

be a set of subsums of the sequence (a_n) . Then

$$\{a_n:n\in N\}\subset S\left(E\left(a_n\right)\right)$$
.

In particular

$$S\left(C_{1/3}\right) = S\left(E\left(\frac{2}{3^n}\right)\right) = \{0\} \cup \left\{\frac{2}{3^n}: n = 1, 2, 3, \ldots\right\}$$

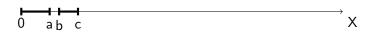
W. Bielas, S. Plewik, M. Walczyńska, *On the center of distances*, Eur. J. Math. (2018), 4, 687-698

Let $0 \le a < b \le c$. For any $B = [0, a] \cup [b, c]$ there exists a compact set A such that S(A) = B.

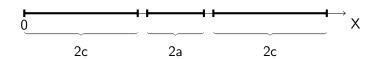
Let $0 \le a < b \le c$. For any $B = [0, a] \cup [b, c]$ there exists a compact set A such that S(A) = B.

$$A = [0, 2c] \cup [2c + b - a, 2c + b + a] \cup [2c + 2b, 4c + 2b]$$

Let $0 \le a < b \le c$. For any $B = [0, a] \cup [b, c]$ there exists a compact set A such that S(A) = B.



$$A = [0, 2c] \cup [2c + b - a, 2c + b + a] \cup [2c + 2b, 4c + 2b]$$



For any family $\{A_t : t \in T\}$

$$\bigcap_{t\in\mathcal{T}}S\left(A_{t}\right)\subset S\left(\bigcup_{t\in\mathcal{T}}A_{t}\right)$$

For any family $\{A_t : t \in T\}$

$$\bigcap_{t\in\mathcal{T}}S\left(A_{t}\right)\subset S\left(\bigcup_{t\in\mathcal{T}}A_{t}\right)$$

Indeed, let $\alpha \in \bigcap_{t \in T} S(A_t)$ and $x \in \bigcup_{t \in T} A_t$. There exists t_0 such that $x \in A_{t_0}$.

For any family $\{A_t : t \in T\}$

$$\bigcap_{t\in\mathcal{T}}S\left(A_{t}\right)\subset S\left(\bigcup_{t\in\mathcal{T}}A_{t}\right)$$

Indeed, let $\alpha \in \bigcap_{t \in T} S(A_t)$ and $x \in \bigcup_{t \in T} A_t$. There exists t_0 such

that $x \in A_{t_0}$.

Since $\alpha \in S(A_{t_0})$ there is $y \in A_{t_0}$ such that $|x - y| = \alpha$.

For any family $\{A_t : t \in T\}$

$$\bigcap_{t\in\mathcal{T}}S\left(A_{t}\right)\subset S\left(\bigcup_{t\in\mathcal{T}}A_{t}\right)$$

Indeed, let $\alpha \in \bigcap_{t \in T} S(A_t)$ and $x \in \bigcup_{t \in T} A_t$. There exists t_0 such

that $x \in A_{t_0}$.

Since $\alpha \in S(A_{t_0})$ there is $y \in A_{t_0}$ such that $|x - y| = \alpha$.

But
$$y \in \bigcup_{t \in T} A_t$$
 so $\alpha \in S\left(\bigcup_{t \in T} A_t\right)$.

Let $T := \mathbb{N}$ or $T := \{1, ..., n\}$ and $\{A_t : t \in T\}$ be a sequence of nonempty subsets of [0, Z]. Then there exists a set $A \subset \mathbb{R}$ such that $S(A) = \bigcap_{t \in T} S(A_t)$.

Let $T := \mathbb{N}$ or $T := \{1, ..., n\}$ and $\{A_t : t \in T\}$ be a sequence of nonempty subsets of [0, Z]. Then there exists a set $A \subset \mathbb{R}$ such that $S(A) = \bigcap_{t \in T} S(A_t)$.

Proof: We can assume that $\inf A_t = 0$ for $t \in T$ and that T contains at least three elements.

Let $T := \mathbb{N}$ or $T := \{1, ..., n\}$ and $\{A_t : t \in T\}$ be a sequence of nonempty subsets of [0, Z]. Then there exists a set $A \subset \mathbb{R}$ such that $S(A) = \bigcap_{t \in T} S(A_t)$.

Proof: We can assume that $\inf A_t = 0$ for $t \in T$ and that T contains at least three elements. Put D := 2Z and $\widetilde{A_t} := A_t + 2^t D$.

Let $T := \mathbb{N}$ or $T := \{1, ..., n\}$ and $\{A_t : t \in T\}$ be a sequence of nonempty subsets of [0, Z]. Then there exists a set $A \subset \mathbb{R}$ such that $S(A) = \bigcap_{t \in T} S(A_t)$.

Proof: We can assume that $\inf A_t = 0$ for $t \in T$ and that T contains at least three elements.

Put
$$D := 2Z$$
 and $\widetilde{A_t} := A_t + 2^t D$. $A := \bigcup_{t \in T} \widetilde{A_t}$

Let $T := \mathbb{N}$ or $T := \{1, ..., n\}$ and $\{A_t : t \in T\}$ be a sequence of nonempty subsets of [0, Z]. Then there exists a set $A \subset \mathbb{R}$ such that $S(A) = \bigcap_{t \in T} S(A_t)$.

Proof: We can assume that $\inf A_t = 0$ for $t \in T$ and that T contains at least three elements.

Put
$$D := 2Z$$
 and $\widetilde{A_t} := A_t + 2^t D$. $A := \bigcup_{t \in T} \widetilde{A_t}$

Using **Lemma 3** we have

$$\bigcap_{t\in T}S\left(A_{t}\right)=\bigcap_{t\in T}S\left(\widetilde{A_{t}}\right)\subset S\left(\bigcup_{t\in T}\widetilde{A_{t}}\right)=S\left(A\right).$$

Let $T := \mathbb{N}$ or $T := \{1, ..., n\}$ and $\{A_t : t \in T\}$ be a sequence of nonempty subsets of [0, Z]. Then there exists a set $A \subset \mathbb{R}$ such that $S(A) = \bigcap_{t \in T} S(A_t)$.

Proof: We can assume that $\inf A_t = 0$ for $t \in T$ and that T contains at least three elements.

Put
$$D := 2Z$$
 and $\widetilde{A_t} := A_t + 2^t D$. $A := \bigcup_{t \in T} \widetilde{A_t}$

Using Lemma 3 we have

$$\bigcap_{t\in T}S\left(A_{t}\right)=\bigcap_{t\in T}S\left(\widetilde{A_{t}}\right)\subset S\left(\bigcup_{t\in T}\widetilde{A_{t}}\right)=S\left(A\right).$$

Moreover, the sets A_t are so spread out that

$$S(A) \subset \bigcap_{t \in T} S(A_t)$$
.

For any compact set $B \subset [0,1]$ containing 0 there exists a set $A \subset [0,\infty)$ such that S(A) = B

For any compact set $B \subset [0,1]$ containing 0 there exists a set $A \subset [0,\infty)$ such that S(A)=B

Proof: The complement of the set B is a countable or finite union of intervals G_t so

$$B=\bigcap_{t\in T}\left([0,1]\setminus G_t\right).$$

For any compact set $B \subset [0,1]$ containing 0 there exists a set $A \subset [0,\infty)$ such that S(A)=B

Proof: The complement of the set B is a countable or finite union of intervals G_t so

$$B=\bigcap_{t\in T}\left([0,1]\setminus G_t\right).$$

From **Lemma 2** we know that for any $t \in T$ there exists a set $A_t \subset [0,6]$ such that $S(A_t) = [0,1] \setminus G_t$ so

$$B = \bigcap_{t \in T} S(A_t).$$

For any compact set $B \subset [0,1]$ containing 0 there exists a set $A \subset [0,\infty)$ such that S(A)=B

Proof: The complement of the set B is a countable or finite union of intervals G_t so

$$B=\bigcap_{t\in T}\left([0,1]\setminus G_t\right).$$

From **Lemma 2** we know that for any $t \in T$ there exists a set $A_t \subset [0,6]$ such that $S(A_t) = [0,1] \setminus G_t$ so

$$B=\bigcap_{t\in T}S\left(A_{t}\right).$$

From **Proposition 4** there exists a set A such that S(A) = B.

A. Bartoszewicz, M. Filipczak, G. Horbaczewska, S. Lindner, F. Prus-Wiśniowski, *On the operator of center of distances between the spaces of closed subsets of the real line* Topol. Methods Nonlinear Anal. Advance Publication 1–15. 2023.

Question 1 - boundness

Sets constructed using our method take up a lot of space on the line, they can even be unbounded.

Question 1 - boundness

Sets constructed using our method take up a lot of space on the line, they can even be unbounded.

Is it true that for any compact set $B \subset [0,1]$ containing 0 there exists a compact set A such that S(A) = B?

Question 2 - properties

The set S(A) can be nonmeasurable and can be a set without the Baire property.

Question 2 - properties

The set S(A) can be nonmeasurable and can be a set without the Baire property.

It seems to be interesting when, i.e. under which assumption on A, we get Borel or measurable S(A).

Partial answers

• If A is closed then S(A) is closed.

Partial answers

- If A is closed then S(A) is closed.
- If A is open then S(A) is a G_{δ} set.

Partial answers

- If A is closed then S(A) is closed.
- If A is open then S(A) is a G_{δ} set.
- There exists an open set A such that S(A) is not a F_{σ} set.

Question 3 - existence

Does there exist a set B which is not a center of distances for any $A \subset \mathbb{R}$?