The Borel complexity of sets of ideal limit points

Rafał Filipów

46th Summer Symposium in Real Analysis (2024)

The talk is based on a join work with Adam Kwela and Paolo Leonetti

Redefinitions

 $\omega = \mathbb{N}$ is the set of all natural numbers

X will stand for an uncountable Polish space (i.e. separable completely metrizable topological space)

Ideals on ω

Definition

A family $\mathcal{I} \subseteq \mathcal{P}(\omega)$ is an ideal on ω if

- \bigcirc \mathcal{I} contains all finite subsets of ω .

Example

- Fin = $\{A \subseteq \omega : A \text{ is finite}\}$
- ② $\mathcal{I}_{1/n} = \left\{ A \subseteq \omega : \sum_{n \in A} \frac{1}{n} < \infty \right\}$ the summable ideal

Ideals on ω

Definition

A family $\mathcal{I} \subseteq \mathcal{P}(\omega)$ is an ideal on ω if

- - **9** \mathcal{I} contains all finite subsets of ω .

Example

- Fin = $\{A \subseteq \omega : A \text{ is finite}\}$
- ② $\mathcal{I}_{1/n} = \left\{ A \subseteq \omega : \sum_{n \in A} \frac{1}{n} < \infty \right\}$ the summable ideal

Ideals on ω

Definition

A family $\mathcal{I} \subseteq \mathcal{P}(\omega)$ is an ideal on ω if

- **9** \mathcal{I} contains all finite subsets of ω .

Example

- Fin = $\{A \subseteq \omega : A \text{ is finite}\}$
- ② $\mathcal{I}_{1/n} = \left\{ A \subseteq \omega : \sum_{n \in A} \frac{1}{n} < \infty \right\}$ the summable ideal

PART 1: Finding one convergent subsequence

Convergent subsequences

Theorem (Bolzano-Weierstrass)

For every sequence $(x_n)_{n\in\omega}$ in [0,1] there is an $A\notin \operatorname{Fin}$ such that the subsequence $(x_n)_{n\in A}$ is convergent.

Theorem (Folklore)

For every sequence $(x_n)_{n\in\omega}$ in [0,1] there is an $A\notin\mathcal{I}_{1/n}$ such that the subsequence $(x_n)_{n\in A}$ is convergent.

Theorem (Fridy, 1993)

There exists a sequence $(x_n)_{n\in\omega}$ in [0,1] such that for every $A\notin\mathcal{I}_d$ the subsequence $(x_n)_{n\in A}$ is **not** convergent.

Convergent subsequences

Theorem (Bolzano-Weierstrass)

For every sequence $(x_n)_{n\in\omega}$ in [0,1] there is an $A\notin \operatorname{Fin}$ such that the subsequence $(x_n)_{n\in A}$ is convergent.

Theorem (Folklore)

For every sequence $(x_n)_{n\in\omega}$ in [0,1] there is an $A\notin\mathcal{I}_{1/n}$ such that the subsequence $(x_n)_{n\in A}$ is convergent.

Theorem (Fridy, 1993)

There exists a sequence $(x_n)_{n\in\omega}$ in [0,1] such that for every $A\notin\mathcal{I}_d$ the subsequence $(x_n)_{n\in A}$ is **not** convergent.

Convergent subsequences

Theorem (Bolzano-Weierstrass)

For every sequence $(x_n)_{n\in\omega}$ in [0,1] there is an $A\notin \operatorname{Fin}$ such that the subsequence $(x_n)_{n\in A}$ is convergent.

Theorem (Folklore)

For every sequence $(x_n)_{n\in\omega}$ in [0,1] there is an $A\notin\mathcal{I}_{1/n}$ such that the subsequence $(x_n)_{n\in A}$ is convergent.

Theorem (Fridy, 1993)

There exists a sequence $(x_n)_{n\in\omega}$ in [0,1] such that for every $A\notin\mathcal{I}_d$ the subsequence $(x_n)_{n\in A}$ is not convergent.

Definition (F.-Mrożek-Recław-Szuca, 2007)

An ideal \mathcal{I} has finite Bolzano-Weierstrass property (FinBW property) if for every sequence $(x_n)_{n\in\omega}$ in [0,1] there is $A\notin\mathcal{I}$ such that the subsequence $(x_n)_{n\in A}$ is convergent.

- Fin and $\mathcal{I}_{1/n}$ have the FinBW property
- ullet \mathcal{I}_d does not have the FinBW property

Definition

An ideal \mathcal{I} is F_{σ} if the set $\{\mathbf{1}_A : A \in \mathcal{I}\}$ is an F_{σ} subset of the Cantor space $2^{\omega} = \{0,1\}^{\omega}$.

The same for $F_{\sigma\delta}$, Borel, analytic, and other topological properties.

Theorem (F.-Mrożek-Recław-Szuca, 2007)

Every F_{σ} ideal has FinBW property

Definition (F.-Mrożek-Recław-Szuca, 2007)

An ideal \mathcal{I} has finite Bolzano-Weierstrass property (FinBW property) if for every sequence $(x_n)_{n\in\omega}$ in [0,1] there is $A\notin\mathcal{I}$ such that the subsequence $(x_n)_{n\in A}$ is convergent.

- ullet Fin and $\mathcal{I}_{1/n}$ have the FinBW property
- ullet \mathcal{I}_d does not have the FinBW property

Definition

An ideal \mathcal{I} is F_{σ} if the set $\{\mathbf{1}_A : A \in \mathcal{I}\}$ is an F_{σ} subset of the Cantor space $2^{\omega} = \{0,1\}^{\omega}$.

The same for $F_{\sigma\delta}$, Borel, analytic, and other topological properties.

Theorem (F.-Mrożek-Recław-Szuca, 2007)

Every F_{σ} ideal has FinBW property

Definition (F.-Mrożek-Recław-Szuca, 2007)

An ideal \mathcal{I} has finite Bolzano-Weierstrass property (FinBW property) if for every sequence $(x_n)_{n\in\omega}$ in [0,1] there is $A\notin\mathcal{I}$ such that the subsequence $(x_n)_{n\in A}$ is convergent.

- ullet Fin and $\mathcal{I}_{1/n}$ have the FinBW property
- ullet \mathcal{I}_d does not have the FinBW property

Definition

An ideal \mathcal{I} is F_{σ} if the set $\{\mathbf{1}_A : A \in \mathcal{I}\}$ is an F_{σ} subset of the Cantor space $2^{\omega} = \{0,1\}^{\omega}$.

The same for $F_{\sigma\delta}$, Borel, analytic, and other topological properties.

Theorem (F.-Mrożek-Recław-Szuca, 2007)

Every F_{σ} ideal has FinBW property.

Theorem (Folklore)

If X is **not** compact, then there is a sequence $(x_n)_{n\in\omega}$ in X such that for every $A \notin \mathcal{I}$ the subsequence $(x_n)_{n\in A}$ is **not** convergent in X.

Katětov order (Katětov, 1968)

 $\mathcal{I} \leq_{\mathcal{K}} \mathcal{J} \iff$ there exists $f: \omega \to \omega$ such that

$$\forall A \subseteq \omega \ (A \in \mathcal{I} \implies f^{-1}[A] \in \mathcal{J}).$$

The ideal conv

 $conv = \{A \subseteq \mathbb{Q} : A \text{ has at most finitely many limit points in } \mathbb{R}\}$

Theorem (Meza-Alcántara, 2009)

If X is compact, then

Theorem (Folklore)

If X is **not** compact, then there is a sequence $(x_n)_{n\in\omega}$ in X such that for every $A \notin \mathcal{I}$ the subsequence $(x_n)_{n\in A}$ is **not** convergent in X.

Katětov order (Katětov, 1968)

 $\mathcal{I} \leq_{\mathcal{K}} \mathcal{J} \iff$ there exists $f: \omega \to \omega$ such that

$$\forall A \subseteq \omega \, (A \in \mathcal{I} \implies f^{-1}[A] \in \mathcal{J}).$$

The ideal conv

 $conv = \{A \subseteq \mathbb{Q} : A \text{ has at most finitely many limit points in } \mathbb{R}\}$

Theorem (Meza-Alcántara, 2009)

If X is compact, then

Theorem (Folklore)

If X is **not** compact, then there is a sequence $(x_n)_{n\in\omega}$ in X such that for every $A\notin\mathcal{I}$ the subsequence $(x_n)_{n\in A}$ is **not** convergent in X.

Katětov order (Katětov, 1968)

 $\mathcal{I} \leq_{\kappa} \mathcal{J} \iff$ there exists $f: \omega \to \omega$ such that

$$\forall A \subseteq \omega \, (A \in \mathcal{I} \implies f^{-1}[A] \in \mathcal{J}).$$

The ideal conv

 $conv = \{A \subseteq \mathbb{Q} : A \text{ has at most finitely many limit points in } \mathbb{R} \}$

Theorem (Meza-Alcántara, 2009)

If X is compact, then

Theorem (Folklore)

If X is **not** compact, then there is a sequence $(x_n)_{n\in\omega}$ in X such that for every $A \notin \mathcal{I}$ the subsequence $(x_n)_{n\in A}$ is **not** convergent in X.

Katětov order (Katětov, 1968)

 $\mathcal{I} \leq_{\kappa} \mathcal{J} \iff$ there exists $f: \omega \to \omega$ such that

$$\forall A \subseteq \omega \, (A \in \mathcal{I} \implies f^{-1}[A] \in \mathcal{J}).$$

The ideal conv

 $conv = \{A \subseteq \mathbb{Q} : A \text{ has at most finitely many limit points in } \mathbb{R} \}$

Theorem (Meza-Alcántara, 2009)

If X is compact, then

PART 2: Finding all convergent subsequence

Set of ideal limit points of a sequence

$$\Lambda_{\mathcal{I}}((x_n)_{n\in\omega})=\{p\in X:\exists A\notin \mathcal{I}((x_n)_{n\in A}\to p)\}$$

Theorem (Folklore)

 $\Lambda_{\text{Fin}}(x_n)$ is a closed set for every sequence (x_n) .

Theorem (Balcerzak-Leonetti, 2019)

If an ideal \mathcal{I} is F_{σ} , then $\Lambda_{\mathcal{I}}(x_n)$ is closed for every sequence $(x_n)_{n\in\omega}$.

Theorem (Kostyrko-Mačaj-Šalát-Strauch, 2001)

- For every nonempty F_{σ} set $F \subseteq [0,1]$ there exists a sequence $(x_n)_{n \in \omega}$ in [0,1] such that $F = \Lambda_{\mathcal{I}_d}(x_n)$.
- In particular, there is a sequence (x_n) such that $\Lambda_{\mathcal{I}_d}(x_n)$ is not closed.

Set of ideal limit points of a sequence

$$\Lambda_{\mathcal{I}}((x_n)_{n\in\omega})=\{p\in X:\exists A\notin \mathcal{I}((x_n)_{n\in A}\to p)\}$$

Theorem (Folklore)

 $\Lambda_{\text{Fin}}(x_n)$ is a closed set for every sequence (x_n) .

Theorem (Balcerzak-Leonetti, 2019)

If an ideal \mathcal{I} is F_{σ} , then $\Lambda_{\mathcal{I}}(x_n)$ is closed for every sequence $(x_n)_{n\in\omega}$.

Theorem (Kostyrko-Mačaj-Salát-Strauch, 2001)

- For every nonempty F_{σ} set $F \subseteq [0,1]$ there exists a sequence $(x_n)_{n \in \omega}$ in [0,1] such that $F = \Lambda_{\mathcal{I}_d}(x_n)$.
- In particular, there is a sequence (x_n) such that $\Lambda_{\mathcal{I}_d}(x_n)$ is not closed.

Set of ideal limit points of a sequence

$$\Lambda_{\mathcal{I}}((x_n)_{n\in\omega})=\{p\in X:\exists A\notin \mathcal{I}((x_n)_{n\in A}\to p)\}$$

Theorem (Folklore)

 $\Lambda_{\text{Fin}}(x_n)$ is a closed set for every sequence (x_n) .

Theorem (Balcerzak-Leonetti, 2019)

If an ideal \mathcal{I} is F_{σ} , then $\Lambda_{\mathcal{I}}(x_n)$ is closed for every sequence $(x_n)_{n\in\omega}$.

Theorem (Kostyrko-Mačaj-Salát-Strauch, 2001)

- For every nonempty F_{σ} set $F \subseteq [0,1]$ there exists a sequence $(x_n)_{n \in \omega}$ in [0,1] such that $F = \Lambda_{\mathcal{I}_d}(x_n)$.
- In particular, there is a sequence (x_n) such that $\Lambda_{\mathcal{I}_d}(x_n)$ is not closed.

Set of ideal limit points of a sequence

$$\Lambda_{\mathcal{I}}((x_n)_{n\in\omega})=\{p\in X:\exists A\notin \mathcal{I}((x_n)_{n\in A}\to p)\}$$

Theorem (Folklore)

 $\Lambda_{\text{Fin}}(x_n)$ is a closed set for every sequence (x_n) .

Theorem (Balcerzak-Leonetti, 2019)

If an ideal \mathcal{I} is F_{σ} , then $\Lambda_{\mathcal{I}}(x_n)$ is closed for every sequence $(x_n)_{n\in\omega}$.

Theorem (Kostyrko-Mačaj-Šalát-Strauch, 2001)

- For every nonempty F_{σ} set $F \subseteq [0,1]$ there exists a sequence $(x_n)_{n \in \omega}$ in [0,1] such that $F = \Lambda_{\mathcal{I}_d}(x_n)$.
- In particular, there is a sequence (x_n) such that $\Lambda_{\mathcal{I}_d}(x_n)$ is not closed.

PART 3: Borel complexity of ideal limit sets $\Lambda_{\mathcal{I}}(x)$

Family of all sets of ideal limit points of sequences

Recall: set of ideal limit points of a sequence

$$\Lambda_{\mathcal{I}}((x_n)_{n\in\omega})=\{p\in X:\exists A\notin \mathcal{I}\ ((x_n)_{n\in A}\to p)\}$$

Family of all sets of ideal limit points of sequences

For a space X we write:

$$\Lambda_{\mathcal{I}}(X) = \{\Lambda((x_n)_{n \in \omega}) : \text{ for each sequence } (x_n) \text{ in } X\}$$

Family of all sets of ideal limit points of sequences

Recall: set of ideal limit points of a sequence

$$\Lambda_{\mathcal{I}}((x_n)_{n\in\omega})=\{p\in X:\exists A\notin \mathcal{I}((x_n)_{n\in A}\to p)\}$$

Family of all sets of ideal limit points of sequences

For a space X we write:

$$\Lambda_{\mathcal{I}}(X) = \{\Lambda((x_n)_{n \in \omega}) : \text{ for each sequence } (x_n) \text{ in } X\}$$

Theorem (Folklore)

 $\Lambda_{\operatorname{Fin}}(X) = \Pi_1^0(X)$ (all closed subsets of X)

Theorem (Folklore)

If \mathcal{I} is a maximal ideal, then

- $\Lambda_{\mathcal{I}}(X) = \{ \{ x \} : x \in X \} \cup \{ \emptyset \}$
- ◎ $\Lambda_{\text{Fin} \oplus (\{\emptyset\} \otimes \mathcal{I})}(X) = \{A \cup B : A \text{ is closed and } B \text{ is countable}\}.$

- $\Lambda_{T_d}(X) = \Sigma_2^0(X)$ (Kostyrko-Mačaj-Šalát-Strauch, 2001)

Theorem (Folklore)

$$\Lambda_{\operatorname{Fin}}(X) = \Pi_1^0(X)$$
 (all closed subsets of X)

Theorem (Folklore)

If \mathcal{I} is a maximal ideal, then

$$\Lambda_{\mathcal{I}}(X) = \{ \{x\} : x \in X\} \cup \{\emptyset\}$$

③ $\Lambda_{\text{Fin} \oplus (\{\emptyset\} \otimes \mathcal{I})}(X) = \{A \cup B : A \text{ is closed and } B \text{ is countable}\}.$

Theorem (Folklore)

$$\Lambda_{\operatorname{Fin}}(X) = \Pi_1^0(X)$$
 (all closed subsets of X)

Theorem (Folklore)

If \mathcal{I} is a maximal ideal, then

- $\Lambda_{\mathcal{I}}(X) = \{ \{x\} : x \in X\} \cup \{\emptyset\} \}$

Theorem (Folklore)

$$\Lambda_{\operatorname{Fin}}(X) = \Pi_1^0(X)$$
 (all closed subsets of X)

Theorem (Folklore)

If \mathcal{I} is a maximal ideal, then

- $\Lambda_{\mathcal{I}}(X) = \{ \{x\} : x \in X\} \cup \{\emptyset\} \}$

Theorem (Folklore)

 $\Lambda_{\operatorname{Fin}}(X) = \Pi_1^0(X)$ (all closed subsets of X)

Theorem (Folklore)

If \mathcal{I} is a maximal ideal, then

- $\Lambda_{\mathcal{I}}(X) = \{ \{x\} : x \in X\} \cup \{\emptyset\} \}$

- $\bullet \ \Lambda_{\mathcal{I}_{1/n}}(X) = \Pi_1^0(X) \quad \text{(Balcerzak-Leonetti, 2019)}$
- ② $\Lambda_{\mathcal{I}_d}(X) = \Sigma_2^0(X)$ (Kostyrko-Mačaj-Šalát-Strauch, 2001)

Theorem (Folklore)

 $\Lambda_{\operatorname{Fin}}(X) = \Pi_1^0(X)$ (all closed subsets of X)

Theorem (Folklore)

If \mathcal{I} is a maximal ideal, then

- $\Lambda_{\mathcal{I}}(X) = \{ \{x\} : x \in X \} \cup \{\emptyset\} \}$
- $\Lambda_{\{\emptyset\} \otimes \mathcal{I}}(X) = \{B : B \text{ is countable}\}$

- $\bullet \Lambda_{\mathcal{I}_{1/n}}(X) = \Pi_1^0(X) \quad \text{(Balcerzak-Leonetti, 2019)}$
- $\delta \Lambda_{\mathcal{I}_d}(X) = \Sigma_2^0(X)$ (Kostyrko-Mačaj-Šalát-Strauch, 2001)

Tools for characterizations

Definition

A family $\{A_s: s\in 2^{<\omega}\}$ of subsets of ω is called an \mathcal{I} -scheme if for every $s\in 2^{<\omega}$

- $A_{s^{\frown}0} \cap A_{s^{\frown}1} = \emptyset,$
- $A_{s^{\frown}0} \cup A_{s^{\frown}1} \subseteq A_s.$

Definition

$$B_{\mathcal{I}}(\mathcal{A}) = \{ x \in 2^{\omega} : \neg (\exists C \notin \mathcal{I} \ \forall n \in \omega \ |C \setminus A_{x \upharpoonright n}| < \omega) \}$$

Definition

- $\mathcal{I} \in P(\Pi_1^0)$ if there is an \mathcal{I} -scheme \mathcal{A} with $\mathcal{B}_{\mathcal{I}}(\mathcal{A}) = \emptyset$
- $\mathcal{I} \in P(\Sigma_2^0)$ if there is an \mathcal{I} -scheme \mathcal{A} with $\mathcal{B}_{\mathcal{I}}(\mathcal{A}) = \{(0,0,\dots)\}$
- $\mathcal{I} \in P(\Pi_3^0)$ if there is an \mathcal{I} -scheme \mathcal{A} with $\mathcal{B}_{\mathcal{I}}(\mathcal{A}) = \mathbb{Q}(2^{\omega})$.

Tools for characterizations

Definition

A family $\{A_s: s\in 2^{<\omega}\}$ of subsets of ω is called an \mathcal{I} -scheme if for every $s\in 2^{<\omega}$

- $A_{s^{\frown}0} \cap A_{s^{\frown}1} = \emptyset,$
- $A_{s \frown 0} \cup A_{s \frown 1} \subseteq A_s.$

Definition

$$B_{\mathcal{I}}(\mathcal{A}) = \{ x \in 2^{\omega} : \neg (\exists C \notin \mathcal{I} \ \forall n \in \omega \ |C \setminus A_{x \upharpoonright n}| < \omega) \}$$

Definition

- $\mathcal{I} \in P(\Pi_1^0)$ if there is an \mathcal{I} -scheme \mathcal{A} with $\mathcal{B}_{\mathcal{I}}(\mathcal{A}) = \emptyset$
- $\mathcal{I} \in P(\Sigma_2^0)$ if there is an \mathcal{I} -scheme \mathcal{A} with $\mathcal{B}_{\mathcal{I}}(\mathcal{A}) = \{(0,0,\dots)\}$
- $\mathcal{I} \in P(\Pi_3^0)$ if there is an \mathcal{I} -scheme \mathcal{A} with $\mathcal{B}_{\mathcal{I}}(\mathcal{A}) = \mathbb{Q}(2^{\omega})$.

Tools for characterizations

Definition

A family $\{A_s: s \in 2^{<\omega}\}$ of subsets of ω is called an \mathcal{I} -scheme if for every $s \in 2^{<\omega}$

- $A_{s^{\frown}0} \cap A_{s^{\frown}1} = \emptyset,$
- $A_{s^{\frown}0} \cup A_{s^{\frown}1} \subseteq A_s.$

Definition

$$B_{\mathcal{I}}(\mathcal{A}) = \{ x \in 2^{\omega} : \neg (\exists C \notin \mathcal{I} \ \forall n \in \omega \ |C \setminus A_{x \upharpoonright n}| < \omega) \}$$

Definition

- $\mathcal{I} \in P(\Pi_1^0)$ if there is an \mathcal{I} -scheme \mathcal{A} with $\mathcal{B}_{\mathcal{I}}(\mathcal{A}) = \emptyset$
- $\mathcal{I} \in P(\Sigma_2^0)$ if there is an \mathcal{I} -scheme \mathcal{A} with $\mathcal{B}_{\mathcal{I}}(\mathcal{A}) = \{(0,0,\dots)\}$
- $\mathcal{I} \in P(\Pi_3^0)$ if there is an \mathcal{I} -scheme \mathcal{A} with $B_{\mathcal{I}}(\mathcal{A}) = \mathbb{Q}(2^{\omega})$.

Open and closed sets

Theorem

- (1) The following conditions are equivalent.
 - **1** $\mathcal{I} \in P(\Pi_1^0)$.

 - **3** $\Lambda_{\mathcal{I}}(X)$ contains an analytic set which is **not** countable.

(2)

- $\mathcal{I} \in P(\Pi_1^0) \setminus P(\Sigma_2^0)$ for every F_{σ} ideal \mathcal{I}
- $\mathcal{I} \in P(\Pi_1^0)$ for every ideal \mathcal{I} with the Baire property.
- There exists an ideal $\mathcal{I} \in P(\Pi_1^0)$ which does not have the Baire property (at least under CH).

Remark

The inclusion $\Pi_1^0(X) \subseteq \Lambda_{\mathcal{I}}(X)$ was earlier proved for

- F_{σ} ideals by Balcerzak-Leonetti (2019)
- ideals with Baire property by He-Zang-Zang (2022)

Open and closed sets

Theorem

- (1) The following conditions are equivalent.
 - **1** $\mathcal{I} \in P(\Pi_1^0)$.
 - $\square_1^0(X) \subseteq \Lambda_{\mathcal{I}}(X).$
- **3** $\Lambda_{\mathcal{I}}(X)$ contains an analytic set which is **not** countable.

(2)

- $\mathcal{I} \in P(\Pi_1^0) \setminus P(\Sigma_2^0)$ for every F_{σ} ideal \mathcal{I}
- $\mathcal{I} \in P(\Pi_1^0)$ for every ideal \mathcal{I} with the Baire property.
- There exists an ideal $\mathcal{I} \in P(\Pi_1^0)$ which does not have the Baire property (at least under CH).

Remark

The inclusion $\Pi_1^0(X) \subseteq \Lambda_{\mathcal{I}}(X)$ was earlier proved for

- \bullet F_{σ} ideals by Balcerzak-Leonetti (2019)
- ideals with Baire property by He-Zang-Zang (2022)

Theorem

- (1) The following conditions are equivalent.
 - **1** $\mathcal{I} \in P(\Pi_1^0)$.
- **3** $\Lambda_{\mathcal{I}}(X)$ contains an analytic set which is **not** countable.

(2)

- $\mathcal{I} \in P(\Pi_1^0) \setminus P(\Sigma_2^0)$ for every F_{σ} ideal \mathcal{I}
- $\mathcal{I} \in P(\Pi_1^0)$ for every ideal \mathcal{I} with the Baire property.
- There exists an ideal $\mathcal{I} \in P(\Pi_1^0)$ which does not have the Baire property (at least under CH).

Remark

The inclusion $\Pi_1^0(X) \subseteq \Lambda_{\mathcal{I}}(X)$ was earlier proved for

- \bullet F_{σ} ideals by Balcerzak-Leonetti (2019)
- ideals with Baire property by He-Zang-Zang (2022)

Theorem

- (1) The following conditions are equivalent.
 - **1** $\mathcal{I} \in P(\Pi_1^0)$.
- **3** $\Lambda_{\mathcal{I}}(X)$ contains an analytic set which is **not** countable.

(2)

- $\mathcal{I} \in P(\Pi_1^0) \setminus P(\Sigma_2^0)$ for every F_{σ} ideal \mathcal{I}
- $\mathcal{I} \in P(\Pi_1^0)$ for every ideal \mathcal{I} with the Baire property.
- There exists an ideal $\mathcal{I} \in P(\Pi_1^0)$ which does not have the Baire property (at least under CH).

Remark

The inclusion $\Pi_1^0(X) \subseteq \Lambda_{\mathcal{I}}(X)$ was earlier proved for

- \bullet F_{σ} ideals by Balcerzak-Leonetti (2019)
- ideals with Baire property by He-Zang-Zang (2022)

Theorem

- (1) The following conditions are equivalent.
 - **1** $\mathcal{I} \in P(\Pi_1^0)$.
 - $\square_1^0(X) \subseteq \Lambda_{\mathcal{I}}(X).$
 - **3** $\Lambda_{\mathcal{I}}(X)$ contains an analytic set which is **not** countable.

(2)

- $\mathcal{I} \in P(\Pi_1^0) \setminus P(\Sigma_2^0)$ for every F_{σ} ideal \mathcal{I}
- $\mathcal{I} \in P(\Pi_1^0)$ for every ideal \mathcal{I} with the Baire property.
- There exists an ideal $\mathcal{I} \in P(\Pi_1^0)$ which does not have the Baire property (at least under CH).

Remark

The inclusion $\Pi^0_1(X) \subseteq \Lambda_{\mathcal{I}}(X)$ was earlier proved for

- F_{σ} ideals by Balcerzak-Leonetti (2019)
- ideals with Baire property by He-Zang-Zang (2022)

Theorem (Folklore)

 $\Lambda_{\mathcal{I}}(X) \neq \Sigma_1^0(X)$ for any ideal \mathcal{I} .

- $(1) \ \Pi_1^0(X) \subseteq \Lambda_{\mathcal{I}}(X) \iff \mathcal{I} \in P(\Pi_1^0),$
- (2) If \mathcal{I} is *coanalytic* (e.g. \mathcal{I} is Borel), then

Theorem (Folklore)

 $\Lambda_{\mathcal{I}}(X) \neq \Sigma_1^0(X)$ for any ideal \mathcal{I} .

- $(1)\ \Pi^0_1(X)\subseteq \Lambda_{\mathcal{I}}(X) \iff \mathcal{I}\in P(\Pi^0_1),$
- (2) If \mathcal{I} is coanalytic (e.g. \mathcal{I} is Borel), then

Theorem (Folklore)

 $\Lambda_{\mathcal{I}}(X) \neq \Sigma_1^0(X)$ for any ideal \mathcal{I} .

- $(1)\ \Pi^0_1(X)\subseteq \Lambda_{\mathcal{I}}(X) \iff \mathcal{I}\in P(\Pi^0_1),$
- (2) If $\mathcal I$ is coanalytic (e.g. $\mathcal I$ is Borel), then

Theorem (Folklore)

 $\Lambda_{\mathcal{I}}(X) \neq \Sigma_1^0(X)$ for any ideal \mathcal{I} .

- $(1)\ \Pi^0_1(X)\subseteq \Lambda_{\mathcal{I}}(X) \iff \mathcal{I}\in P(\Pi^0_1),$
- (2) If $\mathcal I$ is coanalytic (e.g. $\mathcal I$ is Borel), then
 - $\bullet \ \Lambda_{\mathcal{I}}(X) \subseteq \Pi_1^0(X) \iff \mathcal{I} \notin P(\Sigma_2^0),$

Theorem (Folklore)

 $\Lambda_{\mathcal{I}}(X) \neq \Sigma_1^0(X)$ for any ideal \mathcal{I} .

- (1) $\Pi_1^0(X) \subseteq \Lambda_{\mathcal{I}}(X) \iff \mathcal{I} \in P(\Pi_1^0),$
- (2) If $\mathcal I$ is coanalytic (e.g. $\mathcal I$ is Borel), then

Theorem

- (1) The following conditions are equivalent.

 - $\Sigma_2^0(X) \subseteq \Lambda_{\mathcal{I}}(X).$

 - \bullet $\Lambda_{\mathcal{I}}(X)$ contains an analytic set which is **not** the union of a closed set and a countable set.
- (2) $\mathcal{I}\!\in\!P(\Sigma_2^0)$ for ideals with the hereditary Baire prop. which aren't $P^+.$

- $\{\emptyset\} \otimes \operatorname{Fin} \in P(\Sigma_2^0)$
- $\mathcal{I} \in P(\Sigma_2^0)$ for every analytic P-ideal \mathcal{I} which is not F_{σ} .

Theorem

- (1) The following conditions are equivalent.

 - $\Sigma_2^0(X) \subseteq \Lambda_{\mathcal{I}}(X).$

 - \bullet $\Lambda_{\mathcal{I}}(X)$ contains an analytic set which is **not** the union of a closed set and a countable set.
- (2) $\mathcal{I} \in P(\Sigma_2^0)$ for ideals with the hereditary Baire prop. which aren't P^+ .

- $\{\emptyset\} \otimes \operatorname{Fin} \in P(\Sigma_2^0)$
- $\mathcal{I} \in P(\Sigma_2^0)$ for every analytic P-ideal \mathcal{I} which is not F_{σ} .

Theorem

- (1) The following conditions are equivalent.

 - \bullet $\Lambda_{\mathcal{I}}(X)$ contains an analytic set which is **not** the union of a closed set and a countable set
- (2) $\mathcal{I} \in P(\Sigma_2^0)$ for ideals with the hereditary Baire prop. which aren't P^+ .

- $\{\emptyset\} \otimes \operatorname{Fin} \in P(\Sigma_2^0)$
- ullet $\mathcal{I}\in P(\Sigma_2^0)$ for every analytic P-ideal $\mathcal I$ which is not $F_\sigma.$

Theorem

- (1) The following conditions are equivalent.

 - \bullet $\Lambda_{\mathcal{I}}(X)$ contains an analytic set which is **not** the union of a closed set and a countable set.
- (2) $\mathcal{I} \in P(\Sigma_2^0)$ for ideals with the hereditary Baire prop. which aren't P^+ .

- $\{\emptyset\} \otimes \operatorname{Fin} \in P(\Sigma_2^0)$
- $\mathcal{I} \in P(\Sigma_2^0)$ for every analytic P-ideal \mathcal{I} which is not F_{σ} .

- (1) $\Lambda_{\mathcal{I}}(X) \neq \Pi_2^0(X)$ for any ideal \mathcal{I} .
- $(2) \Sigma_2^0(X) \subseteq \Lambda_{\mathcal{I}}(X) \iff \mathcal{I} \in P(\Sigma_2^0),$
- (3) If \mathcal{I} is coanalytic (e.g. \mathcal{I} is Borel), then

- (1) $\Lambda_{\mathcal{I}}(X) \neq \Pi_2^0(X)$ for any ideal \mathcal{I} .
- (2) $\Sigma_2^0(X) \subseteq \Lambda_{\mathcal{I}}(X) \iff \mathcal{I} \in P(\Sigma_2^0)$,
- (3) If \mathcal{I} is coanalytic (e.g. \mathcal{I} is Borel), then

- (1) $\Lambda_{\mathcal{I}}(X) \neq \Pi_2^0(X)$ for any ideal \mathcal{I} .
- (2) $\Sigma_2^0(X) \subseteq \Lambda_{\mathcal{I}}(X) \iff \mathcal{I} \in P(\Sigma_2^0)$,
- (3) If \mathcal{I} is *coanalytic* (e.g. \mathcal{I} is Borel), then

- (1) $\Lambda_{\mathcal{I}}(X) \neq \Pi_2^0(X)$ for any ideal \mathcal{I} .
- $(2) \ \Sigma_2^0(X) \subseteq \Lambda_{\mathcal{I}}(X) \iff \mathcal{I} \in P(\Sigma_2^0),$
- (3) If \mathcal{I} is coanalytic (e.g. \mathcal{I} is Borel), then

- (1) $\Lambda_{\mathcal{I}}(X) \neq \Pi_2^0(X)$ for any ideal \mathcal{I} .
- (2) $\Sigma_2^0(X) \subseteq \Lambda_{\mathcal{I}}(X) \iff \mathcal{I} \in P(\Sigma_2^0)$,
- (3) If \mathcal{I} is coanalytic (e.g. \mathcal{I} is Borel), then

PART 4: Borel complexity of ideal vs. Borel complexity of $\Lambda_{\mathcal{I}}(x)$

Theorem

(1) For each $\alpha \geq 3$ there is an ideal $\mathcal{I} \in \Sigma^0_\alpha \setminus \Pi^0_\alpha$ such that

$$\Lambda_{\mathcal{I}}(X) = \Pi^0_{\mathbf{1}}(X).$$

- (2) If \mathcal{I} is Σ_2^0 , then $\Lambda_{\mathcal{I}}(X) = \Pi_1^0(X)$
- (3) If \mathcal{I} is Π_3^0 , then one of the following items holds.

Conjecture

Theorem

(1) For each $\alpha \geq$ 3 there is an ideal $\mathcal{I} \in \Sigma^0_{\alpha} \setminus \Pi^0_{\alpha}$ such that

$$\Lambda_{\mathcal{I}}(X) = \Pi_{\mathbf{1}}^{0}(X).$$

- (2) If \mathcal{I} is Σ^0_2 , then $\Lambda_{\mathcal{I}}(X) = \Pi^0_1(X)$.
- (3) If \mathcal{I} is Π_3^0 , then one of the following items holds.

Conjecture

Theorem

(1) For each $\alpha \geq 3$ there is an ideal $\mathcal{I} \in \Sigma^0_\alpha \setminus \Pi^0_\alpha$ such that

$$\Lambda_{\mathcal{I}}(X) = \Pi_{\mathbf{1}}^{0}(X).$$

- (2) If \mathcal{I} is Σ^0_2 , then $\Lambda_{\mathcal{I}}(X) = \Pi^0_1(X)$.
- (3) If \mathcal{I} is Π^0_3 , then one of the following items holds.
 - $\bullet \Lambda_{\mathcal{I}}(X) = \Pi_1^0(X).$

Conjecture

Theorem

(1) For each $\alpha \geq$ 3 there is an ideal $\mathcal{I} \in \Sigma^0_{\alpha} \setminus \Pi^0_{\alpha}$ such that

$$\Lambda_{\mathcal{I}}(X) = \Pi_{\mathbf{1}}^{0}(X).$$

- (2) If \mathcal{I} is Σ^0_2 , then $\Lambda_{\mathcal{I}}(X) = \Pi^0_1(X)$.
- (3) If \mathcal{I} is Π^0_3 , then one of the following items holds.
 - $\bullet \Lambda_{\mathcal{I}}(X) = \Pi_1^0(X).$

Conjecture

- $\bullet \Lambda_{\mathcal{I}}(X) = \Pi_1^0(X).$

Definition

An ideal $\mathcal I$ is called a Farah ideal if there is a family of compact hereditary sets $\{C_n:n<\omega\}$ such that

$$\mathcal{I} = \{ A \subseteq \omega : \forall n < \omega \, \exists m < \omega \, (A \setminus [0, m) \in C_n) \}.$$

It is known that every Farah ideal is Π_3^0 .

Theorem (He-Zang-Zang, 2022)

If \mathcal{I} is a Farah ideal, then $\Lambda_{\mathcal{I}}(X) \subseteq \Sigma_2^0(X)$

Corollary

If \mathcal{I} is a Farah ideal, then one of the following items holds.

Question (Farah, 2004)

Definition

An ideal \mathcal{I} is called a Farah ideal if there is a family of compact hereditary sets $\{C_n : n < \omega\}$ such that

$$\mathcal{I} = \{A \subseteq \omega : \forall n < \omega \, \exists m < \omega \, (A \setminus [0, m) \in C_n)\}.$$

It is known that every Farah ideal is Π_3^0 .

Theorem (He-Zang-Zang, 2022)

If $\mathcal I$ is a Farah ideal, then $\Lambda_{\mathcal I}(X)\subseteq \Sigma_2^0(X)$

Corollary

If $\mathcal I$ is a Farah ideal, then one of the following items holds.

Question (Farah, 2004)

Definition

An ideal \mathcal{I} is called a Farah ideal if there is a family of compact hereditary sets $\{C_n : n < \omega\}$ such that

$$\mathcal{I} = \{A \subseteq \omega : \forall n < \omega \, \exists \, m < \omega \, (A \setminus [0, m) \in C_n)\}.$$

It is known that every Farah ideal is Π_3^0 .

Theorem (He-Zang-Zang, 2022)

If $\mathcal I$ is a Farah ideal, then $\Lambda_{\mathcal I}(X)\subseteq \Sigma_2^0(X)$

Corollary

If $\ensuremath{\mathcal{I}}$ is a Farah ideal, then one of the following items holds.

- **1** $\Lambda_{\mathcal{I}}(X) = \Pi_1^0(X)$.

Question (Farah, 2004)

Definition

An ideal $\mathcal I$ is called a Farah ideal if there is a family of compact hereditary sets $\{\mathcal C_n:n<\omega\}$ such that

$$\mathcal{I} = \{A \subseteq \omega : \forall n < \omega \, \exists \, m < \omega \, (A \setminus [0, m) \in C_n)\}.$$

It is known that every Farah ideal is Π_3^0 .

Theorem (He-Zang-Zang, 2022)

If $\mathcal I$ is a Farah ideal, then $\Lambda_{\mathcal I}(X)\subseteq \Sigma_2^0(X)$

Corollary

If $\mathcal I$ is a Farah ideal, then one of the following items holds.

- $\bullet \Lambda_{\mathcal{I}}(X) = \Pi_1^0(X).$

Question (Farah, 2004)

References

- M. Balcerzak, P. Leonetti, On the relationship between ideal cluster points and ideal limit points, Topology Appl. 252 (2019), 178–190.
- R. Filipów, N. Mrożek, I. Recław and P. Szuca, *Ideal convergence of bounded sequences*, J. Symbolic Logic 72 (2007), no. 2, 501–512.
- A. Fridy, Statistical limit points, Proc. Amer. Math. Soc. 118 (1993), no. 4, 1187–1192.
- Xi He, Hang Zhang, Shuguo Zhang, *The Borel complexity of ideal limit points*, Topology Appl. 312 (2022), Paper No. 108061, 12.
- M. Katětov, Products of filters, Comment. Math. Univ. Carolinae 9 (1968), 173–189
- P. Kostyrko, M. Mačaj, T. Šalát, O. Strauch, *On statistical limit points*, Proc. Amer. Math. Soc. 129 (2001), no. 9, 2647–2654.
- P. Kostyrko, T. Šalát, W. Wilczyński, *I-convergence*, Real Anal. Exchange 26 (2000/01), no. 2, 669–685.
- A. Kwela, *Unboring ideals*, Fund. Math. 261 (2023), 235—272.
- D. Meza-Alcátara, *Ideals and filters on countable set*, Ph.D. thesis, Universidad Nacional Autonoma de Mexico, 2009

Theorem

The following conditions are equivalent.

- **①** \mathcal{I} ∈ $P(\Pi_3^0)$.
- $\square_3^0(X) \subseteq \Lambda_{\mathcal{I}}(X).$
- **1** $\Lambda_{\mathcal{I}}(X)$ contains an analytic set which is **not** F_{σ} .

Theorem

 $\mathcal{I} \notin P(\Pi_3^0)$ for any analytic P-ideals.

Theorem (Balcerzak-Głąb-Leonetti, 2023)

 $\operatorname{Fin}^2 \in P(\Pi_3^0)$

Theorem

The following conditions are equivalent.

- **①** \mathcal{I} ∈ $P(\Pi_3^0)$.
- $\square_3^0(X) \subseteq \Lambda_{\mathcal{I}}(X).$
- **1** $\Lambda_{\mathcal{I}}(X)$ contains an analytic set which is **not** F_{σ} .

Theorem

 $\mathcal{I} \notin P(\Pi_3^0)$ for any analytic P-ideals.

Theorem (Balcerzak-Głąb-Leonetti, 2023)

 $\operatorname{Fin}^2 \in P(\Pi_3^0)$

Theorem

The following conditions are equivalent.

- **①** \mathcal{I} ∈ $P(\Pi_3^0)$.
- $\square_3^0(X) \subseteq \Lambda_{\mathcal{I}}(X).$
- **4** $\Lambda_{\mathcal{I}}(X)$ contains an analytic set which is **not** F_{σ} .

Theorem

 $\mathcal{I} \notin P(\Pi_3^0)$ for any analytic P-ideals.

Theorem (Balcerzak-Głąb-Leonetti, 2023)

 $\operatorname{Fin}^2 \in P(\Pi_3^0)$.

- (1) $\Lambda_{\mathcal{I}}(X) \neq \Sigma_3^0(X)$ for any ideal \mathcal{I} .
- $(2) \ \Pi_3^0(X) \subseteq \Lambda_{\mathcal{I}}(X) \iff \mathcal{I} \in P(\Pi_3^0),$
- (3) If \mathcal{I} is *coanalytic* (e.g. \mathcal{I} is Borel), then

- (1) $\Lambda_{\mathcal{I}}(X) \neq \Sigma_3^0(X)$ for any ideal \mathcal{I} .
- (2) $\Pi_3^0(X) \subseteq \Lambda_{\mathcal{I}}(X) \iff \mathcal{I} \in P(\Pi_3^0),$
- (3) If \mathcal{I} is *coanalytic* (e.g. \mathcal{I} is Borel), then

- (1) $\Lambda_{\mathcal{I}}(X) \neq \Sigma_3^0(X)$ for any ideal \mathcal{I} .
- (2) $\Pi_3^0(X) \subseteq \Lambda_{\mathcal{I}}(X) \iff \mathcal{I} \in P(\Pi_3^0),$
- (3) If ${\mathcal I}$ is coanalytic (e.g. ${\mathcal I}$ is Borel), then

- (1) $\Lambda_{\mathcal{I}}(X) \neq \Sigma_3^0(X)$ for any ideal \mathcal{I} .
- (2) $\Pi_3^0(X) \subseteq \Lambda_{\mathcal{I}}(X) \iff \mathcal{I} \in P(\Pi_3^0),$
- (3) If ${\mathcal I}$ is coanalytic (e.g. ${\mathcal I}$ is Borel), then

- (1) $\Lambda_{\mathcal{I}}(X) \neq \Sigma_3^0(X)$ for any ideal \mathcal{I} .
- (2) $\Pi_3^0(X) \subseteq \Lambda_{\mathcal{I}}(X) \iff \mathcal{I} \in P(\Pi_3^0),$
- (3) If $\mathcal I$ is coanalytic (e.g. $\mathcal I$ is Borel), then
 - $\bullet \ \Lambda_{\mathcal{I}}(X) \subseteq \Pi_3^0(X) \iff \mathcal{I} \notin P(\Sigma_4^0),$

Theorem

- (1) $\Lambda_{\mathcal{I}}(X) \neq \Sigma_3^0(X)$ for any ideal \mathcal{I} .
- (2) $\Pi_3^0(X) \subseteq \Lambda_{\mathcal{I}}(X) \iff \mathcal{I} \in P(\Pi_3^0),$
- (3) If \mathcal{I} is coanalytic (e.g. \mathcal{I} is Borel), then
 - $\bullet \quad A_{\mathcal{I}}(X) \subseteq \Pi_3^0(X) \iff \mathcal{I} \notin P(\Sigma_4^0),$

But wait, we haven't defined the property $P(\Sigma_4^0)!$