A universal operator on ℓ_1

Joanna Garbulińska-Węgrzyn

Faculty of Mathematics Jan Kochanowski University in Kielce

46th Summer Symposium In Real Analysis June 17-21, 2024, Łódź

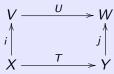
- **1** A separable Banach space X is called **Gurarii** if for any finite-dimensional Banach spaces $A \subseteq B$ and any $\varepsilon > 0$, any isometric embedding $i: A \to X$ extends to an ε -isometric embedding $\bar{i}: B \to X$.
- ② An operator $U: V \to W$ between Banach spaces is defined to be universal if for every operator $T: X \to Y$ with $\|T\| \le \|U\|$, there exist linear isometric embeddings $i: X \to V$, $j: Y \to W$ such that the diagram

$$V \xrightarrow{U} > W$$

$$\downarrow \downarrow \qquad \qquad \downarrow \uparrow \qquad \downarrow \uparrow \qquad \qquad \downarrow \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad$$

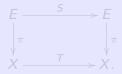
is commutative, that is, $U \circ i = j \circ T$.

- **1** A separable Banach space X is called **Gurarii** if for any finite-dimensional Banach spaces $A \subseteq B$ and any $\varepsilon > 0$, any isometric embedding $i: A \to X$ extends to an ε -isometric embedding $\bar{i}: B \to X$.
- ② An operator $U: V \to W$ between Banach spaces is defined to be universal if for every operator $T: X \to Y$ with $\|T\| \le \|U\|$, there exist linear isometric embeddings $i: X \to V$, $j: Y \to W$ such that the diagram

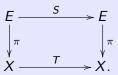


is commutative, that is, $U \circ i = j \circ T$.

1 Let T and S be linear operators acting on Banach spaces X and E, where T and S are self-maps of X and E, respectively. Then T is a linear lifting of S, and S is a linear factor of T if there is a map π from E onto X such that $T\pi = \pi S$, i.e. the following diagram is commutative:

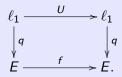


1 Let T and S be linear operators acting on Banach spaces X and E, where T and S are self-maps of X and E, respectively. Then T is a linear lifting of S, and S is a linear factor of T if there is a map π from E onto X such that $T\pi = \pi S$, i.e. the following diagram is commutative:



- Let us start with the following recent result, due to Darji and Matheron [1]:
 - (K) There exists a non-expansive linear operator $U: \ell_1 \to \ell_1$ such that for every separable Banach space E, for every non-expansive operator $f: E \to E$ there is a non-expansive surjective linear operator $q: \ell_1 \to E$ satisfying $f \circ q = q \circ U$.

- Let us start with the following recent result, due to Darji and Matheron [1]:
 - (K) There exists a non-expansive linear operator $U: \ell_1 \to \ell_1$ such that for every separable Banach space E, for every non-expansive operator $f: E \to E$ there is a non-expansive surjective linear operator $q: \ell_1 \to E$ satisfying $f \circ q = q \circ U$.



- **1** If there is q as above, namely, satisfying $f \circ q = q \circ U$.
- $\ell_1 S$ is the space of all functions $\ell_2 S$ with domain $\ell_2 S$ and the range in the scalar field, either real or complex, so that

$$||x|| := \sum_{s \in S} |x(s)| < +\infty.$$

- ① Given $a \in S$, we denote by \widehat{a} the Kronecker delta of a, namely, $\widehat{a}(s) = 1$ if s = a and $\widehat{a}(s) = 0$ otherwise.
- ① The collection $\{\widehat{s}\}_{s\in S}$ is the standard basis of $\ell_1 S$. This is a monotone Schauder basis satisfying $\|\widehat{s} \widehat{t}\| = 2$ for every $s \neq t$ in S.

- **1** If there is q as above, namely, satisfying $f \circ q = q \circ U$.

$$||x||:=\sum_{s\in S}|x(s)|<+\infty.$$

- ③ Given $a \in S$, we denote by \widehat{a} the Kronecker delta of a, namely, $\widehat{a}(s) = 1$ if s = a and $\widehat{a}(s) = 0$ otherwise.
- ① The collection $\{\widehat{s}\}_{s\in S}$ is the standard basis of $\ell_1 S$. This is a monotone Schauder basis satisfying $\|\widehat{s} \widehat{t}\| = 2$ for every $s \neq t$ in S.

- **1** If there is q as above, namely, satisfying $f \circ q = q \circ U$.
- $2 \ell_1 S$ is the space of all functions x with domain S and the range in the scalar field, either real or complex, so that

$$||x||:=\sum_{s\in S}|x(s)|<+\infty.$$

- **3** Given $a \in S$, we denote by \widehat{a} the Kronecker delta of a, namely, $\widehat{a}(s) = 1$ if s = a and $\widehat{a}(s) = 0$ otherwise.
- ① The collection $\{\widehat{s}\}_{s\in S}$ is the standard basis of $\ell_1 S$. This is a monotone Schauder basis satisfying $\|\widehat{s} \widehat{t}\| = 2$ for every $s \neq t$ in S.

- **1** If there is q as above, namely, satisfying $f \circ q = q \circ U$.
- **2** $\ell_1 S$ is the space of all functions x with domain S and the range in the scalar field, either real or complex, so that

$$||x||:=\sum_{s\in S}|x(s)|<+\infty.$$

- **3** Given $a \in S$, we denote by \widehat{a} the Kronecker delta of a, namely, $\widehat{a}(s) = 1$ if s = a and $\widehat{a}(s) = 0$ otherwise.
- ① The collection $\{\widehat{s}\}_{s\in S}$ is the standard basis of $\ell_1 S$. This is a monotone Schauder basis satisfying $\|\widehat{s} \widehat{t}\| = 2$ for every $s \neq t$ in S.

- By an operator we mean a bounded linear map.
- An operator $f: \ell_1 A \to \ell_1 B$ is basic if there is a map $g: A \to B$ such that $f\widehat{a} = \widehat{ga}$ for every $a \in A$.
- **3** A basic embeddings is basic operators as above, induced by an injective map $g:A\to B$. Given a basic embedding $e:\ell_1A\to\ell_1B$, we denote by \widehat{e} the unique map from A to B such that $e(\widehat{a})=\widehat{e(a)}$ for every $a\in A$.
- 4 A basic operator has necessarily norm one

- By an operator we mean a bounded linear map.
- ② An operator $f: \ell_1 A \to \ell_1 B$ is basic if there is a map $g: A \to B$ such that $f\widehat{a} = \widehat{ga}$ for every $a \in A$.
- **3** A basic embeddings is basic operators as above, induced by an injective map $g:A\to B$. Given a basic embedding $e:\ell_1A\to\ell_1B$, we denote by \widehat{e} the unique map from A to B such that $e(\widehat{a})=\widehat{e}(a)$ for every $a\in A$.
- A basic operator has necessarily norm one

- By an operator we mean a bounded linear map.
- ② An operator $f: \ell_1 A \to \ell_1 B$ is basic if there is a map $g: A \to B$ such that $f\widehat{a} = \widehat{ga}$ for every $a \in A$.
- **3** A basic embeddings is basic operators as above, induced by an injective map $g:A\to B$. Given a basic embedding $e:\ell_1A\to\ell_1B$, we denote by \widehat{e} the unique map from A to B such that $e(\widehat{a})=\widehat{\widehat{e}(a)}$ for every $a\in A$.
- A basic operator has necessarily norm one

- By an operator we mean a bounded linear map.
- ② An operator $f: \ell_1 A \to \ell_1 B$ is basic if there is a map $g: A \to B$ such that $f\widehat{a} = \widehat{ga}$ for every $a \in A$.
- **3** A basic embeddings is basic operators as above, induced by an injective map $g:A\to B$. Given a basic embedding $e:\ell_1A\to\ell_1B$, we denote by \widehat{e} the unique map from A to B such that $e(\widehat{a})=\widehat{\widehat{e}(a)}$ for every $a\in A$.
- 4 A basic operator has necessarily norm one.

The Darji-Matheron universal operator is basic.

Theorem

For any linear topology au on the space of a bounded linear operator on ℓ_1 the set of basic operators has an empty interior.

The Darji-Matheron universal operator is basic.

Theorem

For any linear topology au on the space of a bounded linear operator on ℓ_1 the set of basic operators has an empty interior.

- An operator $A: \ell_1(S) \to \ell_1(S)$ is called $\overline{0}$ -basic if it is defined by a self-map $\phi: S \to S$ in the sense that $A\widehat{s} = \widehat{\phi(s)}$ or $A\widehat{s} = 0$ for every $s \in S$.
- 2 Let us denote a set of 0-basic operators on ℓ_1 as $\mathcal{BO}_0(\ell_1)$, obviously $\mathcal{BO}(\ell_1) \subset \mathcal{BO}_0(\ell_1)$.
- ① Let $(T_n)_{n\in\omega}$ be a sequence of linear operators on the Banach space X which converges to some operator T on for all $x\in X$ in the weak operator topology if for all continuous linear functional F on X we have $F(T_nx)\to F(Tx)$.

- An operator $A: \ell_1(S) \to \ell_1(S)$ is called $\overline{0}$ -basic if it is defined by a self-map $\phi: S \to S$ in the sense that $A\widehat{s} = \widehat{\phi(s)}$ or $A\widehat{s} = 0$ for every $s \in S$.
- ② Let us denote a set of 0-basic operators on ℓ_1 as $\mathcal{BO}_0(\ell_1)$, obviously $\mathcal{BO}(\ell_1) \subset \mathcal{BO}_0(\ell_1)$.
- ① Let $(T_n)_{n\in\omega}$ be a sequence of linear operators on the Banach space X which converges to some operator T on for all $x\in X$ in the weak operator topology if for all continuous linear functional F on X we have $F(T_nx)\to F(Tx)$.

- An operator $A: \ell_1(S) \to \ell_1(S)$ is called $\overline{0}$ -basic if it is defined by a self-map $\phi: S \to S$ in the sense that $A\widehat{s} = \widehat{\phi(s)}$ or $A\widehat{s} = 0$ for every $s \in S$.
- 2 Let us denote a set of 0-basic operators on ℓ_1 as $\mathcal{BO}_0(\ell_1)$, obviously $\mathcal{BO}(\ell_1) \subset \mathcal{BO}_0(\ell_1)$.
- **3** Let $(T_n)_{n\in\omega}$ be a sequence of linear operators on the Banach space X which converges to some operator T on for all $x\in X$ in the weak operator topology if for all continuous linear functional F on X we have $F(T_nx)\to F(Tx)$.

- Weak topology is the coarsest topology which makes all the linear functionals in the dual space of X to be continuous.
- 2 Let us define the weaker natural topology (called the linear Hausdorff topology) on the space $\mathcal{B}(\ell_1)$ of bounded linear operators on ℓ_1 as

$$\tau_{\mathcal{BO}_0(\ell_1)} = \ell_1^*,$$

which is generated by the neighborhood of zero in $\mathcal{B}(\ell_1)$

$$\mathcal{U}(E,\varepsilon) = \{ T \in \mathcal{B}(\ell_1) : \forall n, m \in E \mid e_m^*(T(e_n))| < \varepsilon \},$$

where (e_i, e_i^*) denotes bi-orthogonal system in $(\ell_1, \mathbb{R}^{\omega})$, *E*-nonempty finite subset of \mathbb{N} , ε is a positive number.

- Weak topology is the coarsest topology which makes all the linear functionals in the dual space of X to be continuous.
- 2 Let us define the weaker natural topology (called the linear Hausdorff topology) on the space $\mathcal{B}(\ell_1)$ of bounded linear operators on ℓ_1 as

$$\tau_{\mathcal{BO}_0(\ell_1)} = \ell_1^*,$$

which is generated by the neighborhood of zero in $\mathcal{B}(\ell_1)$:

$$\mathcal{U}(E,\varepsilon) = \{ T \in \mathcal{B}(\ell_1) : \forall n, m \in E \mid e_m^*(T(e_n))| < \varepsilon \},$$

where (e_i, e_i^*) denotes bi-orthogonal system in $(\ell_1, \mathbb{R}^{\omega})$, *E*-nonempty finite subset of \mathbb{N} , ε is a positive number.

Remark

Observe that operator T is not 0-basic ($T \notin \mathcal{BO}_0(\ell_1)$) if there exists a natural number i such that

$$\ell_1\ni T(e_i)\notin \{e_j:j\in\mathbb{N}\}\cup\{0\}.$$

Theorem

The set $\mathcal{BO}_0(\ell_1)$ is closed in the topology $\tau_{\mathcal{BO}_0(\ell_1)}$.

Remark

The set of basic operators $\mathcal{BO}(\ell_1)$ is not closed in the topology $au_{\mathcal{BO}_0(\ell_1)}$.

Remark

Observe that operator T is not 0-basic ($T \notin \mathcal{BO}_0(\ell_1)$) if there exists a natural number i such that

$$\ell_1\ni T(e_i)\notin \{e_j:j\in\mathbb{N}\}\cup\{0\}.$$

Theorem

The set $\mathcal{BO}_0(\ell_1)$ is closed in the topology $\tau_{\mathcal{BO}_0(\ell_1)}$.

Remark

The set of basic operators $\mathcal{BO}(\ell_1)$ is not closed in the topology $\tau_{\mathcal{BO}_0(\ell_1)}$.

Remark

Observe that operator T is not 0-basic $(T \notin \mathcal{BO}_0(\ell_1))$ if there exists a natural number i such that

$$\ell_1\ni T(e_i)\notin \{e_j:j\in\mathbb{N}\}\cup\{0\}.$$

Theorem

The set $\mathcal{BO}_0(\ell_1)$ is closed in the topology $\tau_{\mathcal{BO}_0(\ell_1)}$.

Remark

The set of basic operators $\mathcal{BO}(\ell_1)$ is not closed in the topology $\tau_{\mathcal{BO}_0(\ell_1)}$.

For any linear topology τ on the space of a bounded linear operator on ℓ_1 the set $\mathcal{BO}_0(\ell_1)$ of basic operators has an empty interior.

Corollary

The set $\mathcal{BO}_0(\ell_1)$ is nowhere dense in any linear topology on $\mathcal{B}(\ell_1)$.

For any linear topology τ on the space of a bounded linear operator on ℓ_1 the set $\mathcal{BO}_0(\ell_1)$ of basic operators has an empty interior.

Corollary

The set $\mathcal{BO}_0(\ell_1)$ is nowhere dense in any linear topology on $\mathcal{B}(\ell_1)$.

Corollary

The set $\mathcal{BO}(\ell_1)$ is nowhere dense in any linear topology on $\mathcal{B}(\ell_1)$.

Theorem

The set of universal Darji-Matheron operators forms a nowhere dense set in any linear topology.

Corollary

The set $\mathcal{BO}(\ell_1)$ is nowhere dense in any linear topology on $\mathcal{B}(\ell_1)$.

Theorem

The set of universal Darji-Matheron operators forms a nowhere dense set in any linear topology.

- **1** In [3] Kubiś proved that every non-expansive linear operator $f: E \to E$ on Banach space E lifts to a basic operator on ℓ_1 .
- The existence of a surjectively universal operator U can be reduced to proving the existence of a surjectively universal self-mapping of a countable set.

Let S, T be nonempty sets, $f: S \to S, g: T \to T$ and $p: T \to S$ be such that p is a surjection and $p \circ g = f \circ p$. Then the diagram

$$\ell_{1}(T) \xrightarrow{\ell_{1}(g)} \ell_{1}(T)$$

$$\downarrow^{\ell_{1}(p)} \qquad \qquad \downarrow^{\ell_{1}(p)}$$

$$\ell_{1}(S) \xrightarrow{\ell_{1}(f)} \ell_{1}(S).$$

is commutative and $\ell_1(p)$ is a surjection.

⁴⁶th Summer Symposium In Real Analysis
13 / 21

- In [3] Kubiś proved that every non-expansive linear operator
 f: E → E on Banach space E lifts to a basic operator on ℓ₁.
 The existence of a surjectively universal operator U can be reduced:
- The existence of a surjectively universal operator U can be reduced to proving the existence of a surjectively universal self-mapping of a countable set.

Let S, T be nonempty sets, $f: S \to S, g: T \to T$ and $p: T \to S$ be such that p is a surjection and $p \circ g = f \circ p$. Then the diagram

$$\ell_{1}(T) \xrightarrow{\ell_{1}(g)} \ell_{1}(T)$$

$$\downarrow^{\ell_{1}(p)} \qquad \qquad \downarrow^{\ell_{1}(p)}$$

$$\ell_{1}(S) \xrightarrow{\ell_{1}(f)} \ell_{1}(S).$$

is commutative and $\ell_1(p)$ is a surjection.

- **1** In [3] Kubiś proved that every non-expansive linear operator $f: E \to E$ on Banach space E lifts to a basic operator on ℓ_1 .
- The existence of a surjectively universal operator U can be reduced to proving the existence of a surjectively universal self-mapping of a countable set.

Let S, T be nonempty sets, $f: S \to S$, $g: T \to T$ and $p: T \to S$ be such that p is a surjection and $p \circ g = f \circ p$. Then the diagram

$$\ell_{1}(T) \xrightarrow{\ell_{1}(g)} \ell_{1}(T)$$

$$\downarrow^{\ell_{1}(p)} \qquad \downarrow^{\ell_{1}(p)}$$

$$\ell_{1}(S) \xrightarrow{\ell_{1}(f)} \ell_{1}(S).$$

is commutative and $\ell_1(p)$ is a surjection.

- **1** In other words, under the assumptions above, $\ell_1(f)$ lifts to $\ell_1(g)$.
- ② Given a self-map $f: S \to S$, an f-orbit is any set of the form $\{f^n(x): n \in \omega\}$, where $x \in S$.
- ① Let $\mu:\omega^2\to\omega^2$ be defined by $\mu(m,n)=(m,n+1)$, $(m,n)\in\omega^2$.
- ① Clearly, μ is one-to-one and all of its orbits are infinite

- **1** In other words, under the assumptions above, $\ell_1(f)$ lifts to $\ell_1(g)$.
- ② Given a self-map $f: S \to S$, an f-orbit is any set of the form $\{f^n(x): n \in \omega\}$, where $x \in S$.
- ① Let $\mu:\omega^2 o\omega^2$ be defined by $\mu(m,n)=(m,n+1)$, $(m,n)\in\omega^2$.
- ullet Clearly, μ is one-to-one and all of its orbits are infinite

- **1** In other words, under the assumptions above, $\ell_1(f)$ lifts to $\ell_1(g)$.
- ② Given a self-map $f: S \to S$, an f-orbit is any set of the form $\{f^n(x): n \in \omega\}$, where $x \in S$.
- **3** Let $\mu:\omega^2\to\omega^2$ be defined by $\mu(m,n)=(m,n+1)$, $(m,n)\in\omega^2$.
- ① Clearly, μ is one-to-one and all of its orbits are infinite.

- **1** In other words, under the assumptions above, $\ell_1(f)$ lifts to $\ell_1(g)$.
- ② Given a self-map $f: S \to S$, an f-orbit is any set of the form $\{f^n(x): n \in \omega\}$, where $x \in S$.
- **3** Let $\mu:\omega^2\to\omega^2$ be defined by $\mu(m,n)=(m,n+1)$, $(m,n)\in\omega^2$.
- ullet Clearly, μ is one-to-one and all of its orbits are infinite.

- **1** In other words, under the assumptions above, $\ell_1(f)$ lifts to $\ell_1(g)$.
- ② Given a self-map $f: S \to S$, an f-orbit is any set of the form $\{f^n(x): n \in \omega\}$, where $x \in S$.
- **3** Let $\mu:\omega^2\to\omega^2$ be defined by $\mu(m,n)=(m,n+1)$, $(m,n)\in\omega^2$.
- ullet Clearly, μ is one-to-one and all of its orbits are infinite.

Theorem

 μ is surjectively universal. Namely, given a nonempty countable set S, given a mapping $f:S\to S$, there is a surjection $q:\omega^2\to S$ such that $q\circ\mu=f\circ q$.

Theorem

The operator $\ell_1(\mu)$ is surjectively universal in the category of separable Banach spaces.

Recall that ℓ_1 is actually a functor from the category of sets into the category of Banach spaces with non-expansive operators, that is left adjoint to the forgetful functor assigning to a Banach space E its unit ball B_E - $\ell_1 S$ is the free Banach space over the set S, in the same sense as the free group and similar algebraic objects.

Recall that ℓ_1 is actually a functor from the category of sets into the category of Banach spaces with non-expansive operators, that is left adjoint to the forgetful functor assigning to a Banach space E its unit ball B_E - $\ell_1 S$ is the free Banach space over the set S, in the same sense as the free group and similar algebraic objects.

Let us now define our main category $\mathcal S$ leading to a generic operator on ℓ_1 .

The objects are non-expansive operators of the form $f:\ell_1A\to\ell_1B$, where A,B are finite sets. The arrows are pairs of basic embeddings $\langle e_0,e_1\rangle$ commuting with the operators in the usual way, as in the diagram below.

Let us now define our main category $\mathcal S$ leading to a generic operator on ℓ_1 . The objects are non-expansive operators of the form $f:\ell_1A\to\ell_1B$, where A,B are finite sets. The arrows are pairs of basic embeddings $\langle e_0,e_1\rangle$ commuting with the operators in the usual way, as in the diagram below.

Let us now define our main category $\mathcal S$ leading to a generic operator on ℓ_1 . The objects are non-expansive operators of the form $f:\ell_1A\to\ell_1B$, where A,B are finite sets. The arrows are pairs of basic embeddings $\langle e_0,e_1\rangle$ commuting with the operators in the usual way, as in the diagram below.

We also define the (relevant for us) subcategory \mathcal{B} , as follows: the objects of \mathcal{B} are self-operators $f:\ell_1A\to\ell_1A$. An arrow from f to $f':\ell_1A'\to\ell_1A'$ is a pair of basic embeddings $\langle e,e\rangle$ commuting with f and f', that is, $e\circ f=f'\circ e$. Furthermore, we may require that $A\subseteq A'$ and \widehat{e} is the inclusion $A\subseteq A'$

We also define the (relevant for us) subcategory \mathcal{B} , as follows: the objects of \mathcal{B} are self-operators $f:\ell_1A\to\ell_1A$. An arrow from f to $f':\ell_1A'\to\ell_1A'$ is a pair of basic embeddings $\langle e,e\rangle$ commuting with f and f', that is, $e\circ f=f'\circ e$. Furthermore, we may require that $A\subseteq A'$ and \widehat{e} is the inclusion $A\subseteq A'$.

We also define the (relevant for us) subcategory \mathcal{B} , as follows: the objects of \mathcal{B} are self-operators $f:\ell_1A\to\ell_1A$. An arrow from f to $f':\ell_1A'\to\ell_1A'$ is a pair of basic embeddings $\langle e,e\rangle$ commuting with f and f', that is, $e\circ f=f'\circ e$. Furthermore, we may require that $A\subseteq A'$ and \widehat{e} is the inclusion $A\subseteq A'$.

We say that \mathcal{B} is cofinal in \mathcal{S} if for every object $X \in \mathcal{S}$ there exists an object $Y \in \mathcal{B}$ such that $\mathcal{S}(X,Y) \neq \emptyset$. Let us recall that category \mathcal{B} is dominating in \mathcal{S} if the family of objects $\mathsf{Dom}(\mathcal{B})$ is cofinal in \mathcal{B} and moreover for every $A \in \mathsf{Dom}(\mathcal{B})$ and for every arrow $f: A \to X$ in \mathcal{S} there exists an arrow g in \mathcal{S} such that $g \circ f \in \mathcal{B}$, where

Lemma

 ${\cal B}$ is dominating in ${\cal S}$.

Lemma

 ${\mathcal S}$, as well as ${\mathcal B}$, has the amalgamation property.

We say that \mathcal{B} is cofinal in \mathcal{S} if for every object $X \in \mathcal{S}$ there exists an object $Y \in \mathcal{B}$ such that $\mathcal{S}(X,Y) \neq \emptyset$. Let us recall that category \mathcal{B} is dominating in \mathcal{S} if the family of objects $\mathsf{Dom}(\mathcal{B})$ is cofinal in \mathcal{B} and moreover for every $A \in \mathsf{Dom}(\mathcal{B})$ and for every arrow $f: A \to X$ in \mathcal{S} there exists an arrow g in \mathcal{S} such that $g \circ f \in \mathcal{B}$, where $\mathsf{Dom}(\mathcal{B}) = \{\mathsf{dom}(f): f \in \mathcal{B}\}$ and \mathcal{B} denote family of arrow.

Lemma

 \mathcal{B} is dominating in \mathcal{S} .

Lemma

 ${\mathcal S}$, as well as ${\mathcal B}$, has the amalgamation property.

We say that \mathcal{B} is cofinal in \mathcal{S} if for every object $X \in \mathcal{S}$ there exists an object $Y \in \mathcal{B}$ such that $\mathcal{S}(X,Y) \neq \emptyset$. Let us recall that category \mathcal{B} is dominating in \mathcal{S} if the family of objects $\mathsf{Dom}(\mathcal{B})$ is cofinal in \mathcal{B} and moreover for every $A \in \mathsf{Dom}(\mathcal{B})$ and for every arrow $f: A \to X$ in \mathcal{S} there exists an arrow g in \mathcal{S} such that $g \circ f \in \mathcal{B}$, where $\mathsf{Dom}(\mathcal{B}) = \{\mathsf{dom}(f): f \in \mathcal{B}\}$ and \mathcal{B} denote family of arrow.

Lemma

 \mathcal{B} is dominating in \mathcal{S} .

Lemma

 ${\cal S}$, as well as ${\cal B}$, has the amalgamation property.

We say that \mathcal{B} is cofinal in \mathcal{S} if for every object $X \in \mathcal{S}$ there exists an object $Y \in \mathcal{B}$ such that $\mathcal{S}(X,Y) \neq \emptyset$. Let us recall that category \mathcal{B} is dominating in \mathcal{S} if the family of objects $\mathsf{Dom}(\mathcal{B})$ is cofinal in \mathcal{B} and moreover for every $A \in \mathsf{Dom}(\mathcal{B})$ and for every arrow $f: A \to X$ in \mathcal{S} there exists an arrow g in \mathcal{S} such that $g \circ f \in \mathcal{B}$, where $\mathsf{Dom}(\mathcal{B}) = \{\mathsf{dom}(f): f \in \mathcal{B}\}$ and \mathcal{B} denote family of arrow.

Lemma

 \mathcal{B} is dominating in \mathcal{S} .

Lemma

 \mathcal{S} , as well as \mathcal{B} , has the amalgamation property.

In fact, S satisfies the axioms of a Fraïssé category, except that it is uncountable. Namely, there are obviously continuum many non-expansive operators on $\ell_1 F$, whenever |F| > 1. Denote by $\mathcal{S}_{\mathbb{O}}$ and $\mathcal{B}_{\mathbb{O}}$ the rational variants of S and B, respectively. In both cases we restrict to rational

In fact, S satisfies the axioms of a Fraïssé category, except that it is uncountable. Namely, there are obviously continuum many non-expansive operators on $\ell_1 F$, whenever |F| > 1. Denote by $\mathcal{S}_{\mathbb{O}}$ and $\mathcal{B}_{\mathbb{O}}$ the rational variants of S and B, respectively. In both cases we restrict to rational operators, i.e., operators mapping each of the basic vectors to a rational combination of basic vectors. Since there are only finitely many basic embeddings between finite-dimensional spaces of the form $\ell_1 S$, our rational categories are essentially countable. Now, from the general Fraissé theory In fact, S satisfies the axioms of a Fraïssé category, except that it is uncountable. Namely, there are obviously continuum many non-expansive operators on $\ell_1 F$, whenever |F| > 1. Denote by $\mathcal{S}_{\mathbb{O}}$ and $\mathcal{B}_{\mathbb{O}}$ the rational variants of S and B, respectively. In both cases we restrict to rational operators, i.e., operators mapping each of the basic vectors to a rational combination of basic vectors. Since there are only finitely many basic embeddings between finite-dimensional spaces of the form $\ell_1 S$, our rational categories are essentially countable. Now, from the general Fraissé theory we know that there exists a sequence in $\mathcal{B}_{\mathbb{O}}$ that is Fraïssé in $\mathcal{S}_{\mathbb{O}}$. Its limit is a non-expansive operator $\Omega: \ell_1 \to \ell_1$. This is because ℓ_1 is, up to isometry, the unique separable infinite-dimensional space of the form $\ell_1 S$.

- U. B. Darji, E. Matheron, Some universality results for dynamical systems, Proc. Am. Math. Soc., 145(1):251–265, 2017 309-333.
- J. Garbulińska-Węgrzyn, W. Kubiś, S. Turek, Generic operator on ℓ_1 , preprint.
- W. Kubiś, Universal monoid actions: the power of freedom, preprint, arxiv.org/abs/2307.15937.