

A visit to the family of porous sets Jacek Hejduk and Piotr Nowakowski

46th Summer Symposium in Real Analysis
"The Promised Land Symposjum"

17-20 of June 2024

Faculty of Mathematics and Computer Science, Łódź University

POLAND

Let $E \subset \mathbb{R}$. The porosity of a set E at a given point $x \in \mathbb{R}$ is a number

$$p(E,x) = \limsup_{h \to 0^+} \frac{\gamma(E, (x-h, x+h))}{h},$$

where

$$\gamma(E,(x-h,x+h))=\sup\{|J|\colon J\subset (x-h,x+h)\setminus E,J\text{ - an open interval}\}.$$

A set E is porous at a point $x \in \mathbb{R}$ if p(E,x) > 0. A set E is porous if it is porous at every point $x \in E$.

Putting for every set $A \subset \mathbb{R}$

$$\Phi(A) = \{ x \in \mathbb{R} : p(A', x) > 0 \}$$

we get an operator satisfying the conditions:

- 1. $\Phi(\emptyset) = \Phi(\emptyset), \ \Phi(\mathbb{R}) = \mathbb{R};$
- 2. $\forall_{A-\text{ finite set}} \Phi(A) = \emptyset$
- 3. $\forall_{A,B\subset\mathbb{R}} A \subset B \Rightarrow \Phi(A) \subset \Phi(B)$;
- 4. $\forall_{I\text{-interval}} I \subset \Phi(I)$;
- 5. $\forall_{A \in \tau_{nat}} A \subset \Phi(A)$;
- 6. $\forall_{A \in \tau_{nat}} \forall_{B \subset \mathbb{R}} (B \subset \Phi(B) \Rightarrow A \cap B \subset \Phi(A \cap B)$.

Operator Φ is not comparable with the operator Φ_d and Φ_I .

$$\Phi_d(\mathbb{R}\setminus\mathbb{Q})=\Phi_I(\mathbb{R}\setminus\mathbb{Q})=\mathbb{R},$$

but

$$\Phi(\mathbb{R}\setminus\mathbb{Q})=\emptyset.$$

and also

$$\Phi_d([a,b]) = \Phi_I([a,b]) = (a,b),$$

but

$$\Phi([a,b])=[a,b].$$

Theorem 1

A family

$$\tau = \{A \subset \mathbb{R} : A \subset \Phi(A)\}$$

is a strong generalized topology, which means that \emptyset , $\mathbb{R} \in \tau$ and τ is closed with respect to the arbitrary unions. Moreover, $\tau_{\text{nat}} \subsetneq \tau$.

The notion of a generalized topology was invented indepedently by many mathematicians, e.g.: E.H. Moore, A. Apert, T.S. Motzkin, F.W. Levi, S. Lugojan, A.S. Mashhour, A.A. Allam, F.S. Mahmooud, F.H. Khedr, and Á. Császár.

Example 1

$$\mathcal{T}^* = \{ A \subset \mathbb{R} : \forall_{x \in A} \lim_{h \to 0} \frac{\mu^* (A \cap [x - h, x + h])}{2h} = 1 \}$$

(J. Hejduk, A. Loranty *On strong generalized topology with respect to the outer Lebesgue measure*, Acta Math. Hungar. **163**(1) (2021))

Example 2

$$\mathcal{T}^+ = \{ A \in \mathcal{L} : \forall_{x \in A} \limsup_{h \to 0} \frac{\mu(A \cap [x - h, x + h])}{2h} > 0 \}$$

(J. Hejduk, R. Wiertelak, W. Wilczyński *On the family of measurable sets having the upper positive density*, submitted.)

The definition p(A',x)>0 for $A\subset\mathbb{R}$ and $x\in\mathbb{R}$ implies that A contains an interval. Therefore, for every $A\in\tau\setminus\{\emptyset\}$ we have $int_{\tau_{nat}}A\neq\emptyset$.

Proposition 2

The strong generalized topology τ and τ_{nat} are similar, which means that

$$\forall_{\mathcal{A}\subset\mathbb{R}} \ (int_{\tau}\mathcal{A}\neq\emptyset\Leftrightarrow int_{\tau_{nat}}\mathcal{A}\neq\emptyset).$$

Example 3

Let us define

$$A = [0,1) \setminus \bigcup_{n \in \mathbb{N}} \left\{ \frac{1}{2^n} \right\}, \quad B = [0,1) \setminus \bigcup_{n \in \mathbb{N}} \left\{ \frac{1}{n} \right\}.$$

Then $A \in \tau$ but $B \notin \tau$, because $0 \in B \setminus \Phi(B)$.

Simultaneously $A \triangle B \in \mathcal{J}$, where \mathcal{J} is an arbitrary σ -ideal in \mathbb{R} containing all singletons. However, $\Phi(A) \neq \Phi(B)$.

Example 3

Let us define

$$A = [0,1) \setminus \bigcup_{n \in \mathbb{N}} \left\{ \frac{1}{2^n} \right\}, \quad B = [0,1) \setminus \bigcup_{n \in \mathbb{N}} \left\{ \frac{1}{n} \right\}.$$

Then $A \in \tau$ but $B \notin \tau$, because $0 \in B \setminus \Phi(B)$.

Simultaneously $A \triangle B \in \mathcal{J}$, where \mathcal{J} is an arbitrary σ -ideal in \mathbb{R} containing all singletons. However, $\Phi(A) \neq \Phi(B)$.

Remark 3

If $A \triangle B$ is finite then $\Phi(A) = \Phi(B)$.

Proposition 4

$$\forall_{A\subset\mathbb{R}} \Phi(A) \setminus A \in \mathcal{J}_P$$

where \mathcal{J}_P is the family of porous sets. Consequently,

$$\Phi(A) \setminus A \in \mathbb{L} \cap \mathcal{N}_{\tau_{nat}},$$

so it is Lebesgue null set and nowhere dense set.

Proposition 4

$$\forall_{A\subset\mathbb{R}} \Phi(A) \setminus A \in \mathcal{J}_P$$

where \mathcal{J}_P is the family of porous sets. Consequently,

$$\Phi(A) \setminus A \in \mathbb{L} \cap \mathcal{N}_{\tau_{nat}},$$

so it is Lebesgue null set and nowhere dense set.

The opposite property that $A \setminus \Phi(A) \in \mathcal{J}_P$ does not hold, because $\Phi(\mathbb{R} \setminus \mathbb{Q}) = \emptyset$.

Theorem 5

A set $U \in \tau \setminus \{\emptyset\}$ if and only if $U = \bigcup_{n \in \mathbb{N}} I_n \cup A$, where (I_n) is a sequence of non-trivial components, $A \cap \bigcup_{n \in \mathbb{N}} I_n = \emptyset$ and for every $x \in A$ there exists a subsequence (I_{t_n}) such that $\lim_{n \to \infty} d(x, I_{t_n}) = 0$ and

$$\limsup_{n\to\infty}\frac{|I_{t_n}|}{|I_{t_n}|+d(x,I_{t_n})}>0.$$

Theorem 5

A set $U \in \tau \setminus \{\emptyset\}$ if and only if $U = \bigcup_{n \in \mathbb{N}} I_n \cup A$, where (I_n) is a sequence of non-trivial components, $A \cap \bigcup_{n \in \mathbb{N}} I_n = \emptyset$ and for every $x \in A$ there exists a subsequence (I_{t_n}) such that $\lim_{n \to \infty} d(x, I_{t_n}) = 0$ and

$$\limsup_{n\to\infty}\frac{|I_{t_n}|}{|I_{t_n}|+d(x,I_{t_n})}>0.$$

Corollary 6

Let (I_n) be a sequence of non-trivial intervals such that $x \notin \bigcup_{n \in \mathbb{N}} I_n$ and $\lim_{n \to \infty} d(x, I_{t_n}) = 0$. Then $U = \bigcup_{n \in \mathbb{N}} I_n \cup \{x\} \in \tau$ if and only if there exists a subsequence (I_{t_n}) such that

$$\limsup_{n\to\infty}\frac{|I_{t_n}|}{|I_{t_n}|+d(x,I_{t_n})}>0.$$

Corollary 7

Let (x_n) be a decreasing sequence converging to x. Then a set

$$U = \bigcup_{n \in \mathbb{N}} (x_{n+1}, x_n) \cup \{x\} \in \tau$$
 if and only if

$$\limsup_{n\to\infty}\frac{x_n-x_{n+1}}{x_n}>0.$$

Corollary 7

Let (x_n) be a decreasing sequence converging to x. Then a set

$$U = \bigcup_{n \in \mathbb{N}} (x_{n+1}, x_n) \cup \{x\} \in \tau$$
 if and only if

$$\limsup_{n\to\infty}\frac{x_n-x_{n+1}}{x_n}>0.$$

Theorem 8

For every set $A \subset \mathbb{R}$:

i)
$$int_{\tau}(A) = A \cap \Phi(A)$$

ii)
$$cl_{\tau}(A) = A \cup (X \setminus \Phi(X \setminus A)).$$

Let (X, Γ) be a generalized topology.

Definition 4

A set $A \subset X$ is

- Γ -nowhere dense if $int_{\Gamma}(cl_{\Gamma}(A)) = \emptyset$,
- Γ -strong nowhere dense if for every set $U \in \Gamma \setminus \{\emptyset\}$ there exists a set $V \in \Gamma \setminus \{\emptyset\}$ such that $V \subset U$ and $V \cap A = \emptyset$,
- Γ-first category set if it is a countable union of Γ-nowhere dense sets,
- Γ- strong first category set if it is a countable union of Γ-strong nowhere dense sets.

Theorem 9

For every set $A \subset \mathbb{R}$ the following conditions are equivalent

- i) A is τ -nowhere dense,
- ii) A is τ -strong nowhere dense,
- iii) A is τ_{nat} -nowhere dense,

Separability

Theorem 10

 (\mathbb{R}, τ) is separable.

• The first countability

Theorem 11

 (\mathbb{R}, τ) is not the first countable.

• The compactness

Theorem 12

 $A \subset \mathbb{R}$ is τ -compact if and only if it is finite.

• The axioms of separations

Theorem 13

 (\mathbb{R}, τ) is a Hausdorff space.

Theorem 14

 (\mathbb{R}, τ) is a normal space.

Connectivity

Theorem 15

 (\mathbb{R}, τ) is a extremally disconnected.

Theorem 16

The topology generated by τ is equal to $\mathcal{P}(\mathbb{R})$.

Let (X, Γ) be a generalized topology. It is known:

Theorem 17

A family

$$\mathcal{T}_{\Gamma} = \{ A \in \Gamma : \forall_{B \in \Gamma} \ A \cap B \in \Gamma \}$$

is a topology included in Γ .

(In the case of example 2 $\mathcal{T}_{\Gamma}=\mathcal{T}_{d}$ -density topology) So that

$$\mathcal{T}_{\tau} = \{ A \in \tau : \forall_{B \in \tau} \ A \cap B \in \tau \}$$

is a topology. By Condition 6 we get that

$$au_{\mathsf{nat}} \subset \mathcal{T}_{\tau}.$$

Let (X, Γ) be a generalized topology. It is known:

Theorem 17

A family

$$\mathcal{T}_{\Gamma} = \{ A \in \Gamma : \forall_{B \in \Gamma} \ A \cap B \in \Gamma \}$$

is a topology included in Γ .

(In the case of example 2 $\mathcal{T}_{\Gamma}=\mathcal{T}_{d}$ -density topology) So that

$$\mathcal{T}_{\tau} = \{ A \in \tau : \forall_{B \in \tau} \ A \cap B \in \tau \}$$

is a topology. By Condition 6 we get that

$$au_{\mathsf{nat}} \subset \mathcal{T}_{\tau}.$$

Let (X, Γ) be a generalized topology. It is known:

Theorem 17

A family

$$\mathcal{T}_{\Gamma} = \{ A \in \Gamma : \forall_{B \in \Gamma} \ A \cap B \in \Gamma \}$$

is a topology included in Γ .

(In the case of example 2 $\mathcal{T}_{\Gamma}=\mathcal{T}_{d}$ -density topology) So that

$$\mathcal{T}_{\tau} = \{ A \in \tau : \forall_{B \in \tau} \ A \cap B \in \tau \}$$

is a topology. By Condition 6 we get that

$$au$$
 . $\subset \mathcal{T}$

Question 1

$$\tau_{\mathsf{nat}} = \mathcal{T}_{\tau}$$
?

Let $f: \langle \mathbb{R}, \tau \rangle \to \langle \mathbb{R}, \tau_{nat} \rangle$.

Definition 5

We shall say that f is τ -continuous at $x_0 \in \mathbb{R}$ if for every $W \in \tau_{nat}$,

 $f(x) \in W$ there exists $V \in \tau$ such that $x_0 \in V$ and $f(V) \subset W$.

Let $f: \langle \mathbb{R}, \tau \rangle \to \langle \mathbb{R}, \tau_{nat} \rangle$.

Definition 5

We shall say that f is au-continuous at $x_0 \in \mathbb{R}$ if for every $W \in au_{nat}$,

 $f(x) \in W$ there exists $V \in \tau$ such that $x_0 \in V$ and $f(V) \subset W$.

Definition 6

We shall say that f is τ -approximately continuous at $x_0 \in \mathbb{R}$ if there exists a set $A \in \tau$ such that $x_0 \in A$ and $f_{|A}$ is τ_{nat} -continuous.

Let $f: \langle \mathbb{R}, \tau \rangle \to \langle \mathbb{R}, \tau_{nat} \rangle$.

Definition 5

We shall say that f is au-continuous at $x_0 \in \mathbb{R}$ if for every $W \in au_{nat}$,

 $f(x) \in W$ there exists $V \in \tau$ such that $x_0 \in V$ and $f(V) \subset W$.

Definition 6

We shall say that f is τ -approximately continuous at $x_0 \in \mathbb{R}$ if there exists a set $A \in \tau$ such that $x_0 \in A$ and $f_{|A}$ is τ_{nat} -continuous.

Theorem 18

If $f: \langle \mathbb{R}, \tau \rangle \to \langle \mathbb{R}, \tau_{nat} \rangle$ is τ -approximately continuous at $x_0 \in \mathbb{R}$ then f is τ -continuous.

Let $f: \langle \mathbb{R}, \tau \rangle \to \langle \mathbb{R}, \tau_{nat} \rangle$.

Definition 5

We shall say that f is τ -continuous at $x_0 \in \mathbb{R}$ if for every $W \in \tau_{nat}$,

 $f(x) \in W$ there exists $V \in \tau$ such that $x_0 \in V$ and $f(V) \subset W$.

Definition 6

We shall say that f is τ -approximately continuous at $x_0 \in \mathbb{R}$ if there exists a set $A \in \tau$ such that $x_0 \in A$ and $f_{|A}$ is τ_{nat} -continuous.

Theorem 18

If $f: \langle \mathbb{R}, \tau \rangle \to \langle \mathbb{R}, \tau_{nat} \rangle$ is τ -approximately continuous at $x_0 \in \mathbb{R}$ then f is τ -continuous

Question 2

Is the inverse property true?

- [1] A. M. Bruckner, *Differentiation of real functions*, Lecture Notes in Math. **659**, Springer-Verlag, Berlin, 1978.
- [2] Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar. **96** (2002), 351–357.
- [3] J. Hejduk, A. Loranty, On strong generalized topology with respect to the outer Lebesgue measure, Acta Math. Hungar. **163**(1) (2021), 18–28.
- [4] S. Kowalczyk, M. Turowska, *On continuity in generalized topology*, Topol. and Appl. **297** (2021), 107702.
- [5] E. H. Moore, *Introduction to a form of general analysis*, New Haven Mathematical Colloquium, Yale University Press, 1910, 1–150.