On a problem of Rudin concerning Baire classification of separately continuous functions

Olena Karlova

Yuriy Fedkovych Chernivtsi National University, Ukraine Jan Kochanowski University in Kielce, Poland

Łódź, Poland, June 17-21, 2024

Outline of the talk

- Rudin Theorem and the Problem
- Generalizations of Rudin Theorem I
- Generalizations of Rudin Theorem II
- Generalizations of Rudin Theorem III
- Three questions of Volodymyr Maslyuchenko
- Sorgenfrey line and separately continuous functions
- Pictures :)

Separately continuous functions

Definition

A function $f: X \times Y \to Z$ is separately continuous if

$$\forall x \in X \quad f^x: Y \to Z \text{ is continuous,} \\ \forall y \in Y \quad f_y: X \to Z \text{ is continuous,}$$

where
$$f^x(y) = f_y(x) = f(x, y)$$

Schwartz function

$$\varphi(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & \text{otherwise.} \end{cases}$$

$$CC(X \times Y, Z)$$

Lebesgue Theorem, 1898

Every separately continuous function $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a pointwise limit of a sequence of continuous functions.

A function $f:X\to Y$ belongs to the **first Baire class**, if it is a pointwise limit of a sequence of continuous functions. $B_1(X,Y)$

Lebesgue Theorem, 1898

Every separately continuous function $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a pointwise limit of a sequence of continuous functions.

Lebesgue's construction:

$$f_n(x,y) = n\left(f\left(\frac{k}{n},y\right)\left(\frac{k+1}{n}-x\right) + f\left(\frac{k+1}{n},y\right)\left(x-\frac{k}{n}\right)\right),$$

$$(x,y) \in \left[\frac{k}{n},\frac{k+1}{n}\right] \times \mathbb{R}, \ k \in \mathbb{Z}.$$

- H. Hahn, *Reelle Funktionen.1.Teil. Punktfunktionen*, Leipzig: Academische Verlagsgesellscheft M.B.H. (1932).
- W. Moran, Separate continuity and supports of measures, J. London Math. Soc. 44 (1969).
- W. Rudin, *Lebesgue first theorem*, Math. Analysis and Applications, Part B. Edited by Nachbin. Adv. in Math. Supplem. Studies **78**, Academic Press (1981).
- G. Vera, *Baire mesurability of separately continuous functions*, Quart. J. Math. Oxford **39** (2) (1988).
- T. Banakh, (Metrically) quarter-stratifiable spaces and their applications, Math. Studii **18**(1) (2002).

- O. Sobchuk, *PP-spaces and Baire classification*, International Conference on Functional Analysis and its Applications, dedicated to the 110th anniversary of Stefan Banach. Book of abstracts (2002), 189.
 - M. Burke, *Borel measurability of separately continuous functions*, Topology Appl. **129** (1) (2003).
- A. Kalancha, V. Maslyuchenko, Čech-Lebesgue dimension and Baire classification of vector-valued separately continuous mappings, Ukr.Math.J. **55** (11) (2003)
 - O. Karlova, Baire classification of mappings which are continuous in the first variable and of the functional class α in the second one, Math. Bull. NTSH. **2** (2005)
 - V. Mykhaylyuk, *Baire classification of separately continuous functions and Namioka property*, Ukr. Math. Bull. **5** (2) (2008).

$$C\overline{C}(X \times Y, Z)$$

Rudin Theorem, 1981

Let X be a metrizable space, Y be a topological space and Z be a locally convex topological vector space. Then $C\overline{C}(X\times Y,Z)\subseteq B_1(X\times Y,Z)$.

Rudin's construction:

- $(\varphi_{i,n}: i \in I_n)$ is a locally finite partition of unity on X
- diam(supp $\varphi_{i,n}$) $\to 0$ for $n \to \infty$
- $x_{i,n} \in \operatorname{supp} \varphi_{i,n}$ and $f^{x_{i,n}}: Y \to Z$ is continuous
- $f_n(x,y) = \sum_{i \in I_n} \varphi_{i,n}(x) f(x_{i,n},y)$

Problem of Rudin

Do there exist a metrizable space X, a topological space Y, a topological vector space (or, more general, an equiconnected space) Z and a separately continuous mapping $f: X \times Y \to Z$ which is not Baire 1?

A. Kalancha and V. Maslyuchenko, 2003

Let X be a metrizable space with $\dim X < \infty$, Y be a topological space and Z be a topological vector space. Then $C\overline{C}(X \times Y, Z) \subseteq B_1(X \times Y, Z)$.

Corollary

Let Y be a topological space and Z be a topological vector space. Then $C\overline{C}(\mathbb{R}^n \times Y, Z) \subseteq B_1(\mathbb{R}^n \times Y, Z)$.

Definition

A topological space X is semi-stratifiable, if there exists a sequence of open sets $(U_{x,n}:x\in X)$ in X such that

$$\{x\} = \bigcap_{n \ge 1} U_{x,n}$$

if
$$\forall n \ x \in U_{x_n,n}$$
, then $x_n \to x$

If, moreover, for every closed set $F \subseteq X$ we get the equality

$$F = \bigcap_{n=1}^{\infty} \overline{\bigcup_{x \in F} U_{x,n}},$$

the space X is called stratifiable.

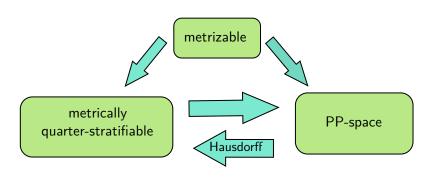
- O. Sobchuk (2002): PP-spaces
- T. Banakh (2002): metrically quarter-stratifiable spaces

A topological T_1 -space (X, \mathcal{S}) is called

• (metrically) quarter-stratifiable, if there exist a weaker metrizable topology τ , a sequence of τ -open coverings $(U_{i,n}:i\in I_n)$ of X and a sequence $(x_{i,n}:i\in I_n)$ of families of points in X such that

if
$$\forall n \ x \in U_{i_n,n}$$
, then $x_{i_n,n} \to x$ (1)

• a PP-space, if there exists a sequence of locally finite coverings $(U_{i,n}:i\in I_n)$ of X by cozero sets and a sequence $((x_{i,n}:i\in I_n))_{n=1}^\infty$ of families of points in X such that (1) holds.



Equiconnected spaces

An equiconnected space is a pair (X,λ) consisting of a topological space X and a continuous map $\lambda: X \times X \times [0,1] \to X$ satisfying the following conditions

$$(\Lambda_1) \ \lambda(x,y,0) = x,$$

$$(\Lambda_2) \ \lambda(x,y,1) = y,$$

$$(\Lambda_3)$$
 $\lambda(x,x,t)=x$

for all $x, y \in X$ and $t \in [0, 1]$.

TVS \rightarrow equiconnected \rightarrow contractible and locally contractible

Equiconnected spaces

Let (X, λ) be an equiconnected space and $\emptyset \neq A \subseteq X$. We define

$$\lambda^0(A) = A,$$

$$\lambda^n(A) = \lambda(\lambda^{n-1}(A) \times A \times [0,1]) \text{ for } n \in \mathbb{N},$$

$$\lambda^\infty(A) = \bigcup_{n=1}^\infty \lambda^n(A).$$

Definition

We say that an equiconnected space (X,λ) is locally convex, if for any $x\in X$ and any neighborhood U of x there exists a neighborhood V of x such that $\lambda^\infty(V)\subseteq U$.

Theorem

Every separately continuous function $f: X \times Y \to Z$ is Baire 1, if

- X is a PP-space, Y is a topological space and Z is a locally convex topological vector space (O. Sobchuk);
- X is a metrically quarter-stratifiable paracompact and strongly countable-dimensional space, Y is a topological space and Z is an equiconnected space (T. Banakh);
- X is a metrically quarter-stratifiable, Y is a topological space and Z is an equiconnected locally convex space (T. Banakh).

An example of $C\overline{C}$ -function which is not Baire 1

Let
$$X=\{0\}\cup\bigcup_{n=1}^\infty X_n$$
, where $X_n=\{\frac{1}{n}\}\cup\bigcup_{m=n^2}^\infty \{\frac{1}{n}+\frac{1}{m}\}$. We define a topology on X in the following way. All points of the form $\frac{1}{n}+\frac{1}{m}$ will be isolated points of X . The base of neighborhoods of a point $\frac{1}{n}$ are the sets of the form $X_n\setminus\bigcup_{m=n^2}^k \{\frac{1}{n}+\frac{1}{m}\}$, $k=n^2,n^2+1,\ldots$

As neighborhoods of 0 we take all the sets obtained from X by removing a finite number of X_n 's and a finite number of points of the form $\{\frac{1}{n}+\frac{1}{m}\}$ in all the remaining X_n 's.

The space X with this topology is called Arens fan.

X is $\sigma\text{-metrizable}$ and paracompact $\implies X$ is metrically quarter-stratifiable

An example of $C\overline{C}$ -function which is not Baire 1

Example

There exists a function $f \in C\overline{C}(X \times \mathbb{R}, \mathbb{R})$, which is not a pointwise limit of a sequence of separately continuous functions $f_n : X \times \mathbb{R} \to \mathbb{R}$.

Let $g: \mathbb{R} \to \mathbb{R}$, $g = \chi_{\mathbb{Q}}$. Then

$$g(y) = \lim_{n \to \infty} g_n(y) = \lim_{n \to \infty} \lim_{m \to \infty} g_{n,m}(y)$$

for all $y \in \mathbb{R}$.

Let $x_0=0$, $x_n=\frac{1}{n}$, $x_{nm}=\frac{1}{n}+\frac{1}{m}$, where $m\geq n^2$, and consider the function $f:X\times\mathbb{R}\to\mathbb{R}$,

$$f(x,y) = \begin{cases} g(y), & x = x_0, \\ g_n(y), & x = x_n, \\ g_{nm}(y), & x = x_{nm}. \end{cases}$$

Strong PP-spaces

Definition

A topological space X is a strong PP-space if for any dense set $D\subseteq X$ there exist a sequence $(U_{i,n}:i\in I_n)_{n=1}^\infty$ of locally finite coverings of X by cozero sets and a sequence $(x_{i,n}:i\in I_n)$, $x_{i,n}\in D$, such that

if
$$x \in U_{i_n,n}$$
, then $x_{i_n,n} \to x$

ullet Every metrizable space X is a strong PP-space:

- ullet Every metrizable space X is a strong PP-space:
 - 1. Let D be an arbitrary dense set

- Every metrizable space *X* is a strong PP-space:
 - 1. Let D be an arbitrary dense set
 - 2. X is paracompact $\Rightarrow \exists ((U_{i,n}: i \in I_n))$ a locally finite open covering such that $\dim U_{i,n} < \frac{1}{n}$

- Every metrizable space *X* is a strong PP-space:
 - 1. Let D be an arbitrary dense set
 - 2. X is paracompact $\Rightarrow \exists \ ((U_{i,n}: i \in I_n))$ a locally finite open covering such that $\dim U_{i,n} < \frac{1}{n}$
 - 3. Take $x_{i,n} \in D \cap U_{i,n} \quad \forall i \in I_n$

- Every metrizable space *X* is a strong PP-space:
 - 1. Let D be an arbitrary dense set
 - 2. X is paracompact $\Rightarrow \exists ((U_{i,n}: i \in I_n))$ a locally finite open covering such that $\operatorname{diam} U_{i,n} < \frac{1}{n}$
 - 3. Take $x_{i,n} \in D \cap U_{i,n} \quad \forall i \in I_n$
- Every σ -metrizable paracompact space is metrically quarter stratifiable

• \mathbb{R}^{∞} is a σ -metrizable paracompact space, but is not a strong PP-space:

• \mathbb{R}^{∞} is a σ -metrizable paracompact space, but is not a strong PP-space:

$$\mathbb{R}^{\infty} = \{ (\xi_1, \xi_2, \dots, \xi_n, 0, 0, \dots) : \xi_i \in \mathbb{R} \}.$$

Denote by E the set of all sequences $e=(\varepsilon_n)_{n=1}^\infty$ of positive reals ε_n and let

$$U_e = \{x = (\xi_n)_{n=1}^{\infty} \in \mathbb{R}^{\infty} : (\forall n \in \mathbb{N})(|\xi_n| \le \varepsilon_n)\}.$$

We consider on \mathbb{R}^{∞} the topology in which the system

$$\mathcal{U}_0 = \{ U_e : e \in E \}$$

forms the base of neighborhoods of zero.

• \mathbb{R}^{∞} is a σ -metrizable paracompact space, but is not a strong PP-space:

Let
$$A_n = \{(\xi_1, \xi_2, \dots, \xi_n, 0, 0, \dots) : |\xi_k| \le \frac{1}{n} \ \forall k \le n\}\},\$$

$$D = \bigcup_{m=1}^{\infty} \bigcap_{n=1}^{m} (\mathbb{R}^{\infty} \setminus A_n).$$

Then $\overline{D} = \mathbb{R}^{\infty}$, but there is no sequence in D which is convergent to $x = (0, 0, 0, \dots)$ in \mathbb{R}^{∞} .

• Sorgenfrey line $\mathbb S$ is not metrizable, not semi-stratifiable and is a strong PP-space:

• Sorgenfrey line $\mathbb S$ is not metrizable, not semi-stratifiable and is a strong PP-space:

Fix a dense set $D \subseteq \mathbb{S}$ and let

$$U_{i,n} = \left[\frac{i-1}{n}, \frac{i}{n}\right), i \in \mathbb{Z}, n \in \mathbb{N},$$
$$x_{i,n} \in D \cap \left[\frac{i}{n}, \frac{i+1}{n}\right)$$

Definition

A topological space X is strongly countably dimensional, if $X = \bigcup_{n=1}^{\infty} X_n$, X_n is closed and $\dim X_n < n$ for every $n \in \mathbb{N}$.

Theorem [K., Mykhaylyuk and V. Maslyuchenko]

Let X be a strong PP-space, Y a topological space, Z an equiconnected space. If one of the following conditions holds

- ullet X is Hausdorff paracompact strongly countably dimensional,
- Z a locally convex,

then

$$C\overline{C}(X \times Y, Z) \subseteq B_1(X \times Y, Z).$$

Corollary

Let X be a strongly countably dimensional metrizable space, Y a topological space, Z a topological vector space. Then

$$C\overline{C}(X \times Y, Z) \subseteq B_1(X \times Y, Z).$$

Question (T. Banakh, 2003)

Let X, Y, Z be a metrizable spaces, X and Y be compact and Z be a topological vector space. Does every separately continuous function $f: X \times Y \to Z$ belong to the first Baire class?

• If X, Y and Z are metrizable, then every separately continuous function $f:X\times Y\to Z$ is Borel 1 (Montgomery, Kuratowski);

- If X, Y and Z are metrizable, then every separately continuous function $f: X \times Y \to Z$ is Borel 1 (Montgomery, Kuratowski);
- If T is metrizable, then every Borel 1 function $f: T \to \mathbb{R}$ is Baire 1 (Lebesgue, Hausdorff).

Theorem [K., 2023]

Let X be a strong PP-space, Y be a topological space, Z be a metrizable space and $f \in C\overline{C}(X \times Y, Z)$. Then f is Borel 1 and functionally σ -discrete.

Theorem [K. 2017]

Let T be a topological space and Z be a metrizable connected and locally arcwise connected space. Then every Borel 1 functionally σ -discrete map $f:T\to Z$ is Baire 1.

Generalizations of Rudin Theorem - III

Theorem [K., 2023]

Let X be a strong PP-space, Y be a topological space, Z be a metrizable connected and locally arcwise connected space. Then

$$C\overline{C}(X \times Y, Z) \subseteq B_1(X \times Y, Z).$$

Question 1 by Volodymyr Maslyuchenko

Do there exist an arcwise connected and locally arcwise connected space Z and a separately continuous function $f: \mathbb{R} \times \mathbb{R} \to Z$ which is not Baire 1?

Let X, Y be topological spaces. A set $G \subseteq X \times Y$ is open in **cross** topology γ on $X \times Y$, if every point $(x,y) \in G$ is contained in G with a "cross" $(U \times \{y\}) \cup (\{x\} \times V)$ for some open sets $U \subseteq X$ and $V \subseteq Y$.

Let X, Y be topological spaces. A set $G \subseteq X \times Y$ is open in **cross** topology γ on $X \times Y$, if every point $(x,y) \in G$ is contained in G with a "cross" $(U \times \{y\}) \cup (\{x\} \times V)$ for some open sets $U \subseteq X$ and $V \subseteq Y$.

 $X \otimes Y$

If X, Y, Z are topological spaces, then:

• $f: X \times Y \to Z$ is separately continuous $\Leftrightarrow f$ is continuous with respect to γ ;

If X, Y, Z are topological spaces, then:

- $f: X \times Y \to Z$ is separately continuous $\Leftrightarrow f$ is continuous with respect to γ ;
- $X \otimes Y$ is T_2 if X and Y are T_2 ;

If X, Y, Z are topological spaces, then:

- $f: X \times Y \to Z$ is separately continuous $\Leftrightarrow f$ is continuous with respect to γ ;
- $X \otimes Y$ is T_2 if X and Y are T_2 ;
- $\mathbb{R} \otimes \mathbb{R}$ is not T_3 (Sierpiński);

If X, Y, Z are topological spaces, then:

- $f: X \times Y \to Z$ is separately continuous $\Leftrightarrow f$ is continuous with respect to γ ;
- $X \otimes Y$ is T_2 if X and Y are T_2 ;
- $\mathbb{R} \otimes \mathbb{R}$ is not T_3 (Sierpiński);
- $\mathbb{R} \otimes \mathbb{R}$ is arcwise connected and locally arcwise connected.

Theorem (K. and Mykhaylyuk, 2013)

The identity map $id: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \oplus \mathbb{R}$ is separately continuous and is not Baire 1.

Let us consider on ℓ_p (0 a topology, generated by pre-norms <math display="inline">s-pre-norms

$$|x|_y = \sum_{k=1}^{\infty} |\xi_k \eta_k|^s$$

for s < p, where

- $\ell_q^+ = \{ y = (\eta_k)_{k=1}^\infty \in \ell_q : \eta_k \ge 0 \quad \forall k \},$
- $x = (\xi_k)_{k=1}^{\infty} \in \ell_p, \ y = (\eta_k)_{k=1}^{\infty} \in \ell_q^+,$
- $\bullet \ \frac{1}{p} + \frac{1}{q} = \frac{1}{s}.$

The sets

$$U_y = \{x \in \ell_p : |x|_y \le 1\}, \quad \text{where } y \in \ell_q^+$$

form a base of neighborhoods of zero. We denote this topology by \varkappa_s .

 (ℓ_p, \varkappa_s) is not locally convex, but is σ -metrizable arcwise connected and locally arcwise connected

 (ℓ_p, \varkappa_s) is not locally convex, but is σ -metrizable arcwise connected and locally arcwise connected

Question 2 by Volodymyr Maslyuchenko

Does every separately continuous function $f: \mathbb{R} \times \mathbb{R} \to (\ell_p, \varkappa_s)$ belong to the first Baire class?

Theorem (K.)

$$C\overline{C}(\mathbb{R} \times \mathbb{R}, (\ell_p, \varkappa_s)) \subseteq B_1(\mathbb{R} \times \mathbb{R}, (\ell_p, \varkappa_s)).$$

Question 3 by Volodymyr Maslyuchenko

Let X, Y be metrizable compact spaces and $f: X \times Y \to \mathbb{R}$ be a separately continuous function. Then f is Baire 1. Does there exist a sequence of continuous functions $f_n: X \times Y \to \mathbb{R}$ which is layerwisely uniformly convergent to f?

$$f_n \stackrel{\textit{l.u.}}{\rightrightarrows} f$$
, if $\forall (x,y) \in X \times Y$ we have

- $f_n^x \rightrightarrows f^x$ on $\{x\} \times Y$ and
- $(f_n)_y \Longrightarrow f_y \text{ on } X \times \{y\}$

The positive answer was given in [MV] for $f:[0,1]^2\to\mathbb{R}$ in two particular cases:

- if the set D(f) of all points of discontinuity of f has at most countable projection E on the first axis;
- if the restriction $f|_{E\times[0,1]}$ is continuous.

V. Maslyuchenko, H. Voloshyn, A topologization of the space of separately continuous functions, Carpathian Math. J. 5 (2) (2013).

The positive answer was given by Taras Banakh in the case

- if X, Y are separable metrizable spaces, Z is a metrizable topological group and the image $f(X \times Y)$ is zero-dimensional.
- T. Banakh, On the sequential closure of the set of continuous functions in the space of separately continuous functions, Buk. Math. J. 3 (2) (2015).

Theorem [K. and Volodymyr Mykhalyuk]

Let X be a stratifiable hereditarily Baire space, Y be a compact space, Z be a metrizable space and $f:X\times Y\to Z$ be a separately continuous map. If one of the following conditions holds

- ullet Z is a locally convex equiconnected space,
- $\dim X < \infty$ and Z is equiconnected,
- $\dim X = 0$,

then there exists a sequence of continuous maps $f_n: X \times Y \to Z$ which is convergent to f layerwisely uniformly.

Step 1. Application of Namioka property

A map $f: X \times Y \to Z$ has the Namioka property, if there exists a dense G_{δ} subset A of X such that $A \times Y \subseteq C(f)$.

A space X is said to be

- a Namioka space, if for any compact space Y and metrizable space Z every separately continuous function $f: X \times Y \to Z$ has the Namioka property;
- a hereditarily Namioka space, if every closed subset $F \subseteq X$ is a Namioka space.

Step 1. Application of Namioka property

A map $f: X \times Y \to Z$ has the Namioka property, if there exists a dense G_{δ} subset A of X such that $A \times Y \subseteq C(f)$.

A space X is said to be

- a Namioka space, if for any compact space Y and metrizable space Z every separately continuous function $f: X \times Y \to Z$ has the Namioka property;
- a hereditarily Namioka space, if every closed subset $F \subseteq X$ is a Namioka space.

Theorem

Every quater-stratifiable Baire space X is Namioka.

Theorem

Every semi-stratifiable hereditarily Baire space X is hereditarily Namioka.

Step 1. Application of Namioka property

 $f: X \times Y \to Z$ is separately continuous

Step 1. Application of Namioka property

 $f: X \times Y \to Z$ is separately continuous $\psi: X \to C(Y,Z)$, $\psi(x) = f^x$

Step 1. Application of Namioka property

 $f:X\times Y\to Z$ is separately continuous $\psi:X\to C(Y,Z),\ \psi(x)=f^x$ Take a closed set $F\subseteq X$

Step 1. Application of Namioka property

 $f:X\times Y\to Z$ is separately continuous $\psi:X\to C(Y,Z),\ \psi(x)=f^x$ Take a closed set $F\subseteq X\Longrightarrow F$ is a Namioka space

Step 1. Application of Namioka property

f: X imes Y o Z is separately continuous $\psi: X o C(Y,Z), \ \psi(x) = f^x$ Take a closed set $F \subseteq X \Longrightarrow F$ is a Namioka space Hence, there is a point of continuity $x_0 \in F$ of ψ_F

Step 1. Application of Namioka property

 $f: X \times Y \to Z$ is separately continuous $\psi: X \to C(Y,Z), \ \psi(x) = f^x$ Take a closed set $F \subseteq X \Longrightarrow F$ is a Namioka space Hence, there is a point of continuity $x_0 \in F$ of $\psi_F \Longrightarrow \psi$ is fragmented

Step 1. Application of Namioka property

 $f: X \times Y \to Z$ is separately continuous $\psi: X \to C(Y,Z), \ \psi(x) = f^x$ Take a closed set $F \subseteq X \Longrightarrow F$ is a Namioka space Hence, there is a point of continuity $x_0 \in F$ of $\psi_F \Longrightarrow \psi$ is fragmented

Definition

We say that $f:X\to Y$ is fragmented, if for every $\varepsilon>0$ and for every non-empty (closed) set $F\subseteq X$ there exists a point $x\in F$ such that

$$\omega_{f|_F}(x) < \varepsilon.$$

Step 2. Space C(Y,Z) is locally convex equiconnected

Theorem

Let Y be a compact space, Z be a metrizable equiconnected space and let C(Y,Z) be the space of all continuous maps with the topology of the uniform convergence. Then C(Y,Z) is a (locally convex) equiconnected space, whenever Z is (locally convex) equiconnected.

Step 3. Baire classification of fragmented maps

Theorem

Let X be a semi-stratifiable paracompact space, Z be a metrizable space, $f:X\to Z$ be a fragmented map. If one of the following conditions holds:

- $1. \ Z$ is a locally convex equiconnected space,
- 2. $\dim X < \infty$ and Z is equiconnected,
- 3. $\dim X = 0$,

then $f \in B_1(X, Z)$.

Step 3. Baire classification of fragmented maps

 $\psi:X\to C(Y,Z)$ is fragmented $\Rightarrow \psi$ is Baire 1

Step 3. Baire classification of fragmented maps

 $\psi: X \to C(Y,Z)$ is fragmented $\Rightarrow \psi$ is Baire 1 Moreover, there exists a sequence of continuous functions $\psi_n: X \to C(Y,Z)$ such that $\psi_n(x) \to \psi(x)$ in C(Y,Z) and $f_n^x = \psi_n(x)$, $f^x = \psi(x)$

Sorgenfrey line

Theorem (K. and Mykhaylyuk)

Let $\mathbb S$ be Sorgenfrey line, Y be a compact space, Z be a metrizable space and let $f: \mathbb S \times Y \to Z$ be a separately continuous map. Then there exists a sequence of continuous maps $f_n: \mathbb S \times Y \to Z$ such that $f_n \stackrel{l.u.}{\Rightarrow} f$.

Sorgenfrey line

William Bade proved that each real-valued continuous function on \mathbb{S}^2 belongs to the first Baire class in the topology on \mathbb{R}^2 . Moreover, Bade noticed that Mrówka obtained the inclusion $C(\mathbb{S}^n,\mathbb{R})\subseteq B_1(\mathbb{R}^n,\mathbb{R})$ for every cardinal \mathfrak{n} .

S. Mrówka, Some problems related to N-compact spaces, unpublished.

Sorgenfrey line

Theorem (K.)

Let ${\cal Y}$ be a metrizable connected and locally arcwise connected space. Then

$$C(\mathbb{S}^T, Y) \subseteq B_1(\mathbb{R}^T, Y)$$

for any set T.

Theorem (K.)

Let Y be a topological vector space. Then the inclusion $C(\mathbb{S}^T,Y)\subseteq B_1(\mathbb{R}^T,Y)$ is valid if one of the following conditions hold:

- a) $|T| < \aleph_0$,
- b) Y is a locally convex space and $|T| \leq \aleph_0$,
- c) Y is metrizable.

Open questions

Question 1

Does there exist a completely regular space X which is not a (strong) PP-space and $C\overline{C}(X\times Y,\mathbb{R})\subseteq B_1(X\times Y,\mathbb{R})$ for any topological space Y?

Question 2

Does the inclusion $C(\mathbb{S}^T, Y) \subseteq B_1(\mathbb{R}^T, Y)$ hold for $|T| = \aleph_0$ and any topological vector space Y?

Question 3

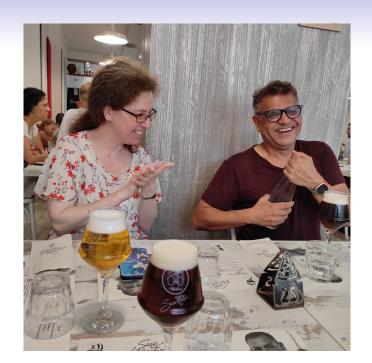
Do there exist a metrizable space X, a topological space Y, a topological vector space (or, more general, an equiconnected space) Z and a separately continuous mapping $f: X \times Y \to Z$ which is not Baire 1?

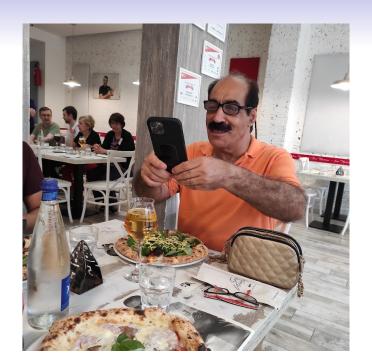
Volodymyr MASLYUCHENKO

Professor in Department of Mathematical Analysis of Yurii Fedkovych Chernivtsi National University

26.09.1950 - 25.09.2020

Pictures:)





Thank you for the attention!