Adder spaces of families of lower continuous functions

Stanisław Kowalczyk

jointly with Małgorzata Turowska

Pomeranian University in Słupsk

46th Summer Symposium in Real Analysis Łódź, Poland, June 19, 2024

Preliminaries

In the theory of real functions families of functions that are not closed under multiplication and addition are often considered. Therefore for any class of functions X we can search for functions g such that for each $f \in X$, the sum f+g (the product $f \cdot g$) belongs to X. Such a family of functions is called a maximal additive (multiplicative) class. The concept of maximal multiplicative class has been generalized in the following way: given two function classes X and Y we can find all functions g such that the product $f \cdot g$ belongs to X whenever f belongs to Y? Such a family of functions X/Y is called a multiplier of the set X over the set Y

Preliminaries

The original goal of our research was to investigate multipliers over classes of ρ -lower continuous functions, for different $\rho \in [0,1]$. ρ lower continuity is a kind of generalized continuity. Families of ρ lower continuous functions are examples of so called A-continuous functions and path continuous functions with respect to the family A, where $A = \{A_x : x \in \mathbb{R}\}$, where A_x is a some family of "large" subsets of $\mathbb R$ containing x. Then continuity of the function $f: I \to \mathbb{R}$ at $x \in I$ means that pre-image $f^{-1}((f(x) - \varepsilon, f(x) + \varepsilon))$ contains an element of A_x for every $\varepsilon > 0$. Meanwhile, path continuity at $x \in I$ means that there is a set $E \in A_x$ such that f restricted to E is continuous in ordinary sense at x. Of course, path continuity with respect to A implies A-continuity, and sometimes they are equivalent. In [3] one can find many examples of generalized continuities defined in this way. In the case of ρ -lower continuous functions the family A is defined in terms of the lower density. The density of a measurable set is a very old mathematical concept. Its intensive research began in the 1920's.

Density

The numbers $\underline{d}^+(E,x) = \liminf_{t \to 0^+} \frac{\lambda(E \cap [x,x+t])}{t}$ and $\overline{d}^+(E,x) = \limsup_{t \to 0^+} \frac{\lambda(E \cap [x,x+t])}{t}$ are called the right lower density of E at x and the right upper density of E at x, respectively. The left lower $\underline{d}^-(E,x)$ and the left upper $\overline{d}^-(E,x)$ densities of E at x are defined analogously. If $d^+(E,x) = \overline{d}^+(E,x)$ or $d^-(E,x) = \overline{d}^-(E,x)$ then we call these numbers the right density or the left density of E at x, respectively. The numbers $\underline{d}(E,x) = \liminf_{t \to 0^+, k \to 0^+} \frac{\lambda(E \cap [x-t,x+k])}{k+t}$ and $\overline{d}(E,x)=\limsup_{t\to 0^+,k\to 0^+}\frac{\lambda(E\cap[x-t,x+k])}{k+t}$ are called the lower and the upper density of E at x, respectively. It is easy to check that $\overline{d}(E,x) = \max{\{\overline{d}^+(E,x), \overline{d}^-(E,x)\}}$ and $d(E,x) = \min\{d^+(E,x), d^-(E,x)\}$. If $d(E,x) = \overline{d}(E,x)$ then we call this number the density of E at x and denote by d(E,x)

Density

For every $\varrho \in [0,1)$ let

 $L_{\varrho}=\{E\colon E \text{ is measurable and }\underline{d}(E,x)>\varrho \text{ for every }x\in E\}.$

Similarly, for every $\varrho\in(0,1]$ let

 $L_{\varrho}^{\blacklozenge}=\{E\colon E \text{ is measurable and } \underline{d}(E,x)\geq \varrho \text{ for every } x\in E\}.$

Q-lower continuity

Definition

Let $\varrho \in [0,1)$. We say that $f\colon I \to \mathbb{R}$ is LC_ϱ -continuous at $x \in I$ if for every $\varepsilon > 0$ there exists a measurable $E \subset \{y \in I\colon |f(x) - f(y)| < \varepsilon\}$ such that $\underline{d}(E,x) > \varrho$. The set of points at which f is LC_ϱ -continuous is denoted by $LC_\varrho(f)$ and \mathcal{LC}_ϱ denotes the set of $f\colon I \to \mathbb{R}$ which are LC_ϱ -continuous at every $x \in I$.

Q-lower continuity

Definition

Let $\varrho \in [0,1)$. We say that $f\colon I \to \mathbb{R}$ is LC_ϱ -continuous at $x \in I$ if for every $\varepsilon > 0$ there exists a measurable $E \subset \{y \in I\colon |f(x) - f(y)| < \varepsilon\}$ such that $\underline{d}(E,x) > \varrho$. The set of points at which f is LC_ϱ -continuous is denoted by $LC_\varrho(f)$ and \mathcal{LC}_ϱ denotes the set of $f\colon I \to \mathbb{R}$ which are LC_ϱ -continuous at every $x \in I$.

Definition

Let $\varrho\in(0,1]$. We say that $f\colon I\to\mathbb{R}$ is $LC^{\blacklozenge}_{\varrho}$ -continuous at $x\in I$ if for every $\varepsilon>0$ there exists a measurable $E\subset\{y\in I\colon |f(x)-f(y)|<\varepsilon\}$ such that $\underline{d}(E,x)\geq\varrho$. The set of points at which f is $LC^{\blacklozenge}_{\varrho}$ -continuous is denoted by $LC^{\blacklozenge}_{\varrho}(f)$ and $\mathcal{LC}^{\blacklozenge}_{\varrho}$ denotes the set of $f\colon I\to\mathbb{R}$ which are $LC^{\blacklozenge}_{\varrho}$ -continuous at every $x\in I$. In particular, $\mathcal{LC}^{\blacklozenge}_{1}$ consists of approximate continuous functions.

Preliminaries

When examining properties of multipliers of $\mathcal{LC}_{\varrho}^{\blacklozenge}$ and \mathcal{LC}_{ϱ} families, it turned out that a more appropriate tool is a similarly defined family, which we call the adder of X over Y. Therefore, our work is devoted to determining of adders of $\mathcal{LC}_{\varrho}^{\blacklozenge}$ and \mathcal{LC}_{ϱ} families. As in the case of multipliers, which are a generalization of the maximal multiplicative class, the concept of adder is a generalization of the maximal additive class.

Now, we introduce the notion of $[\varrho_1, \varrho_2]$ -lower superdensity and present its basic properties. To this end, we start with an important theorem showing the equivalence of certain conditions.

Theorem

Let $0 < \varrho_1 \le \varrho_2 < 1$, $E \subset \mathbb{R}$ be measurable and $x \in E$. The following properties are equivalent:

- for every measurable $F \subset \mathbb{R}$ containing x if $\underline{d}(F,x) > \varrho_2$ then $\underline{d}(E \cap F,x) > \varrho_1$;
- ② for every measurable $F \subset \mathbb{R}$ containing x if $\underline{d}(F,x) \geq \varrho_2$ then $\underline{d}(E \cap F,x) \geq \varrho_1$;
- **3** for every measurable $F \subset \mathbb{R}$ containing x if $\underline{d}(F,x) > \varrho_2$ then $\underline{d}(E \cap F,x) \geq \varrho_1$.

Definition

Let $0 \leq \varrho_1 \leq \varrho_2 \leq 1$ and $\varrho_2 - \varrho_1 < 1$. For $0 < \varrho_1 \leq \varrho_2 < 1$ we say that a measurable set $E \subset \mathbb{R}$ is $[\varrho_1, \varrho_2]$ -lower superdense at $x \in E$ if it satisfies one of the conditions of the previous theorem. For $0 \leq \varrho_2 < 1$ we say that a measurable set $E \subset \mathbb{R}$ is $[\varrho_1, \varrho_2]$ -lower superdense at $x \in E$ if it satisfies the first condition of the previous theorem. For $0 < \varrho_1 \leq 1$ we say that a measurable set $E \subset \mathbb{R}$ is $[\varrho_1, 1]$ -lower superdense at $x \in E$ if it satisfies the second condition of the previous theorem. We say that E is $[\varrho_1, \varrho_2]$ -lower superdense if it is $[\varrho_1, \varrho_2]$ -lower superdense at each of its point. The set of all $[\varrho_1, \varrho_2]$ -lower superdense subsets of \mathbb{R} we denote by $L(\varrho_1, \varrho_2)$.

Corollary

If E is measurable and $x \in E$ is the density point of E then E is $[\varrho_1, \varrho_2]$ -lower superdense at x for every $0 \le \varrho_1 \le \varrho_2 \le 1$ and $\varrho_2 - \varrho_1 < 1$.

Corollary

If E is measurable and $x \in E$ is the density point of E then E is $[\varrho_1, \varrho_2]$ -lower superdense at x for every $0 \le \varrho_1 \le \varrho_2 \le 1$ and $\varrho_2 - \varrho_1 < 1$.

Corollary

Let $0 < \varrho_1 \le \varrho_2 < 1$ and $E \subset \mathbb{R}$ be measurable. If $E \notin L(\varrho_1, \varrho_2)$ then there exist $x \in E$ and a measurable set $F \subset \mathbb{R}$ such that $\underline{d}(F,x) > \varrho_2$ and $\underline{d}(E \cap F,x) < \varrho_1$.

Corollary

If E is measurable and $x \in E$ is the density point of E then E is $[\varrho_1, \varrho_2]$ -lower superdense at x for every $0 \le \varrho_1 \le \varrho_2 \le 1$ and $\varrho_2 - \varrho_1 < 1$.

Corollary

Let $0 < \varrho_1 \le \varrho_2 < 1$ and $E \subset \mathbb{R}$ be measurable. If $E \notin L(\varrho_1, \varrho_2)$ then there exist $x \in E$ and a measurable set $F \subset \mathbb{R}$ such that $\underline{d}(F,x) > \varrho_2$ and $\underline{d}(E \cap F,x) < \varrho_1$.

Theorem

 $\begin{array}{l} L_{1-\varrho_2+\varrho_1}^{\blacklozenge} \subset L(\varrho_1,\varrho_2) \text{ for every } 0 \leq \varrho_1 \leq \varrho_2 \leq 1 \text{ and } \varrho_2-\varrho_1 < 1. \\ \text{Moreover, } L_1^{\blacklozenge} = L(\varrho,\varrho) \text{ for } \varrho \in (0,1) \text{ and } L_{\varrho}^{\blacklozenge} = L(\varrho,1) \text{ for } \varrho \in (0,1]. \end{array}$ Otherwise the inclusion $L_{1-\varrho_2+\varrho_1}^{\blacklozenge} \subset L(\varrho_1,\varrho_2)$ is proper.

$\mathsf{Theorem}$

Let $0 \le \varrho_1 \le \varrho_2 \le 1$, $\varrho_2 - \varrho_1 < 1$. Then

- ② if $E \in L(\varrho_1, \varrho_2)$, $x \in E$ and $\underline{d}(E, x) = \overline{d}(E, x) = \alpha$ then $\alpha \ge 1 \varrho_2 + \varrho_1$.

Definition

Let $0 \leq \varrho_1 < \varrho_2 \leq 1$. A measurable set $E \subset \mathbb{R}$ is $[\varrho_1, \varrho_2]^*$ -lower superdense at $x \in E$ if for every measurable $F \subset \mathbb{R}$ containing x if $\underline{d}(F,x) \geq \varrho_2$ then $\underline{d}(E \cap F,x) > \varrho_1$. We say that E is $[\varrho_1, \varrho_2]^*$ -lower superdense if it is $[\varrho_1, \varrho_2]^*$ -lower superdense at each of its point. The set of all $[\varrho_1, \varrho_2]^*$ -lower superdense subsets of \mathbb{R} we denote by $L^*(\varrho_1, \varrho_2)$.

Definition

Let $0 \leq \varrho_1 < \varrho_2 \leq 1$. A measurable set $E \subset \mathbb{R}$ is $[\varrho_1,\varrho_2]^*$ -lower superdense at $x \in E$ if for every measurable $F \subset \mathbb{R}$ containing x if $\underline{d}(F,x) \geq \varrho_2$ then $\underline{d}(E \cap F,x) > \varrho_1$. We say that E is $[\varrho_1,\varrho_2]^*$ -lower superdense if it is $[\varrho_1,\varrho_2]^*$ -lower superdense at each of its point. The set of all $[\varrho_1,\varrho_2]^*$ -lower superdense subsets of \mathbb{R} we denote by $L^*(\varrho_1,\varrho_2)$.

Theorem

Let $0 \leq \varrho_1 < \varrho_2 \leq 1$. Then $L_{1-\varrho_2+\varrho_1} \subset L^*(\varrho_1,\varrho_2)$. Moreover, $L_\varrho = L^*(\varrho,1)$ for $\varrho \in (0,1)$ and $L_{1-\varrho_2+\varrho_1} \subsetneq L^*(\varrho_1,\varrho_2)$ if $\varrho_2 \neq 1$.

Definition

Let $0 \leq \varrho_1 < \varrho_2 \leq 1$. A measurable set $E \subset \mathbb{R}$ is $[\varrho_1,\varrho_2]^*$ -lower superdense at $x \in E$ if for every measurable $F \subset \mathbb{R}$ containing x if $\underline{d}(F,x) \geq \varrho_2$ then $\underline{d}(E \cap F,x) > \varrho_1$. We say that E is $[\varrho_1,\varrho_2]^*$ -lower superdense if it is $[\varrho_1,\varrho_2]^*$ -lower superdense at each of its point. The set of all $[\varrho_1,\varrho_2]^*$ -lower superdense subsets of \mathbb{R} we denote by $L^*(\varrho_1,\varrho_2)$.

Theorem

Let $0 \leq \varrho_1 < \varrho_2 \leq 1$. Then $L_{1-\varrho_2+\varrho_1} \subset L^*(\varrho_1,\varrho_2)$. Moreover, $L_\varrho = L^*(\varrho,1)$ for $\varrho \in (0,1)$ and $L_{1-\varrho_2+\varrho_1} \subsetneq L^*(\varrho_1,\varrho_2)$ if $\varrho_2 \neq 1$.

Theorem

- $L^*(\varrho_1, \varrho_2) \subsetneq U_{1-\varrho_2+\varrho_1}$ for $0 \leq \varrho_1 < \varrho_2 \leq 1$;
- if $E \in L^*(\varrho_1, \varrho_2)$, $x \in E$ and $\underline{d}(E, x) = \overline{d}(E, x) = \alpha$ then $\alpha > 1 \varrho_2 + \varrho_1$ for $0 < \varrho_1 < \varrho_2 < 1$.

$L_{arrho_1,arrho_2}$ -continuity

Definition

Let $0 \leq \varrho_1 \leq \varrho_2 \leq 1$, $\varrho_2 - \varrho_1 < 1$. We say that $f \colon I \to \mathbb{R}$ is L_{ϱ_1,ϱ_2} -continuous at $x \in I$ if for every $\varepsilon > 0$ there exists a measurable $E \subset \{y \in I \colon |f(x) - f(y)| < \varepsilon\}$ which is $[\varrho_1,\varrho_2]$ -lower superdense at x. The set of points at which f is L_{ϱ_1,ϱ_2} -continuous is denoted by $L_{\varrho_1,\varrho_2}(f)$ and $\mathcal{L}_{\varrho_1,\varrho_2}$ denotes the set of $f \colon I \to \mathbb{R}$ which are L_{ϱ_1,ϱ_2} -continuous at every $x \in I$.

L_{ϱ_1,ϱ_2} -continuity

Definition

Let $0 \leq \varrho_1 \leq \varrho_2 \leq 1$, $\varrho_2 - \varrho_1 < 1$. We say that $f \colon I \to \mathbb{R}$ is L_{ϱ_1,ϱ_2} -continuous at $x \in I$ if for every $\varepsilon > 0$ there exists a measurable $E \subset \{y \in I \colon |f(x) - f(y)| < \varepsilon\}$ which is $[\varrho_1,\varrho_2]$ -lower superdense at x. The set of points at which f is L_{ϱ_1,ϱ_2} -continuous is denoted by $L_{\varrho_1,\varrho_2}(f)$ and $\mathcal{L}_{\varrho_1,\varrho_2}$ denotes the set of $f \colon I \to \mathbb{R}$ which are L_{ϱ_1,ϱ_2} -continuous at every $x \in I$.

Definition

Let $0 \leq \varrho_1 < \varrho_2 \leq 1$. We say that $f \colon I \to \mathbb{R}$ is $L^*_{\varrho_1,\varrho_2}$ -continuous at $x \in I$ if for every $\varepsilon > 0$ there exists a measurable $E \subset \{y \in I \colon |f(x) - f(y)| < \varepsilon\}$ which is $[\varrho_1,\varrho_2]^*$ -lower superdense at x. The set of points at which f is $L^*_{\varrho_1,\varrho_2}$ -continuous is denoted by $L^*_{\varrho_1,\varrho_2}(f)$ and $L^*_{\varrho_1,\varrho_2}$ denotes the set of $f \colon I \to \mathbb{R}$ which are $L^*_{\varrho_1,\varrho_2}$ -continuous at every $x \in I$.

Adder

Definition

Let X and Y be two sets of functions from I to \mathbb{R} . We call the set

$$\mathcal{A}\left(X/Y\right) = \left\{g \colon I \to \mathbb{R} \colon f + g \in X \text{ for all } f \in Y\right\}$$

the adder set of X over Y.

Property of adders

The following properties of $\mathcal{A}\left(X/Y\right)$ are immediate consequences of the definition.

Proposition

Let X, X_1, X_2, Y, Y_1, Y_2 be sets of real-valued functions on I. The following statements are true:

- $② If <math>Y_1 \subset Y_2 \text{ then } \mathcal{A}\left(X/Y_2\right) \subset \mathcal{A}\left(X/Y_1\right).$
- If $Y \subset X$ and X is closed under addition then $X \subset \mathcal{A}(X/Y)$.
- If $Y \subset X$ and Y is closed under addition then $Y \subset \mathcal{A}(X/Y)$.
- If $0 \in X \cap Y$ and X is closed under addition then $\mathcal{A}(X/Y) = X$ if and only if $Y \subset X$.

Theorem

- $2 \mathcal{L}_{\varrho_1,\varrho_2} = \mathcal{A}\left(\mathcal{LC}^{\blacklozenge}_{\varrho_1}/\mathcal{LC}_{\varrho_2}\right) \text{ for } 0 < \varrho_1 \leq \varrho_2 < 1,$

Theorem

- $2 \mathcal{L}_{\varrho_1,\varrho_2} = \mathcal{A}\left(\mathcal{LC}^{\blacklozenge}_{\varrho_1}/\mathcal{LC}_{\varrho_2}\right) \text{ for } 0 < \varrho_1 \leq \varrho_2 < 1,$

Corollary

- $\begin{array}{l} \bullet \quad \mathcal{LC}_{1}^{\blacklozenge} = \mathcal{A}\left(\mathcal{LC}_{\varrho}^{\blacklozenge}/\mathcal{LC}_{\varrho}^{\blacklozenge}\right) \text{ for } \varrho \in (0,1], \ \mathcal{LC}_{\varrho}^{\blacklozenge} = \mathcal{A}\left(\mathcal{LC}_{\varrho}^{\blacklozenge}/\mathcal{LC}_{1}^{\blacklozenge}\right) \\ \text{ for } \varrho \in (0,1) \text{ and } \mathcal{LC}_{1-\varrho_{2}+\varrho_{1}}^{\blacklozenge} \subsetneqq \mathcal{A}\left(\mathcal{LC}_{\varrho_{1}}^{\blacklozenge}/\mathcal{LC}_{\varrho_{2}}^{\blacklozenge}\right) \text{ for } \\ 0 < \varrho_{1} < \varrho_{2} < 1, \end{array}$
- ② $\mathcal{LC}_{1}^{\blacklozenge} = \mathcal{A}\left(\mathcal{LC}_{\varrho}^{\blacklozenge}/\mathcal{LC}_{\varrho}\right)$ for $\varrho \in (0,1)$ and $\mathcal{LC}_{1-\varrho_{2}+\varrho_{1}}^{\blacklozenge} \subsetneq \mathcal{A}\left(\mathcal{LC}_{\varrho_{1}}^{\blacklozenge}/\mathcal{LC}_{\varrho_{2}}\right)$ for $0 < \varrho_{1} < \varrho_{2} < 1$,
- $\begin{array}{l} \bullet \quad \mathcal{LC}_1^{\blacklozenge} = \mathcal{A}\left(\mathcal{LC}_{\varrho}/\mathcal{LC}_{\varrho}\right) \text{ for } \varrho \in (0,1] \text{ and } \\ \mathcal{LC}_{1-\varrho_2+\varrho_1}^{\blacklozenge} \subsetneqq \mathcal{A}\left(\mathcal{LC}_{\varrho_1}/\mathcal{LC}_{\varrho_2}\right) \text{ for } 0 \leq \varrho_1 < \varrho_2 < 1. \end{array}$

Theorem 1

Let
$$0 \leq \varrho_1 < \varrho_2 \leq 1$$
. Then $\mathcal{A}\left(\mathcal{LC}_{\varrho_1}/\mathcal{LC}_{\varrho_2}^{\blacklozenge}\right) = \mathcal{L}_{\varrho_1,\varrho_2}^*$.

Theorem

Let
$$0 \leq \varrho_1 < \varrho_2 \leq 1$$
. Then $\mathcal{A}\left(\mathcal{LC}_{\varrho_1}/\mathcal{LC}_{\varrho_2}^{\blacklozenge}\right) = \mathcal{L}_{\varrho_1,\varrho_2}^*$.

Corollary

$$\begin{split} \mathcal{LC}_{\varrho} &= \mathcal{A}\left(\mathcal{LC}_{\varrho}/\mathcal{LC}_{1}^{\blacklozenge}\right) \text{ for } \varrho \in [0,1) \text{ and} \\ \mathcal{LC}_{1-\varrho_{2}+\varrho_{1}} &\subsetneqq \mathcal{A}\left(\mathcal{LC}_{\varrho_{1}}/\mathcal{LC}_{\varrho_{2}}^{\blacklozenge}\right) \text{ for } 0 \leq \varrho_{1} < \varrho_{2} < 1. \end{split}$$

Theorem

Let
$$0 \le \varrho_1 < \varrho_2 \le 1$$
. Then $\mathcal{A}\left(\mathcal{LC}_{\varrho_1}/\mathcal{LC}_{\varrho_2}^{\blacklozenge}\right) = \mathcal{L}_{\varrho_1,\varrho_2}^*$.

Corollary

$$\begin{split} \mathcal{LC}_{\varrho} &= \mathcal{A}\left(\mathcal{LC}_{\varrho}/\mathcal{LC}_{1}^{\blacklozenge}\right) \text{ for } \varrho \in [0,1) \text{ and} \\ \mathcal{LC}_{1-\varrho_{2}+\varrho_{1}} &\subsetneqq \mathcal{A}\left(\mathcal{LC}_{\varrho_{1}}/\mathcal{LC}_{\varrho_{2}}^{\blacklozenge}\right) \text{ for } 0 \leq \varrho_{1} < \varrho_{2} < 1. \end{split}$$

Remark

As we mentioned before, multipliers of ϱ -lower continuous functions have more complicated structure than adders. For example, for $0 < \varrho_1 < \varrho_2 < 1$ we have $\mathcal{A}\left(\mathcal{L}\mathcal{C}^{\blacklozenge}_{\varrho_1}/\mathcal{L}\mathcal{C}^{\blacklozenge}_{\varrho_2}\right) = \mathcal{L}_{\varrho_1,\varrho_2} \subsetneq \mathcal{L}\mathcal{C}^{\blacklozenge}_{\varrho_1}/\mathcal{L}\mathcal{C}^{\blacklozenge}_{\varrho_2}$.

Path ϱ -lower continuity

Definition

Let $\varrho \in [0,1)$. We say that $f\colon I \to \mathbb{R}$ is LPC_ϱ -continuous at $x \in I$ if for every $\varepsilon > 0$ there exists a measurable $E_\varepsilon \subset \{y \in I\colon |f(x) - f(y)| < \varepsilon\}$ such that $\lim_{\varepsilon \to 0^+} \underline{d}(E_\varepsilon, x) > \varrho$. The set of points at which f is LPC_ϱ -continuous is denoted by $LPC_\varrho(f)$ and \mathcal{LPC}_ϱ denotes the set of $f\colon I \to \mathbb{R}$ for which are LPC_ϱ -continuous at every $x \in I$.

Path ϱ -lower continuity

Definition

Let $\varrho \in [0,1)$. We say that $f\colon I \to \mathbb{R}$ is LPC_ϱ -continuous at $x \in I$ if for every $\varepsilon > 0$ there exists a measurable $E_\varepsilon \subset \{y \in I\colon |f(x) - f(y)| < \varepsilon\}$ such that $\lim_{\varepsilon \to 0^+} \underline{d}(E_\varepsilon, x) > \varrho$. The set of points at which f is LPC_ϱ -continuous is denoted by $LPC_\varrho(f)$ and \mathcal{LPC}_ϱ denotes the set of $f\colon I \to \mathbb{R}$ for which are LPC_ϱ -continuous at every $x \in I$.

Theorem

Let $\varrho \in (0,1]$, $f \colon I \to \mathbb{R}$ and $x \in I$. Then f is LPC_{ϱ} -continuous at $x \in I$ if and only if there exist a measurable set $E \subset I$ such that $x \in E$, f restricted to E is continuous at x and $\underline{d}(E,x) > \varrho$.

Adders of path LPC_{ϱ} -continuous functions

Theorem

- a) $\mathcal{A}\left(\mathcal{LC}_{\varrho_1}^{lacklet}/\mathcal{LPC}_{\varrho_2}\right) = \mathcal{L}_{\varrho_1,\varrho_2}$ for every $0 < \varrho_1 \leq \varrho_2 < 1$,
- b) $\mathcal{A}\left(\mathcal{LC}_{\varrho_1}/\mathcal{LPC}_{\varrho_2}\right) = \mathcal{L}_{\varrho_1,\varrho_2}$ for every $0 \leq \varrho_1 \leq \varrho_2 < 1$.

Adders of path LPC_{ϱ} -continuous functions

Theorem

- a) $\mathcal{A}\left(\mathcal{LC}_{\varrho_1}^{lacklet}/\mathcal{LPC}_{\varrho_2}\right) = \mathcal{L}_{\varrho_1,\varrho_2}$ for every $0 < \varrho_1 \leq \varrho_2 < 1$,
- b) $\mathcal{A}\left(\mathcal{LC}_{\varrho_1}/\mathcal{LPC}_{\varrho_2}\right) = \mathcal{L}_{\varrho_1,\varrho_2}$ for every $0 \leq \varrho_1 \leq \varrho_2 < 1$.

Theorem

- a) $\bigcup_{\varrho \in (\varrho_1,\varrho_2)} \mathcal{L}_{\varrho,\varrho_2} \subset \mathcal{A}\left(\mathcal{LPC}_{\varrho_1}/\mathcal{LC}_{\varrho_2}^{\blacklozenge}\right) \subset \mathcal{A}\left(\mathcal{LPC}_{\varrho_1}/\mathcal{LC}_{\varrho_2}\right) \subset \mathcal{A}\left(\mathcal{LPC}_{\varrho_1}/\mathcal{LPC}_{\varrho_2}\right) \subset \mathcal{L}_{\varrho_1,\varrho_2} \text{ for every } 0 \leq \varrho_1 < \varrho_2 < 1,$
- b) $\mathcal{A}\left(\mathcal{LPC}_{\varrho}/\mathcal{LPC}_{\varrho}\right) = \mathcal{L}_{\varrho,\varrho} = \mathcal{LC}_{1}^{\blacklozenge}$ and $\mathcal{A}\left(\mathcal{LPC}_{\varrho}/\mathcal{LC}_{1}^{\blacklozenge}\right) = \mathcal{LPC}_{\varrho}$ for $\varrho \in [0,1)$.

THANK YOU

FOR YOUR ATTENTION

References I

- [1] J. Appell, P. P. Zabrejko, *Nonlinear Superposition Operators*, Cambridge Univ. Press 1990.
- [2] M. Bienias, S. Głąb, W. Wilczyński, *Cardinality of sets of ρ-upper and ρ-lower continuous functions*, Bull. Soc. Sci. Lett. Łódź Ser. Rech. Deform. 64 (2014), 71–80.
- [3] A. M. Bruckner, *Differentiation of Real Functions*, Lecture Notes in Math., Vol. 659, Springer-Verlag, New York, 1978.
- [4] A. M. Bruckner, R. J. O'Malley, B. S. Thomson, Path Derivatives: A Unified View of Certain Generalized Derivatives, Trans. Amer. Math. Soc. 283 (1984), 97–125.
- [5] D. Bugajewska, S. Reinwand, Some Remarks on Multiplier Spaces 1: Classical Spaces,
 Z. Anal. Anwend. 38(2)(2019), 125–142.
- [6] D. Bugajewska, S. Reinwand, Some Remarks on Multiplier Spaces 2: BV-type Spaces,
 Z. Anal. Anwend. 38(3)(2019), 309–327.
- [7] T. Filipczak, On some abstract density topologies, Real Anal. Exchange 14 (1988/89), 140–166.
- [8] R. J. Fleissner, *Distant bounded variation and products of derivatives*, Fund. Math. 94 (1977), 1–11.
- [9] A. Karasińska, E. Wagner-Bojakowska, Some remarks on ρ-upper density, Tatra Mt. Math. Publ. 46 (2010), 85–89.

References II

- [10] S. Kowalczyk, K. Nowakowska, *Maximal classes for the family of* $[\lambda, \varrho]$ -continuous function, Real Anal. Exchange, Vol. 37(1), 2011/2012, 307–324.
- [11] S. Kowalczyk, M. Turowska, Topologies on normed spaces generated by porosity, Filomat 33:1 (2019), 335–352.
- [12] S. Kowalczyk, M. Turowska, Topologies generated by porosity and maximal additive and multiplicative families for porouscontinuous functions, Topology Appl. 239 (2018) 1–13.
- [13] S. Kowalczyk, M. Turowska, *On topologies generated by lower porosity*, Results Math (2022) 77:220.
- [14] S. Kowalczyk, M. Turowska, Path continuity connected with density and porosity, Modern real analysis, Wydawnictwo Uniwersytetu Łódzkiego 2015, 105–126.
- [15] J. Mařík, *Multipliers of summable derivatives*, Real Anal. Exchange 8 (1982), 486–493.
- [16] V. Maz'ya, T. O. Shaposhnikova, Theory of Sobolev Multipliers with Applications to Differential and Integral Operators, Grundlehren Math. Wiss. 337. Berlin: Springer 2009.
- [17] R. O'Neil, Fractional integration in Orlicz spaces. Trans. Amer. Math. Soc. 115 (1965), 300–328.

References III

- [18] Th. Radakovic, Über Darbouxsche und stetige Funktionen (in German). Monatsh. Math. Phys. 38 (1931), 117–122.
- [19] S. Reinwand, P. Kasprzak, Multiplication operators in BV spaces, Annali di Matematica Pura ed Applicata, 202(2)(2023), 787–826.
- [20] D. N. Sarkhel, A. K. De, The proximally continuous integrals, J. Aust. Math. Soc. (A) 31 (1981), 26–45.
- [21] W. Wilczyński, Density topologies, Handbook of Measure Theory, chapter 15, Elsevier 2012, 307–324.
- [22] W. Wilkosz, Some properties of derivative functions, Fund. Math. 2 (1921), 145-154.

Thank You for your attention !!!