

 α -chaotic points

Chaotic and antichaotic families of functions

Anna Loranty

(joint work with Ryszard J. Pawlak)

Summer Symposium in Real Analysis, The Promised Land Symposium June 17-21, 2024 Łódź

A set of generators

Let
$$G = \{g_0, g_1, \dots, g_k\}$$
, where $g_0 = \mathrm{id}_X$ and $g_i : X \to X$ for $i = 1, \dots, k$.

 α -chaotic points

Let us adopt the notation:

$$G^0 = \{ \mathrm{id}_X \}$$
 and $G^n = \{ g_{i_1} \circ g_{i_2} \circ \cdots \circ g_{i_n} : i_1, i_2, \dots, i_n \in [0, k] \}$ for $n \in \mathbb{N}$.

A set of generators

Let $G = \{g_0, g_1, \dots, g_k\}$, where $g_0 = \mathrm{id}_X$ and $g_i : X \to X$ for $i = 1, \dots, k$.

 α -chaotic points

Let us adopt the notation:

$$G^0=\{\mathsf{id}_X\} \text{ and } G^n=\{g_{i_1}\circ g_{i_2}\circ \cdots \circ g_{i_n}: i_1,i_2,\ldots,i_n\in \llbracket 0,k\rrbracket \} \text{ for } n\in \mathbb{N}.$$

For $f: X \to X$ let us put

$$G_f^0 = \{ \mathrm{id}_X \}$$
 and $G_f^n = \{ g \circ f : g \in G^{n-1} \} \cup \{ \mathrm{id}_X \}$ for $n \in \mathbb{N}$.

Obviously

$$G_f^0 \subset G_f^1 \subset G_f^2 \subset \dots$$

lpha-chaotic points

Introduction

An entropy of f with respect to the family G

An entropy of f with respect to the family G

Let $G = \{g_0 = \mathrm{id}_X, g_1, \dots, g_k\} \subset X^X$, $n \in \mathbb{N}$, $\varepsilon > 0$, $f : X \to X$ and $Y \subset X$ be a non-empty set.

We shall say that $Z \subset Y$ is an (n, ε, G, Y) -separated set of f in Y by G if for any two different points $p, q \in Z$ there exists a function $\xi \in G_f^n$ such that $\rho(\xi(p), \xi(q)) > \varepsilon$.

An entropy of f with respect to the family G in Y is the number

$$h(f, G, Y) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log s_f(n, \varepsilon, G, Y),$$

where $s_f(n, \varepsilon, G, Y)$ denotes the maximal cardinality of (n, ε, G, Y) -separated set of f in Y by G.

We write briefly h(f, G) if Y = X.

lpha-chaotic points

Comparison with the entropy of a semigroup

Comparison with the entropy of a semigroup

Let $G = \{g_0 = id_X, g_1, \dots, g_k\} \subset X^X$ be a set of generators and $\mathcal{G}(G) = \bigcup G^n$ (where $G^n = \{g_{i_1} \circ g_{i_2} \circ \cdots \circ g_{i_n} : i_1, i_2, \dots, i_n \in [0, k]\}$).

Let $n \in \mathbb{N}$, $\varepsilon > 0$ and $Y \subset X$. We say that $Z \subset Y$ is (n, ε) -separated by

 α -chaotic points

 $\mathcal{G}(G)$ in Y if for any two distinct points $p, q \in Z$ there exists a function $g \in G^n$ such that $\rho(g(p), g(q)) > \varepsilon$.

Let $s(n, \varepsilon, \mathcal{G}(G), Y)$ denote the maximal cardinality of (n, ε) -separated set by $\mathcal{G}(G)$ in Y. Then the entropy of a semigroup $\mathcal{G}(G)$ on Y is the number:

$$h(\mathcal{G}(G), Y) = \lim_{\varepsilon \to 0^+} \limsup_{n \to \infty} \frac{1}{n} \log s(n, \varepsilon, \mathcal{G}(G), Y).$$

Comparison with the entropy of a semigroup

Let $G = \{g_0 = \mathrm{id}_X, g_1, \dots, g_k\} \subset X^X$ be a set of generators and $\mathcal{G}(G) = \bigcup_{n \in \mathbb{N}} G^n$ (where $G^n = \{g_{i_1} \circ g_{i_2} \circ \dots \circ g_{i_n} : i_1, i_2, \dots, i_n \in [0, k]\}$).

Let $n \in \mathbb{N}$, $\varepsilon > 0$ and $Y \subset X$. We say that $Z \subset Y$ is (n, ε) -separated by $\mathcal{G}(G)$ in Y if for any two distinct points $p, q \in Z$ there exists a function $g \in G^n$ such that $\rho(g(p), g(q)) > \varepsilon$.

Let $s(n, \varepsilon, \mathcal{G}(G), Y)$ denote the maximal cardinality of (n, ε) -separated set by $\mathcal{G}(G)$ in Y. Then the entropy of a semigroup $\mathcal{G}(G)$ on Y is the number:

$$h(\mathcal{G}(G),Y) = \lim_{\varepsilon \to 0^+} \limsup_{n \to \infty} \frac{1}{n} \log s(n,\varepsilon,\mathcal{G}(G),Y).$$

Property

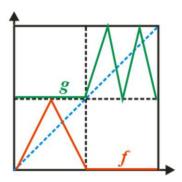
If $f \in G$ and $Y \subset X$ then $h(f, G, Y) \leq h(G(G), Y)$.

Let $f, g : [0, 1] \rightarrow [0, 1]$ be defined as follows:

$$f(x) = \begin{cases} 2x & \text{for } x \in \left[0, \frac{1}{4}\right] \\ -2x + 1 & \text{for } x \in \left(\frac{1}{4}, \frac{1}{2}\right) \\ 0 & \text{for } x \in \left[\frac{1}{2}, 1\right] \end{cases}$$

$$f(x) = \begin{cases} 2x & \text{for } x \in \left[0, \frac{1}{4}\right] \\ -2x + 1 & \text{for } x \in \left(\frac{1}{4}, \frac{1}{2}\right) \\ 0 & \text{for } x \in \left[\frac{1}{2}, 1\right] \end{cases} \qquad g(x) = \begin{cases} \frac{1}{2} & \text{for } x \in \left[0, \frac{1}{2}\right] \\ 4x - \frac{3}{2} & \text{for } x \in \left(\frac{1}{2}, \frac{5}{8}\right] \\ -4x + \frac{7}{2} & \text{for } x \in \left(\frac{5}{8}, \frac{3}{4}\right] \\ -4x + \frac{9}{2} & \text{for } x \in \left(\frac{7}{8}, 1\right] \end{cases}$$

 α -chaotic points



Let $f, g : [0, 1] \rightarrow [0, 1]$ be defined as follows:

$$f(x) = \begin{cases} 2x & \text{for } x \in \left[0, \frac{1}{4}\right] \\ -2x + 1 & \text{for } x \in \left(\frac{1}{4}, \frac{1}{2}\right) \\ 0 & \text{for } x \in \left[\frac{1}{2}, 1\right] \end{cases} \qquad g(x) = \begin{cases} \frac{1}{2} & \text{for } x \in \left[0, \frac{1}{2}\right] \\ 4x - \frac{3}{2} & \text{for } x \in \left(\frac{1}{2}, \frac{5}{8}\right) \\ -4x + \frac{7}{2} & \text{for } x \in \left(\frac{5}{8}, \frac{3}{4}\right) \\ -4x + \frac{9}{2} & \text{for } x \in \left(\frac{7}{8}, 1\right] \end{cases}$$

$$G = \{ \mathrm{id}_{[0,1]}, f, g \}$$

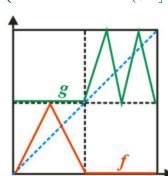
$$G^n = \{ \mathrm{id}_{[0,1]}, \mathrm{const}_{\frac{1}{2}}, \mathrm{const}_0 \} \cup \{ f^p : p \in [1, n] \}$$

$$\bigcup \{g^p : p \in \llbracket 1, n \rrbracket \}$$

$$G_f^n = \{ id_{[0,1]}, const_{\frac{1}{2}} \} \cup \{f^p : p \in \llbracket 1, n \rrbracket \}$$

$$\log 4 = h(g) \leqslant h(\mathcal{G}(G))$$

$$h(f,G)=h(f)=\log 2$$



 α -chaotic points

Comparison with the entropy of a function

Comparison with the entropy of a function

Let $\emptyset \neq Y \subset X$ and $G = \{g_0, g_1\} \subset X^X$ be a set of generators such that $g_0 = id_X$ and $g_1 = f$, then

 α -chaotic points

$$h(f,G,Y)=h(f,Y).$$

Chaotic and antichaotic families of functions

Chaotic and antichaotic families of functions

We will say that a finite family of functions $G = \{g_0 = \mathrm{id}_X, g_1, \ldots, g_k\}$ is antichaotic on the set $\emptyset \neq Y \subset X$, if $h(g_i, Y) = 0$ for $i \in [0, k]$. Obviously if X = Y we will say that G is antichaotic.

We will say that a finite family of functions $G = \{g_0 = \mathrm{id}_X, g_1, \ldots, g_k\}$ is chaotic on the set $\emptyset \neq Y \subset X$, if $h(g_i, Y) > 0$ for $i \in [1, k]$. Obviously if X = Y we will say that G is chaotic.

C(X) – the space of all continuous functions $f: X \to X$. $C_V(X)$ – the space of closed subsets of C(X) with Hausdorff metric. C(X) – the space of all continuous functions $f: X \to X$.

 $C_V(X)$ – the space of closed subsets of C(X) with Hausdorff metric.

Let consider subspace $C_{V}^{*}(X)$ composed of sets of the following form $\{g_1,\ldots,g_k\}$ for $g_i\in C(X)$ and $k\in\mathbb{N}$.

Let $C_{V}^{*0}(X)$ denote the family of all sets $\{g_1,\ldots,g_k\}\in C_{V}^{*}(X)$ such that the family $\{g_0 = id_X, g_1, \dots, g_k\}$ is antichaotic.

Let $C_{V}^{*+}(X)$ denote the family of all sets $\{g_1,\ldots,g_k\}\in C_{V}^*(X)$ such that $\{g_0 = id_X, g_1, \dots, g_k\}$ is chaotic.

C(X) – the space of all continuous functions $f: X \to X$.

 $C_V(X)$ – the space of closed subsets of C(X) with Hausdorff metric.

Let consider subspace $C_V^*(X)$ composed of sets of the following form $\{g_1,\ldots,g_k\}$ for $g_i\in C(X)$ and $k\in\mathbb{N}$.

Let $C_V^{*0}(X)$ denote the family of all sets $\{g_1, \ldots, g_k\} \in C_V^*(X)$ such that the family $\{g_0 = \mathrm{id}_X, g_1, \ldots, g_k\}$ is antichaotic.

Let $C_V^{*+}(X)$ denote the family of all sets $\{g_1,\ldots,g_k\}\in C_V^*(X)$ such that $\{g_0=\operatorname{id}_X,g_1,\ldots,g_k\}$ is chaotic.

Theorem

Let X = [0,1]. The set $Int_H(C_V^{*+}(X))$ is dense in $C_V^*(X)$.

Bibliography

C(X) – the space of all continuous functions $f: X \to X$.

 $C_V(X)$ – the space of closed subsets of C(X) with Hausdorff metric.

Let consider subspace $C_V^*(X)$ composed of sets of the following form $\{g_1, \ldots, g_k\}$ for $g_i \in C(X)$ and $k \in \mathbb{N}$.

Let $C_V^{*0}(X)$ denote the family of all sets $\{g_1,\ldots,g_k\}\in C_V^*(X)$ such that the family $\{g_0=\mathrm{id}_X,g_1,\ldots,g_k\}$ is antichaotic.

Let $C_V^{*+}(X)$ denote the family of all sets $\{g_1,\ldots,g_k\}\in C_V^*(X)$ such that $\{g_0=\operatorname{id}_X,g_1,\ldots,g_k\}$ is chaotic.

Theorem

Let X = [0,1]. The set $Int_H(C_V^{*+}(X))$ is dense in $C_V^*(X)$.

Corollary
The set $C_V^{*0}([0,1])$ is nowhere dense in $C_V^*([0,1])$.

 α -chaotic points

Let (X, ρ) be a connected topological manifold having the fixed point property. The set $C_V^{*+}(X)$ is dense in $C_V^*(X)$.

Theorem

Let (X, ρ) be a connected topological manifold having the fixed point property. The set $C_V^{*+}(X)$ is dense in $C_V^*(X)$.

 α -chaotic points

Corollary

Let (X, ρ) be a connected topological manifold having the fixed point property. Then $\operatorname{Int}_H(C_V^{*0}(X)) = \emptyset$.

Let $G = \{g_0 = \mathrm{id}_X, g_1, \ldots, g_k\} \subset X^X$ and $\alpha \geqslant 1$. We say that $x_0 \in X$ is an α -entropy point of $f: X \to X$ by G if $h(f, G, Y) \geqslant \log \alpha$ for any open neighborhood Y of the point x_0 .

 α -chaotic points

•000

Let $G = \{g_0 = \mathrm{id}_X, g_1, \ldots, g_k\} \subset X^X$ and $\alpha \geqslant 1$. We say that $x_0 \in X$ is an α -entropy point of $f: X \to X$ by G if $h(f, G, Y) \geqslant \log \alpha$ for any open neighborhood Y of the point x_0 .

 α -chaotic points

"It is commonly accepted that an evidence of chaos is positivity of topological entropy".

Let $G = \{g_0 = \mathrm{id}_X, g_1, \ldots, g_k\} \subset X^X$ and $\alpha \geqslant 1$. We say that $x_0 \in X$ is an α -entropy point of $f: X \to X$ by G if $h(f, G, Y) \ge \log \alpha$ for any open neighborhood Y of the point x_0 .

 α -chaotic points

"It is commonly accepted that an evidence of chaos is positivity of topological entropy".

So, if there exists an open neighborhood Y_0 of point x_0 such that $h(f, G, Y_0) = 0 = \log 1$ then we cannot talk about chaos.

Let $G = \{g_0 = \mathrm{id}_X, g_1, \ldots, g_k\} \subset X^X$ and $\alpha \geqslant 1$. We say that $x_0 \in X$ is an α -entropy point of $f: X \to X$ by G if $h(f, G, Y) \ge \log \alpha$ for any open neighborhood Y of the point x_0 .

 α -chaotic points

"It is commonly accepted that an evidence of chaos is positivity of topological entropy".

So, if there exists an open neighborhood Y_0 of point x_0 such that $h(f, G, Y_0) = 0 = \log 1$ then we cannot talk about chaos.

If $\alpha > 1$ and for any open neighborhood Y of point x_0 we have $h(f, G, Y) \ge \log \alpha$ then we will call x_0 an α -chaotic point of f by G.

Theorem

Let $\alpha > 1$, $x_0 \in [0,1)$ and $f:[0,1] \to [0,1]$ be the Darboux function such that $x_0 \in Fix(f)$ and $D^+f(x_0) > 0$. Then there exists antichaotic family $G \subset C([0,1])$ such that $\#(G) = 2 \cdot [\alpha] + 1$ and x_0 is an α -chaotic point of f by G.

 α -chaotic points

0000

Let $f: \mathbb{R} \to \mathbb{R}$ be defined in a neighborhood of x_0 . We define the upper right Dini derivative D^+f of f at x_0 by

$$D^+f(x_0) = \limsup_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h}.$$

$$\lceil \alpha \rceil = \min\{k \in \mathbb{N}_0 : k \geqslant \alpha\}$$

$$x_0 \in Fix(f)$$
 iff $f(x_0) = x_0$

Theorem

Let $\alpha > 1$, $x_0 \in [0,1)$ and $f:[0,1] \to [0,1]$ be the Darboux function such that $x_0 \in Fix(f)$ and $D^+f(x_0) > 0$. Then there exists antichaotic family $G \subset C([0,1])$ such that $\#(G) = 2 \cdot [\alpha] + 1$ and x_0 is an α -chaotic point of f by G.

 α -chaotic points

Problem

To prove the theorem above, we need to consider a family G containing $2 \cdot \lceil \alpha \rceil + 1$ elements. The question arises whether (with possibly stronger assumptions regarding the function f) there is a family G with fewer elements such that the conclusion of the above theorem is satisfied?

 α -chaotic points

Theorem

Let $\alpha>1$, $x_0\in[0,1)$ and $f:[0,1]\to[0,1]$ be the Darboux function such that $x_0\in \text{Fix}(f)$ and $D^+f(x_0)>0$. Then there exists antichaotic family $G\subset C([0,1])$ such that $\#(G)=2\cdot\lceil\alpha\rceil+1$ and x_0 is an α -chaotic point of f by G.

Problem

To prove the theorem above, we need to consider a family G containing $2 \cdot \lceil \alpha \rceil + 1$ elements. The question arises whether (with possibly stronger assumptions regarding the function f) there is a family G with fewer elements such that the conclusion of the above theorem is satisfied?

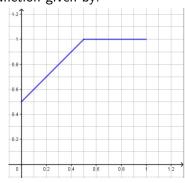
Remark

In the context of above theorem the opposite situation can be considered. For a fixed (antichaotic) family $G = \{g_0 = \mathrm{id}_{[0,1]}, g_1, \ldots, g_k\} \subset C([0,1])$, can we find the function $f : [0,1] \to [0,1]$ such that for every/some $\alpha > 1$ there exists x_0 which is the α -chaotic point of f by G?

Let $G = \{g_0 = id_{[0,1]}, g_1\}$, where g_1 is a function given by:

$$g_1(x) = egin{cases} x + rac{1}{2} & ext{for } x \in [0, rac{1}{2}) \\ 1 & ext{for } x \in [rac{1}{2}, 1]. \end{cases}$$

Introduction



 α -chaotic points

We get, that $g_1 \circ g_1$ is a constant function. Consequently, for any $\varepsilon > 0$ and n>2 we have $s_f(n,\varepsilon,G)=s_f(2,\varepsilon,G)$ for any function f, which means that h(f, G) = 0.

Disruption

Let $f \in C([0,1])$ and $G = \{g_0 = id_{[0,1]}, g_1, ..., g_k\} \subset C([0,1])$.

We shall say that the family $G_f = \{g_0 = \mathrm{id}_{[0,1]}, f \circ g_1, ..., f \circ g_k\}$ is an f-disruption of G.

 α -chaotic points 000

Disruption

Let $f \in C([0,1])$ and $G = \{g_0 = \mathsf{id}_{[0,1]}, g_1, ..., g_k\} \subset C([0,1])$.

We shall say that the family $G_f = \{g_0 = id_{[0,1]}, f \circ g_1, ..., f \circ g_k\}$ is an f-disruption of G.

 α -chaotic points

Theorem

Let $G = \{g_0 = id_{[0,1]}, g_1, \dots, g_k\}$ be a family of continuous functions mapping [0, 1] into itself. Moreover, there exist $x_0 \in Fix(G) \cap [0, 1)$ and $\delta > 0$ such that $(g_i)'_+(x) > 1$ for any $i \in [1, k]$ and $x \in [x_0, x_0 + \delta]$. Then for any $\alpha > 1$ there exists a function $f \in C([0,1])$ such that the family G_f being an f-disruption of G is chaotic and x_0 is α -chaotic point of f by G_f .

- L. Alsedá, J. Llibre, M. Misiurewicz, *Combinatorial Dynamics and Entropy in Dimension One*, World Sci., 2000 (second edition).
- Dimension One, World Sci., 2000 (second edition).

 A. Biś, Entropies of a semigroup of maps, Discrete Contin. Dynam. Systems
- 11(2&3), 2004, 639–648.

 A. Biś, M. Urbański, Some remarks on topological entropy of a semigroup of continuous maps, Cubo 8, 2006, 63–71.
- A.M. Bruckner, *Differentiation of Real Functions*, Lecture Notes in Mathematics,
- vol. 659 Springer-Verlag Berlin Heidelberg 1978.
 E. Korczak-Kubiak, A. Loranty, R.J. Pawlak, Measuring chaos by entropy for a finite family of functions, Chaos 30, 063138, 2020.
- S. Kolyada, L. Snoha, *Topological entropy of nonautonomous dynamical systems.* Random & Computational Dynamics 1996, 4 (2 & 3), 205–233.
- D. Kwietniak and P. Oprocha, Topological entropy and chaos for maps induced on hyperspaces, Chaos, Solitons & Fractals. 33, 2007, 76–86.
 R. J. Pawlak, J. Poprawa, On some dense sets in the space of dynamical systems,
- Advanced Nonlinear Studies. 23 (1), 2023, pp. 20220053;

 R. J. Pawlak, J. Poprawa, *On disruptions of semigroups and points strongly focusing chaos*, in preparation.