Invariant measures for the dyadic transformation

Janusz Morawiec (joint wotk with Thomas Zürcher)

UNIVERSITY OF SILESIA IN KATOWICE

The 46th Summer Symposium in Real Analysis June 16–21, 2024, Łódź, Poland

Introduction

Definition 1.

Let (X, A) be a measurable space and $S: X \to X$ be a measurable transformation. A measure μ on (X, A) is said to be invariant for S if

$$\mu(S^{-1}(A)) = \mu(A)$$
 for every $A \in \mathcal{A}$.

Introduction

Definition 1.

Let (X, A) be a measurable space and $S: X \to X$ be a measurable transformation. A measure μ on (X, A) is said to be invariant for S if

$$\mu(S^{-1}(A)) = \mu(A)$$
 for every $A \in A$.

Definition 2.

A dyadic transformation is a map $S \colon [0,1] \to [0,1]$ defined by $S(x) = 2x \pmod{1}$.

Introduction

Definition 1.

Let (X, A) be a measurable space and $S: X \to X$ be a measurable transformation. A measure μ on (X, A) is said to be invariant for S if

$$\mu(S^{-1}(A)) = \mu(A)$$
 for every $A \in A$.

Definition 2.

A dyadic transformation is a map $S: [0,1] \rightarrow [0,1]$ defined by $S(x) = 2x \pmod{1}$.

Find all Borel probability measures that are invariant for the dyadic transformation.

Functional equation for p.d. functions

Lemma 1.

lacktriangledown If μ is an invariant measure for the dyadic transformation, then the formula

(1)
$$\varphi(x) = \mu([0, x])$$

defines an increasing and right-continuous function $\varphi\colon [0,1]\to [0,1]$ such that $\varphi(1)=1$ and

(2)
$$\varphi(x) = \varphi\left(\frac{x}{2}\right) + \varphi\left(\frac{x+1}{2}\right) - \varphi\left(\frac{1}{2}\right)$$
 for every $x \in [0,1]$.

② If $\varphi \colon [0,1] \to [0,1]$ is an increasing and right-continuous function satisfying (2) with $\varphi(1) = 1$, then formula (1) determines uniquely an invariant measure for the dyadic transformation.

Functional equation for p.d. functions

Lemma 1.

lacktriangledown If μ is an invariant measure for the dyadic transformation, then the formula

(1)
$$\varphi(x) = \mu([0, x])$$

defines an increasing and right-continuous function $\varphi\colon [0,1]\to [0,1]$ such that $\varphi(1)=1$ and

(2)
$$\varphi(x) = \varphi\left(\frac{x}{2}\right) + \varphi\left(\frac{x+1}{2}\right) - \varphi\left(\frac{1}{2}\right)$$
 for every $x \in [0,1]$.

② If $\varphi \colon [0,1] \to [0,1]$ is an increasing and right-continuous function satisfying (2) with $\varphi(1) = 1$, then formula (1) determines uniquely an invariant measure for the dyadic transformation.

Proof.

$$\begin{split} \varphi(\mathbf{x}) &= \mu\left(\left[0, \frac{\mathbf{x}}{2}\right] \cup \left(\frac{1}{2}, \frac{\mathbf{x}+1}{2}\right]\right) = \mu\left(\left[0, \frac{\mathbf{x}}{2}\right]\right) + \mu\left(\left[0, \frac{\mathbf{x}+1}{2}\right]\right) - \mu\left(\left[0, \frac{1}{2}\right]\right) \\ &= \varphi\left(\frac{\mathbf{x}}{2}\right) + \varphi\left(\frac{\mathbf{x}+1}{2}\right) - \varphi\left(\frac{1}{2}\right) \end{split}$$

(2)
$$\varphi(x) = \varphi\left(\frac{x}{2}\right) + \varphi\left(\frac{x+1}{2}\right) - \varphi\left(\frac{1}{2}\right)$$

$$\mathcal{S} = \big\{\varphi \colon [0,1] \to [0,1] \, \big| \, \varphi(0) = 0, \, \varphi(1) = 1, \, \varphi \text{ is increasing solution to (2)} \big\}.$$

$$\mathcal{S} = \big\{\varphi \colon [0,1] \to [0,1] \, \big| \, \varphi(0) = 0, \, \varphi(1) = 1, \, \varphi \text{ is increasing solution to (2)} \big\}.$$

Put

$$\mathcal{I} = \left\{\phi \colon [0,1] \to [0,1] \,\middle|\, \phi(0) = 0, \, \phi(1) = 1, \, \phi \text{ is increasing}\right\}$$

and define $T: \mathcal{I} \to \mathcal{I}$ by putting

$$T\phi(x) = \phi\left(\frac{x}{2}\right) + \phi\left(\frac{x+1}{2}\right) - \phi\left(\frac{1}{2}\right).$$

$$\mathcal{S} = \big\{\varphi \colon [0,1] \to [0,1] \, \big| \, \varphi(0) = 0, \, \varphi(1) = 1, \, \varphi \text{ is increasing solution to (2)} \big\}.$$

Put

$$\mathcal{I} = \left\{\phi \colon [0,1] \to [0,1] \,\middle|\, \phi(0) = 0, \, \phi(1) = 1, \, \phi \text{ is increasing}\right\}$$

and define $T: \mathcal{I} \to \mathcal{I}$ by putting

$$T\phi(x) = \phi\left(\frac{x}{2}\right) + \phi\left(\frac{x+1}{2}\right) - \phi\left(\frac{1}{2}\right).$$

Given a Banach limit B and $\phi \in \mathcal{I}$ we associate with them $B_{\phi} \in \mathcal{I}$ defined by

$$B_{\phi}(x) = B((T^m \phi(x))_{m \in \mathbb{N}}).$$

(2)
$$\varphi(x) = \varphi\left(\frac{x}{2}\right) + \varphi\left(\frac{x+1}{2}\right) - \varphi\left(\frac{1}{2}\right)$$

$$\mathcal{S} = \big\{\varphi \colon [0,1] \to [0,1] \, \big| \, \varphi(0) = 0, \, \varphi(1) = 1, \, \varphi \text{ is increasing solution to (2)} \big\}.$$

Put

$$\mathcal{I} = \left\{\phi \colon [0,1] \to [0,1] \,\middle|\, \phi(0) = 0,\, \phi(1) = 1,\, \phi \text{ is increasing}\right\}$$

and define $T: \mathcal{I} \to \mathcal{I}$ by putting

$$T\phi(x) = \phi\left(\frac{x}{2}\right) + \phi\left(\frac{x+1}{2}\right) - \phi\left(\frac{1}{2}\right).$$

Given a Banach limit B and $\phi \in \mathcal{I}$ we associate with them $B_{\phi} \in \mathcal{I}$ defined by

$$B_{\phi}(x) = B((T^m \phi(x))_{m \in \mathbb{N}}).$$

Theorem 1.

Let B be a Banach limit. Then $S = \{B_{\phi} \mid \phi \in \mathcal{I}\}.$

Proof.

If $\varphi \in \mathcal{S}$, then

$$B_{\varphi}(x) = B((T^m \varphi(x))_{m \in \mathbb{N}}) = B((\varphi(x))_{m \in \mathbb{N}}) = \varphi(x)$$

for every $x \in [0,1]$, and hence $S \subset \{B_{\phi} \mid \phi \in \mathcal{I}\}$.

Fix $\phi \in \mathcal{I}$. Clearly, $B_{\phi} \in \mathcal{I}$. Moreover, for every $x \in [0,1]$ we have

$$\begin{split} B_{\phi}(x) &= B\left(\left(T^{m}\phi(x)\right)_{m\in\mathbb{N}}\right) = B\left(\left(T^{m+1}\phi(x)\right)_{m\in\mathbb{N}}\right) \\ &= B\left(\left(T^{m}\phi\left(\frac{x}{2}\right) + T^{m}\phi\left(\frac{x+1}{2}\right) - T^{m}\phi\left(\frac{1}{2}\right)\right)_{m\in\mathbb{N}}\right) \\ &= B\left(\left(T^{m}\phi\left(\frac{x}{2}\right)\right)_{m\in\mathbb{N}}\right) + B\left(\left(T^{m}\phi\left(\frac{x+1}{2}\right)\right)_{m\in\mathbb{N}}\right) \\ &- B\left(\left(T^{m}\phi\left(\frac{1}{2}\right)\right)_{m\in\mathbb{N}}\right) = B_{\phi}\left(\frac{x}{2}\right) + B_{\phi}\left(\frac{x+1}{2}\right) - B_{\phi}\left(\frac{1}{2}\right). \end{split}$$

(2)
$$\varphi(x) = \varphi\left(\frac{x}{2}\right) + \varphi\left(\frac{x+1}{2}\right) - \varphi\left(\frac{1}{2}\right)$$

Every $\varphi \in \mathcal{S}$ is a convex combination of functions of the following three classes:

$$S_A = \{ \varphi \in S \mid \varphi \text{ is an absolutely continuous function} \},$$

$$\mathcal{S}_{\mathcal{C}} = \{ \varphi \in \mathcal{S} \, | \, \varphi \text{ is a continuous and singular function} \},$$

$$\mathcal{S}_{\textit{J}} = \{\varphi \in \mathcal{S} \,|\, \varphi \text{ is a right-continuous jump function}\}.$$

Every $\varphi \in \mathcal{S}$ is a convex combination of functions of the following three classes:

$$S_A = \{ \varphi \in S \mid \varphi \text{ is an absolutely continuous function} \},$$

$$S_C = \{ \varphi \in S \mid \varphi \text{ is a continuous and singular function} \},$$

$$S_J = \{ \varphi \in S \mid \varphi \text{ is a right-continuous jump function} \}.$$

Theorem 2 (A.Rényi, 1957).

$$\mathcal{S}_A=\{\mathrm{id}_{[0,1]}\}.$$

Every $\varphi \in \mathcal{S}$ is a convex combination of functions of the following three classes:

$$S_A = \{ \varphi \in S \mid \varphi \text{ is an absolutely continuous function} \},$$

$$S_C = \{ \varphi \in S \mid \varphi \text{ is a continuous and singular function} \},$$

$$S_J = \{ \varphi \in S \mid \varphi \text{ is a right-continuous jump function} \}.$$

Theorem 2 (A.Rényi, 1957).

$$\mathcal{S}_A = \{ \mathrm{id}_{[0,1]} \}.$$

Theorem 3.

If B is a Banach limit and $\phi \in \mathcal{I}$ is absolutely continuous, then $B_{\phi} = \mathrm{id}_{[0,1]}$.

Every $\varphi \in \mathcal{S}$ is a convex combination of functions of the following three classes:

$$S_A = \{ \varphi \in S \mid \varphi \text{ is an absolutely continuous function} \},$$

$$S_C = \{ \varphi \in S \mid \varphi \text{ is a continuous and singular function} \},$$

$$S_J = \{ \varphi \in S \mid \varphi \text{ is a right-continuous jump function} \}.$$

Theorem 2 (A.Rényi, 1957).

$$\mathcal{S}_A = \{ \mathrm{id}_{[0,1]} \}.$$

Theorem 3.

If B is a Banach limit and $\phi \in \mathcal{I}$ is absolutely continuous, then $B_{\phi} = \mathrm{id}_{[0,1]}$.

Prove or disprove that if B is a Banach limit and $\phi \in \mathcal{I}$ is continuous and singular, then B_{ϕ} is continuous and singular.

Lemma 3.

Each $\varphi \in \mathcal{S}$ is continuous at all points outside of the set

$$D = \left\{ \frac{p}{2^{k} - 1} \,\middle|\, p \in \{1, \dots, 2^{k} - 1\}, k \in \mathbb{N} \right\}.$$

Lemma 3.

Each $\varphi \in \mathcal{S}$ is continuous at all points outside of the set

$$D = \left\{ \frac{p}{2^k - 1} \, \middle| \, p \in \{1, \dots, 2^k - 1\}, k \in \mathbb{N} \right\}.$$

Decompose D on subsets D_n , $n \in \mathbb{N}$, where each D_n is the smallest subset of D with the following property: If $\varphi \in \mathcal{S}$ is discontinuous at a point of D_n , then it is discontinuous at all points of D_n . We can proceed as follows:

for
$$k=1$$
 we put $D_1=\{1\}$; for $k=2$ we put $D_2=\{\frac{1}{3},\frac{2}{3}\}$; for $k=3$ we put $D_3=\{\frac{1}{7},\frac{2}{7},\frac{4}{7}\}$, $D_4=\{\frac{3}{7},\frac{6}{7},\frac{5}{7}\}$; for $k=4$ we put $D_6=\{\frac{1}{15},\frac{2}{15},\frac{4}{15},\frac{8}{15}\}$, $D_7=\{\frac{3}{15},\frac{6}{15},\frac{12}{15},\frac{9}{15}\}$, $D_2=\{\frac{5}{15},\frac{10}{15}\}$, $D_8=\{\frac{7}{15},\frac{14}{15},\frac{13}{15},\frac{11}{15}\}$; and so on.

Lemma 3.

Each $\varphi \in \mathcal{S}$ is continuous at all points outside of the set

$$D = \left\{ \frac{p}{2^k - 1} \,\middle|\, p \in \{1, \dots, 2^k - 1\}, k \in \mathbb{N} \right\}.$$

Decompose D on subsets D_n , $n \in \mathbb{N}$, where each D_n is the smallest subset of D with the following property: If $\varphi \in \mathcal{S}$ is discontinuous at a point of D_n , then it is discontinuous at all points of D_n . We can proceed as follows:

for
$$k=1$$
 we put $D_1=\{1\}$; for $k=2$ we put $D_2=\{\frac{1}{3},\frac{2}{3}\}$; for $k=3$ we put $D_3=\{\frac{1}{7},\frac{2}{7},\frac{4}{7}\}$, $D_4=\{\frac{3}{7},\frac{6}{7},\frac{5}{7}\}$; for $k=4$ we put $D_6=\{\frac{1}{15},\frac{2}{15},\frac{4}{15},\frac{8}{15}\}$, $D_7=\{\frac{3}{15},\frac{6}{15},\frac{12}{15},\frac{9}{15}\}$, $D_2=\{\frac{5}{15},\frac{10}{15}\}$, $D_8=\{\frac{7}{15},\frac{14}{15},\frac{13}{15},\frac{11}{15}\}$; and so on.

Next for every $n \in \mathbb{N}$ we define a right-continuous jump function $\varphi_n \colon [0,1] \to [0,1]$ such that $\varphi_n(0) = 0$, $\varphi_n(1) = 1$, and φ_n has equal jumps at every point of D_n .

More on solutions to the functional equation (2) $\varphi(x) = \varphi\left(\frac{x}{2}\right) + \varphi\left(\frac{x+1}{2}\right) - \varphi\left(\frac{1}{2}\right)$

Lemma 3.

Each $\varphi \in \mathcal{S}$ is continuous at all points outside of the set

$$D = \left\{ \frac{p}{2^k - 1} \, \middle| \, p \in \{1, \dots, 2^k - 1\}, k \in \mathbb{N} \right\}.$$

Decompose D on subsets D_n , $n \in \mathbb{N}$, where each D_n is the smallest subset of D with the following property: If $\varphi \in \mathcal{S}$ is discontinuous at a point of D_n , then it is discontinuous at all points of D_n . We can proceed as follows:

for
$$k=1$$
 we put $D_1=\{1\}$; for $k=2$ we put $D_2=\{\frac{1}{3},\frac{2}{3}\}$; for $k=3$ we put $D_3=\{\frac{1}{7},\frac{2}{7},\frac{4}{7}\}$, $D_4=\{\frac{3}{7},\frac{6}{7},\frac{5}{7}\}$; for $k=4$ we put $D_6=\{\frac{1}{15},\frac{2}{15},\frac{4}{15},\frac{8}{15}\}$, $D_7=\{\frac{3}{15},\frac{6}{15},\frac{12}{15},\frac{9}{15}\}$, $D_2=\{\frac{5}{15},\frac{10}{15}\}$, $D_8=\{\frac{7}{15},\frac{14}{15},\frac{13}{15},\frac{11}{15}\}$; and so on.

Next for every $n \in \mathbb{N}$ we define a right-continuous jump function $\varphi_n \colon [0,1] \to [0,1]$ such that $\varphi_n(0) = 0$, $\varphi_n(1) = 1$, and φ_n has equal jumps at every point of D_n .

Theorem 4.

$$S_J = \{ \sum_{n \in \mathbb{N}} \alpha_n \varphi_n \mid \alpha_n \ge 0 \text{ for } n \in \mathbb{N} \text{ with } \sum_{n \in \mathbb{N}} \alpha_n = 1 \}.$$

More on solutions to the functional equation (2) $\varphi(x) = \varphi\left(\frac{x}{2}\right) + \varphi\left(\frac{x+1}{2}\right) - \varphi\left(\frac{1}{2}\right)$

For $m \in \mathbb{N}$ and a probability vector $P = (p_0, \dots, p_{2^m-1}) \in [0, 1)^{2^m}$ let $\Phi_P \colon [0, 1] \to [0, 1]$ be the unique increasing and continuous function satisfying

$$\Phi_P\left(\frac{x+k}{2^m}\right) = p_k \Phi_P(x) + \sum_{i=0}^{k-1} p_i \text{ for } k \in \{0,\dots,2^m-1\}.$$

Then define $\varphi_P \colon [0,1] \to [0,1]$ by

$$\varphi_P(x) = \frac{1}{m} \sum_{i=0}^{m-1} \sum_{k=0}^{2^i - 1} \left[\Phi_P\left(\frac{x+k}{2^i}\right) - \Phi_P\left(\frac{k}{2^i}\right) \right]$$

More on solutions to the functional equation (2)
$$\varphi(x) = \varphi\left(\frac{x}{2}\right) + \varphi\left(\frac{x+1}{2}\right) - \varphi\left(\frac{1}{2}\right)$$

For $m \in \mathbb{N}$ and a probability vector $P = (p_0, \dots, p_{2^m-1}) \in [0, 1]^{2^m}$ let $\Phi_P \colon [0, 1] \to [0, 1]$ be the unique increasing and continuous function satisfying

$$\Phi_P\left(\frac{x+k}{2^m}\right) = p_k \Phi_P(x) + \sum_{i=0}^{k-1} p_i \text{ for } k \in \{0,\dots,2^m-1\}.$$

Then define $\varphi_P \colon [0,1] \to [0,1]$ by

$$\varphi_P(x) = \frac{1}{m} \sum_{i=0}^{m-1} \sum_{k=0}^{2^i - 1} \left[\Phi_P\left(\frac{x+k}{2^i}\right) - \Phi_P\left(\frac{k}{2^i}\right) \right]$$

Theorem 5.

Let Δ_m be the set of all probability vectors $P \in [0,1)^{2^m}$. Then for every Borel probability measure ν on Δ_m the formula

$$\Psi_{\nu}(x) = \int_{\Lambda_{m}} \varphi_{P}(x) \, d\nu(P)$$

defines a function $\Psi_{\nu} \in \mathcal{S}_{C}$.