Point-set games and functions with the hereditary small oscillation property

Tomasz Natkaniec

University of Gdańsk

Łódź, 20.06.2024

Joint work with Marek Balcerzak and Piotr Szuca.

Bibliography

M. Balcerzak, T. Natkaniec, P. Szuca, Point-set games and the hereditary small oscillation property, Topology Appl., accepted. doi.org/10.1016/j.topol.2024.109000.

Definitions

Assume that X is a metric space, Σ is non-empty family of non-empty subsets of X, and $f: X \to \mathbb{R}$. We say that f has:

• the continuous restriction property (CRP) with respect to Σ if

$$\exists_{P \in \Sigma} f|_P$$
 is continuous;

 the hereditary continuous restriction property (HCRP) wrt Σ if

$$\forall_{P \in \Sigma} \exists_{Q \in \Sigma} Q \subseteq P \& f|_Q$$
 is continuous;

ullet the hereditary small oscillation property (HSOP) wrt Σ if

$$\forall_{\varepsilon>0} \ \forall_{P\in\Sigma} \ \exists_{Q\in\Sigma} \ Q\subseteq P \ \& \ \operatorname{osc}(f|_Q,x)<\varepsilon \ \text{for all} \ x\in Q.$$

• We have: $HCRP \Rightarrow CRP$ and $HCRP \Rightarrow HSOP$.

Motivations

Let X be a Polish space without isolated points and let $f: X \to \mathbb{R}$. Then:

- *f* is Marczewski measurable ((*s*)-measurable) iff it has the HCRP with respect to Perf.
- f is Baire measurable iff it has the HCRP with respect to the family G_{Res} of G_{δ} sets with the property: there is a nonempty open set U such that G is residual in U.
- f is $\overline{\mu}$ -measurable with respect to the completion $\overline{\mu}$ of a finite nonatomic Borel measure μ on X iff it has the HCRP with respect to the family Perf⁺ of all perfect subsets of X with positive measure.
- **J. B. Brown and H. Elalaoui-Talibi**, *Marczewski-Burstin-like characterizations of σ-algebras, ideals, and measurable functions*, Colloq. Math. 82, 1999.

HSOP versus HCRP

Theorem

In all those examples the property HCRP can be replaced by HSOP:

- f is Baire measurable iff it has the HSOP wrt G_{Res};
- f is $\overline{\mu}$ -measurable iff it has the HSOP wrt Perf⁺;
- f is Marczewski measurable iff it has the HSOP wrt Perf.

The next example shows that HSOP and HCRP may be different.

Cliquish functions

Definition

 $f \colon X \to \mathbb{R}$ is cliquish if for each non-empty open set W and $\varepsilon > 0$ there is a non-empty open set $U \subseteq W$ with $\operatorname{diam}(f(U)) < \varepsilon$.

- $f: X \to \mathbb{R}$ is cliquish iff it has the HSOP with respect to the family $\tau_0(X)$ of all non-empty open sets in X;
- there is $f_0: \mathbb{R} \to \mathbb{R}$ with the HSOP wrt $\tau_0(\mathbb{R})$ for which $\operatorname{int}(C(f_0)) = \emptyset$;
- if $f: \mathbb{R} \to \mathbb{R}$ has the HCRP wrt $\tau_0(X)$ then $\operatorname{int}(C(f)) \neq \emptyset$.
- Thus $f_0 \in \text{HSOP} \setminus \text{HCRP}$ (wrt $\tau_0(X)$).

The game $G_{<\omega}(\Sigma, f)$

Let X be a metric space, Σ is a non-empty family of non-empty subsets of X and $f: X \to \mathbb{R}$ is fixed. The game $G_{<\omega}(\Sigma, f)$ is defined as follows.

- At the step k = 0, Player I plays $P \in \Sigma$, then Player II plays a set $P_0 \in \Sigma$, $P_0 \subseteq P$.
- If $n \ge 1$, Player I plays a finite sequence $\langle x_i \colon k_{n-1} < i \le k_n \rangle \subseteq P_{n-1}$, where $k_0 = 0$ and $k_{n-1} < k_n$, and Player II plays a $P_n \in \Sigma$, $P_n \subseteq P$:

Player I
$$P$$
 X_1, \dots, X_{k_1} $X_{k_1+1}, \dots, X_{k_2}$ \cdots Player II P_0 P_1 P_2 \cdots

Player II wins the game if $\langle x_n \rangle$ is convergent and $\lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n)$. Otherwise, Player I wins.

The games $G_{\lambda}(\Sigma, f)$

- Let λ be an increasing sequence of natural numbers with $\lambda(0)=0$. The definition of the game $G_{\lambda}(\Sigma,f)$ is the same as the definition of $G_{<\omega}(\Sigma,f)$ with the condition: $k_n=\lambda(n)$ for every $n\in\mathbb{N}$.
- Moreover, if $\exists_m \forall_n \lambda(n) = mn$, the game $G_{\lambda}(\Sigma, f)$ is denoted by $G_m(\Sigma, f)$, i.e. at the nth step of the game $G_m(\Sigma, f)$, Player I plays a finite sequence $\langle x_i \colon m(n-1) < i \leq mn \rangle$ in P_{n-1} and Player II plays a set $P_n \in \Sigma$ as follows:

Player I
$$P$$
 X_1, \dots, X_m X_{m+1}, \dots, X_{2m} \cdots Player II P_0 P_1 P_2 \cdots

• Other rules are as in $G_{<\omega}(\Sigma, f)$.

The game $G_1(\Sigma, f)$

The game $G_1(\Sigma, f)$: we assume that $\lambda(n) = n$ for every n > 0, i.e.

Player I
$$P$$
 x_1 x_2 \cdots Player II P_0 P_1 P_2 \cdots

- with the rules that for each integer $n \ge 0$:
 - $x_n \in P_{n-1}$;
 - $P \in \Sigma$ and $P_n \in \Sigma$ and $P_n \subseteq P$.

Player II wins the game $G_1(\Sigma, f)$ if $\langle x_n \rangle$ is convergent and $\lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n)$. Otherwise, Player I wins.

Equivalence

We say that two games 1 and 2 are equivalent whenever each of players has a winning strategy in the game 1 if and only if he has a winning strategy in the game 2.

Theorem

Assume that Σ is a non-empty family of non-empty subsets of a metric space (X,d) and $f \in \mathbb{R}^X$. Then for every λ the games $G_{\lambda}(\Sigma,f)$ and $G_{<\omega}(\Sigma,f)$ are equivalent.

Theorem

A family Σ is dense if, for each $P \in \Sigma$ and every ball B(x, r) with $x \in P$ there exists $Q \in \Sigma$ contained in $P \cap B(x, r)$.

Theorem

Assume that (X, d) is a complete metric space and Σ is a dense family whose members are non-empty closed subsets of X. For every $f \colon X \to \mathbb{R}$:

- If has the HSOP wrt Σ iff Player II has a winning strategy in the game $G_1(\Sigma, f)$;
- ② f has not the HSOP wrt Σ iff Player I has a winning strategy in the game $G_1(\Sigma, f)$.

This means that the game $G_1(\Sigma, f)$ is determined.

Proof

We have to prove:

- if f has HSOP wrt Σ then Player II has a winning strategy in $G_1(\Sigma, f)$;

Assume that f has HSOP. Let's play $G_1(\Sigma, f)$.

- Player I: $P \in \Sigma$.
- Player II: $P_0 \in \Sigma$, $P_0 \subseteq P$ st |f(x) f(x')| < 1 for all $x, x' \in P_0$.
- Player I: $x_1 \in P_0$, etc.
- At the *k*th move: Player I: $x_k \in P_{k-1}$, Player II: $P_k \in \Sigma$ st $P_k \subset P_{k-1} \cap B(x_k, \frac{1}{2^k})$, $|f(x) f(x')| < \frac{1}{k}$ for $x, x' \in P_k$.
- After the game we obtain a Cauchy sequence $\langle x_n \rangle \subseteq X$ st $x_n \in P_k$ for $k \ge n$. Hence $\lim_n x_n = x \in \bigcap_{k=0}^\infty P_k$ and $|f(x) f(x_k)| < \frac{1}{k}$, so $\lim_k (f(x_k)) = f(x)$.

Assume that f has HSOP. Let's play $G_1(\Sigma, f)$.

- Player I: $P \in \Sigma$.
- Player II: $P_0 \in \Sigma$, $P_0 \subseteq P$ st |f(x) f(x')| < 1 for all $x, x' \in P_0$.
- Player I: $x_1 \in P_0$, etc.
- At the kth move: Player I: $x_k \in P_{k-1}$, Player II: $P_k \in \Sigma$ st $P_k \subset P_{k-1} \cap B(x_k, \frac{1}{2^k})$, $|f(x) f(x')| < \frac{1}{k}$ for $x, x' \in P_k$.
- After the game we obtain a Cauchy sequence $\langle x_n \rangle \subseteq X$ st $x_n \in P_k$ for $k \ge n$. Hence $\lim_n x_n = x \in \bigcap_{k=0}^\infty P_k$ and $|f(x) f(x_k)| < \frac{1}{k}$, so $\lim_k (f(x_k)) = f(x)$.

Assume that f has HSOP. Let's play $G_1(\Sigma, f)$.

- Player I: $P \in \Sigma$.
- Player II: $P_0 \in \Sigma$, $P_0 \subseteq P$ st |f(x) f(x')| < 1 for all $x, x' \in P_0$.
- Player I: $x_1 \in P_0$, etc.
- At the kth move: Player I: $x_k \in P_{k-1}$, Player II: $P_k \in \Sigma$ st $P_k \subset P_{k-1} \cap B(x_k, \frac{1}{2^k})$, $|f(x) f(x')| < \frac{1}{k}$ for $x, x' \in P_k$.
- After the game we obtain a Cauchy sequence $\langle x_n \rangle \subseteq X$ st $x_n \in P_k$ for $k \ge n$. Hence $\lim_n x_n = x \in \bigcap_{k=0}^\infty P_k$ and $|f(x) f(x_k)| < \frac{1}{k}$, so $\lim_k (f(x_k)) = f(x)$.

Assume that f has not HSOP. Then there are: $\varepsilon > 0$ and $P \in \Sigma$ st

$$\forall_{Q\in\Sigma,Q\subseteq P}\ \exists_{x\in Q}\ \mathrm{osc}(f|_Q,x)\geq\varepsilon.$$

Let's play $G_1(\Sigma, f)$.

- Player I: $P \in \Sigma$.
- Player II: $P_0 \in \Sigma$, $P_0 \subseteq P$.
- Player I: $x_1 \in P_0$, etc
- At the k + 1 move: x_k , P_k are chosen. Player I fixes any $x \in P_k$ and considers 2 cases.
 - ① if $|f(x) f(x_k)| > \frac{\varepsilon}{4}$ then $x_{k+1} = x$.
 - 2 Let $|f(x) f(x_k)| \le \frac{\varepsilon}{4}$. Then $\exists_{x' \in P_k} |f(x') f(x)| \ge \frac{\varepsilon}{4}$, so $|f(x') f(x_k)| \ge \frac{\varepsilon}{4}$ and Player I picks $x_{k+1} = x'$.
- After the game we obtain a sequence $\langle x_n \rangle$ st $\langle f(x_k) \rangle$ is not convergent.

Assume that f has not HSOP. Then there are: $\varepsilon > 0$ and $P \in \Sigma$ st

$$\forall_{Q\in\Sigma,Q\subseteq P}\ \exists_{x\in Q}\ \mathrm{osc}(f|_Q,x)\geq\varepsilon.$$

Let's play $G_1(\Sigma, f)$.

- Player I: $P \in \Sigma$.
- Player II: $P_0 \in \Sigma$, $P_0 \subseteq P$.
- Player I: $x_1 \in P_0$, etc
- At the k+1 move: x_k , P_k are chosen. Player I fixes any $x \in P_k$ and considers 2 cases.

 - 2 Let $|f(x) f(x_k)| \le \frac{\varepsilon}{4}$. Then $\exists_{x' \in P_k} |f(x') f(x)| \ge \frac{\varepsilon}{4}$, so $|f(x')-f(x_k)| \geq \frac{\varepsilon}{4}$ and Player I picks $x_{k+1}=x'$.
- After the game we obtain a sequence $\langle x_n \rangle$ st $\langle f(x_k) \rangle$ is not

Assume that f has not HSOP. Then there are: $\varepsilon > 0$ and $P \in \Sigma$ st

$$\forall_{Q\in\Sigma,Q\subseteq P}\ \exists_{x\in Q}\ \mathrm{osc}(f|_Q,x)\geq\varepsilon.$$

Let's play $G_1(\Sigma, f)$.

- Player I: $P \in \Sigma$.
- Player II: $P_0 \in \Sigma$, $P_0 \subseteq P$.
- Player I: $x_1 \in P_0$, etc
- At the k + 1 move: x_k, P_k are chosen. Player I fixes any x ∈ P_k and considers 2 cases.

 - 2 Let $|f(x) f(x_k)| \le \frac{\varepsilon}{4}$. Then $\exists_{x' \in P_k} |f(x') f(x)| \ge \frac{\varepsilon}{4}$, so $|f(x') f(x_k)| \ge \frac{\varepsilon}{4}$ and Player I picks $x_{k+1} = x'$.
- After the game we obtain a sequence $\langle x_n \rangle$ st $\langle f(x_k) \rangle$ is not convergent.

Corollaries

Assume that *X* is a Polish space without isolated points. Then:

- if f is (is not) measurable with respect to the completion of μ, then Player II (Player I) has a winning strategy in the game G₁(Perf⁺, f);
- if f is (is not) Marczewski measurable, then Player II
 (Player I) has a winning strategy in the game G₁(Perf, f);
- if f is (is not) Baire measurable, then Player II (Player I) has a winning strategy in the game G₁(G_{Res}, f);
- if f is (is not) cliquish, Player II (Player I) has a winning strategy in the game $G_1(CLO, f)$.

Open problem

Problem

Do there exist a family Σ of non-empty subsets of $\mathbb R$ and a function $f:\mathbb R\to\mathbb R$ for which the game $G_1(\Sigma,f)$ is not determined?