On some open problems connected with stability and instability of certain properties of functions

Ryszard J. Pawlak in collaboration with M. Kucharska, J. Poprawa A. Loranty, E. Korczak-Kubiak

2024

Dynamical systems in compact space X

Let
$$f\colon [0,1] \to [0,1]$$
 $(i=1,2,\ldots)$ be a function. Then
$$f^0=\mathrm{id}_{[0,1]}, \ \ f^n=f\circ\ldots\circ f \ \ (n \ \mathrm{times})$$

A pair $([0,1], \{f^n\}_{n=1}^{\infty})$ is called **dynamical system** and it is denoted by (f).

SEMIGROUP

Semigroup generated by family of function

Let Ψ be a family of functions. Put

$$S_n(\Psi) = \{ f_{i_1} \circ \cdots \circ f_{i_n} : f_{i_1}, \dots, f_{i_n} \in \Psi \}$$

for any $n \in N$. The set $S(\Psi) = \bigcup_{n=1}^{\infty} S_n(\Psi)$ is a semigroup of functions generated by the family Ψ . Then the family Ψ will be called the set of generators of the semigroup $S(\Psi)$.

Stable and unstable property

$$id(x) = x$$
, for $x \in [0, 1]$.

Let $\mathcal P$ be some property of function and let $\Psi \neq \{\mathrm{id}\}$ be a family of functions.

Stability

We will say that \mathcal{P} is a **stable property for** Ψ if each function $f \in S(\Psi) \setminus \{id\}$ has the property \mathcal{P} .

Instability

We will say that \mathcal{P} is an **unstable property for** Ψ if it is not a stable property (i. e. there exists function $g \in S(\Psi) \setminus \{\mathrm{id}\}$ that does not have the property \mathcal{P}).

If Ψ is a family of all functions having property $\mathcal P$ then we will say briefly stable/unstable property.

QUASI-CONTINUITY

Quasi-continuous function

We will say that a function $f \colon [0,1] \to [0,1]$ is quasi-continuous at x_0 if for any open neighbourhoods W of $f(x_0)$ and U of x_0 there exists an open set $V \subset U$ such that $f(V) \subset W$.

A function $f\colon [0,1] \to [0,1]$ is quasi-continuous if it is quasi-continuous at each point of [0,1].

The set of all quasi-continuous (Darboux and quasi-continuous) functions will be denoted Qc (DQc).

THEOREM [A. Peris], [M. Kucharska & RJP]

Quasi-continuity is an unstable property.

THEOREM [H. Pawlak & RJP], [M. Kucharska & RJP]

Darboux and quasi-continuity is a stable property .

TOPOLOGICAL ENTROPY

Let $\Psi=\{f_0=\mathrm{id},f_1,f_2,\ldots,f_k\}$, where $f_i\cdot[0,1]\to[0,1]$ for $i\in[0,k]$, be the set of generators.

Entropy of semigroup of functions, A. Biś

Let $n\in N$, $\varepsilon>0$ and $Y\subset [0,1]$. We say that the set $Z\subset Y$ is (n,ε) -separated by $S(\Psi)$ in Y if for any distinct points $p,q\in Z$ there exists function $g\in S_n(\Psi)$ such that $\mid g(p)-g(q)\mid>\varepsilon$. By $s_n(\varepsilon,S(\Psi),Y)$ we denote the maximal cardinality of the set (n,ε) -separated by $S(\Psi)$ in Y. Then the **entropy of semigroup** $S(\Psi)$ on the set Y is the number

$$h(S(\Psi), Y) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log s_n(\varepsilon, S(\Psi), Y).$$

Entropy of function

Let
$$f: [0,1] \to [0,1]$$
. Then $h(f,Y) = h(S(f_0,f),Y)$

If Y = [0, 1], we will omit the symbol of set Y.

Instability

PROPOSITION

- "Zero entropy" is an unstable property.
- "Positive entropy" is an unstable property.

THEOREM [RJP]

For each $\alpha>0$ there exists a finite family of continuous functions $\Psi=\{f_0=\mathrm{id},f_1,f_2,\ldots,f_k\}$ $(f_i\colon [0,1]\to [0,1],\ i\in \llbracket 0,k\rrbracket)$ such that property: function has zero entropy is stable for Ψ but $h(S(\Psi))>\alpha.$

THEOREM [RJP]

For each $\alpha>0$ there exists a finite family of continuous functions $\Psi=\{f_0=\mathrm{id},f_1,f_2,\ldots,f_k\}$ $(f_i\colon [0,1]\to [0,1],\ i\in \llbracket 0,k\rrbracket)$ such that property: function has zero entropy is stable for Ψ but $h(S(\Psi))>\alpha.$

PROBLEM

Can we assume $\alpha = \infty$ in the above theorem?

THEOREM [RJP]

For each $\alpha>0$ there exists a finite family of continuous functions $\Psi=\{f_0=\mathrm{id},f_1,f_2,\ldots,f_k\}$ $(f_i\colon [0,1]\to [0,1],\ i\in \llbracket 0,k\rrbracket)$ such that property: function has zero entropy is stable for Ψ but $h(S(\Psi))>\alpha.$

PROBLEM

Can we assume $\alpha = \infty$ in the above theorem?

PROBLEM

What kind of conditions should we impose on the finite family $\Psi=\{f_0=\mathrm{id},f_1,f_2,\ldots,f_k\}$ with the stable property: function has zero entropy, in order to have $h(S(\Psi))=0$.

Distribution function

B. Schweizer, J. Smital, Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc. 344 (2), 1994, 737–754.

Let $x, y \in [0, 1]$ and (f) be a dynamical system and t > 0.

$$\Phi_{x,y}^{(f)}(t) = \liminf_{n \to \infty} \frac{1}{n} \#(\{j \in [0, n-1]: | f^j(x) - f^j(y)) | < t\})$$

Lower distribution function of x, y for f.

$$\Phi_{x,y}^{*\,(f)}(t) = \limsup_{n \to \infty} \frac{1}{n} \#(\{j \in [0, n-1]: \mid f^j(x) - f^j(y)\}) \mid < t\})$$

Upper distribution function of x, y for f.

Distributionally chaotic system

Let $x, y \in X$. We shall say that a pair (x, y) is **distributionally chaotic** of type 1 (**D1** for short) for a dynamical system (f) (or function f) if $\Phi_{x,y}^{*(f)}(t) = 1$ for any t > 0 and there exists $t_0 > 0$ such that $\Phi_{x,y}^{(f)}(t_0) = 0$.

Distributionally chaotic system

Let $x,y\in X$. We shall say that a pair (x,y) is **distributionally** chaotic of type 1 (D1 for short) for a dynamical system (f) (or function f) if $\Phi_{x,y}^{*(f)}(t)=1$ for any t>0 and there exists $t_0>0$ such that $\Phi_{x,y}^{(f)}(t_0)=0$.

A set $A\subset X$ is called **distributionally scrambled set of type 1** (**DS-set** for brevity) for a dynamical system (f) (or function f) if #(A)>1 and for each $x,y\in A$ such that $x\neq y$ the pair (x,y) is D1 for this system.

A dynamical system (f) (or function f) is **distributionally chaotic** (**DC1** for brevity) of type 1 if there exists an uncountable DS-set for this system.

Instability of DC1

THEOREM [RJP]

DC1 is an unstable property.

Problem

What kind of conditions should we impose on the nonsingleton family Ψ consisting of DC1 functions in order to have:

DC1 is a stable property for Ψ ?

Distributionally chaotic point

DC1 point

Let (f) be a dynamical system. We shall say that $x_0 \in X$ is a **DC1 point** (distributionally chaotic point) of (f) (or function f) if for any $\varepsilon > 0$ there exists an uncountable set S being a DS-set for (f) such that there are $n \in \mathbb{N}$ and a closed set $A \supset S$ fulfilling the condition

$$A \subset f^{i \cdot n}(A) \subset B(x_0, \varepsilon)$$

for $i \in \mathbb{N}$.

The set A described above will be called (n, ε) -envelope of the set S.

Theorem [On the local aspects of distributional chaos, Chaos 29 (2019), A. Loranty & RJP] $\,$

Let $f:[0,1] \to [0,1]$ be a continuous function such that h(f) > 0. Then there exists a point in [0,1] which is a DC1 point of f (of the system (f)).

Theorem [On the local aspects of distributional chaos, Chaos 29 (2019), A. Loranty & RJP]

Let $f:[0,1] \to [0,1]$ be a continuous function such that h(f) > 0. Then there exists a point in [0,1] which is a DC1 point of f (of the system (f)).

Theorem [F. Balibrea (Spain) & L. Rucka (Czechia), December 2021]

Let $f:[0,1] \to [0,1]$ be a continuous function such that h(f) > 0. Then there exists an uncountable set of DC1-points of f (of the system (f)).

Theorem [On the local aspects of distributional chaos, Chaos 29 (2019), A. Loranty & RJP]

Let $f:[0,1] \to [0,1]$ be a continuous function such that h(f) > 0. Then there exists a point in [0,1] which is a DC1 point of f (of the system (f)).

Theorem [F. Balibrea (Spain) & L. Rucka (Czechia), December 2021]

Let $f:[0,1]\to [0,1]$ be a continuous function such that h(f)>0. Then there exists an uncountable set of DC1-points of f (of the system (f)).

Problem

What will happen if we weaken the assumption of continuity (e.g. Darboux, quasicontinuity; almost continuity; etc.)

0-approximately continuous functions

Let $\mathcal L$ denote the σ -algebra of all Lebesgue measurable sets and μ - the Lebesgue measure. For any $x_0\in[0,1]$ and $A\in\mathcal L$ if there exists the limit

$$\lim_{h \to 0^+} \frac{\mu(A \cap [x_0 - h, x_0 + h])}{2h},$$

then we call it a *density of a set* A *at a point* x_0 and denote it by $d(A, x_0)$. If $x_0 = 0$ or $x_0 = 1$ then we consider suitable one-sided density of this set at x_0 . If $d(A, x_0) = 1$, then we say that x_0 is a *density point of a set* A.

0-approximately continuous functions

We shall say that a function f is **0-approximately continuous** at a point x_0 if there exists a set $A \in \mathcal{L}$ such that $d(A,x_0)=1$ and $\lim_{A \ni x \to x_0} f(x) = f(x_0)$ and h(f,A)=0.

Local instability

THEOREM [M. Kucharska & RJP]

Let $x_0 \in [0,1]$, then each of the properties

- x_0 is a quasi-continuity point,
- x_0 is a 0-approximate continuity point,
- x_0 is a DC1 point is unstable.

THEOREM

 $\mathsf{D}\big(S(\Psi)\big)$ is the set of all points x, such that x is a discontinuity point of any function $\xi \in S(\Psi)$.

THEOREM

 $\mathsf{D}\big(S(\Psi)\big)$ is the set of all points x, such that x is a discontinuity point of any function $\xi \in S(\Psi)$.

THEOREM

For each continuous function $f\colon [0,1]\to [0,1]$ and each $\varepsilon>0$ there exist an uncountable family $\Psi\subset \mathrm{B}(f,\varepsilon)$ and a set $P\subset \mathrm{D}(S(\Psi))$ such that $\mu(P)>0$ and:

- quasi-continuity is a stable property for Ψ ;
- **②** 0-approximate continuity at each $x \in P$ is a stable property for Ψ ;
- **3** each point $x \in P$ is a DC1 point is a stable property for Ψ .

PROBLEM

What kind of assumptions should we impose on family Ψ in order to have:

there exists a set $P \subset D(\mathcal{S}(\Psi))$ such that $\mu(P) > 0$ and:

- **1** quasi-continuity is a stable property for Ψ ;
- **2** 0-approximate continuity at each $x \in P$ is a stable property for Ψ ;
- **3** each point $x \in P$ is a DC1 point is a stable property for Ψ .

THANK YOU FOR YOUR ATTENTION AND PATIENCE